地球科学进展 ›› 2025, Vol. 40 ›› Issue (8): 809 -820. doi: 10.11867/j.issn.1001-8166.2025.060

综述与评述 上一篇    下一篇

上层海洋氮吸收与硝化作用对酸化和暖化的响应研究进展
杨进宇1(), 戴东辰1, 高树基2   
  1. 1. 厦门大学 海洋生物地球化学全国重点实验室 海洋与地球学院,福建 厦门 361102
    2. 海南大学 南海海洋资源利用国家重点实验室,海南 海口 570228
  • 收稿日期:2025-06-20 修回日期:2025-07-24 出版日期:2025-08-10
  • 基金资助:
    国家重点研发计划项目(2022YFC3105304); 国家自然科学基金面上项目(42476032)

Research Progress on Responses of Upper-ocean Nitrogen Uptake and Nitrification to Ocean Acidification and Warming

Jinyu YANG1(), Dongchen DAI1, Shuh-Ji KAO2   

  1. 1. State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Science, Xiamen University, Xiamen Fujian 361102, China
    2. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
  • Received:2025-06-20 Revised:2025-07-24 Online:2025-08-10 Published:2025-10-20
  • Supported by:
    the National Key Research and Development Program of China(2022YFC3105304); The National Natural Science Foundation of China(42476032)

上层海洋浮游植物的氮吸收与硝化微生物介导的硝化作用是影响海洋生产力和碳汇潜力的关键过程。这些关键氮循环过程如何响应海洋酸化和暖化的双重胁迫是海洋生物地球化学循环与全球变化研究领域亟待解决的热点问题。系统总结了海洋酸化和暖化对氮吸收与硝化过程的影响程度及作用机制,强调需重视酸化和暖化的间接影响,同时指出当前研究存在生态系统的现场监测不足、多种过程与多重胁迫的协同研究有限以及长期适应过程认知欠缺等问题。最后展望了未来需重点开展的三方面研究: 强化氮吸收与硝化过程的同步耦合分析,解析酸化和暖化的交互影响; 探究上层海洋中上述过程的垂直分异响应机制; 突破时间尺度限制,阐明浮游植物和硝化微生物长期适应过程与非线性响应规律。在实验体系、空间维度及时间尺度上构建“三位一体”的研究框架,为评估全球变化下关键氮过程与海洋生产力的演变提供科学基础。

Nitrogen uptake by phytoplankton and nitrification mediated by nitrifying microorganisms in the upper ocean are key processes affecting marine productivity and carbon sequestration. Understanding how these two critical nitrogen cycle processes respond to the dual stressors of ocean acidification and warming represents a pressing research frontier in marine biogeochemical cycles and global change. Elucidating this issue will provide a theoretical foundation for accurately assessing future changes in ocean productivity and the efficiency of the biological pump. However, most existing studies rely on laboratory-based pure culture experiments, which may fail to adequately reflect the complex interactions between phytoplankton and nitrifying microorganisms in natural marine ecosystems and their responses to changes in environmental factors. This study systematically summarizes the impacts and mechanisms of ocean acidification and warming on nitrogen uptake and nitrification. In addition, more attention needs to be paid to other factors, such as strengthened ocean stratification and decreased dissolved oxygen contents, induced by ocean acidification and warming, which could indirectly affect nitrogen uptake and nitrification. Existing problems such as insufficient in-situ monitoring of ecosystems, limited synergistic studies on multiple processes and stresses, and inadequate understanding of long-term adaptation processes, are highlighted. Finally, three key areas are proposed for future research: synchronous coupling analysis of nitrogen uptake and nitrification processes, and clarifying the interactive effects of acidification and warming, exploring the vertical differentiation response mechanisms of the above processes in the upper ocean, particularly in oligotrophic oceans, where critical knowledge gaps exist, and elucidating the long-term adaptation processes and nonlinear responses of phytoplankton and nitrifying microorganisms. A three-in-one research framework is constructed—encompassing the spatial dimension, temporal scale, and the experimental system—to provide a scientific basis for evaluating the evolution of key nitrogen processes and marine productivity under global change.

中图分类号: 

图1 上层海洋氮吸收和硝化作用及与生物泵相关的重要生物地球化学过程
Fig. 1 Nitrogen uptake and nitrification in the upper oceanalong with key biogeochemical processes associated with the biological pump
表1 不同天然水体中氮吸收和硝化作用对海洋酸化和暖化的响应
Table 1 Responses of nitrogen uptake and nitrification to ocean warming and acidification in natural waters
调控因子 研究内容 研究区域 控制条件 效应 参考文献
暖化 尿素吸收 美国加利福尼亚近海 原位温度+4 °C 促进 39
尿素吸收 美国切萨皮克湾 原位温度±9 °C 促进 63
尿素吸收 美国特拉华湾 原位温度±9 °C 促进 63
NH 4 +吸收 美国切萨皮克湾 原位温度±9 °C 促进 63
NH 4 +吸收 美国特拉华湾 原位温度±9 °C 促进 63
NH 4 +吸收 楚科奇海 温度范围-1.5~20 °C 由促进转为抑制 59
NO 3 -吸收 楚科奇海 原位温度±9 °C 抑制 63
氨氧化 楚科奇海 温度范围-1.5~20 °C 无响应 59
氨氧化 美国东北部海湾 温度范围8~20 °C 无响应 77
氨氧化 中国东南部海湾 温度范围9~34 °C 由促进转为抑制 78
氨氧化 中国东南部河口 温度范围14~34 °C 促进 79
氨氧化 中国南海 温度范围14~34 °C 抑制 79
氨氧化 中国长江口上游 温度范围10~35 °C 促进 83
氨氧化 中国长江口下游 温度范围10~35 °C 由促进转为抑制 83
酸化 NO 3 -吸收 美国Terminal Island CO2分压约81 Pa 促进 39
氨氧化 美国ALOHA站 pH7.42~8.00 抑制 43
氨氧化 加利福尼亚近海 pH7.91~8.07 抑制 43
氨氧化 北大西洋BATS站 pH7.93~8.06 抑制 43
氨氧化 马尾藻海 pH7.99~8.09 抑制 43
氨氧化 美国Sequim Bay pH6.0~8.0 抑制 45
氨氧化 中国长江口 pH降低0~1.2 抑制 48
氨氧化 英国英吉利海峡 pH6.1~8.1 抑制 49
氨氧化 西北太平洋 pH降低0.06~0.4 抑制 51
氨氧化 北大西洋 pH降低0~0.46 抑制 52
氨氧化 南大洋 pH降低0~0.46 抑制 52
氨氧化 中国长江口 pH7.8/CO2分压约81 Pa 抑制 53
图2 海洋酸化和暖化对上层海洋氮吸收和硝化过程的影响模式示意图 加号和减号分别表示正(促进)和负(减少)效应;虚线框内表示酸化和暖化引起的环境因素变化对氮吸收和硝化过程产生的间接影响;AOA:氨氧化古菌;AOB:氨氧化细菌。
Fig. 2 Schematic diagram illustrating the effects of ocean acidification and warming on nitrogen uptake and nitrification in the upper water column The plus and minus signs indicate positive (increase) and negative (decrease) effects, respectively. The changes in environmental factors induced by acidification and warming that indirectly influence nitrogen uptake and nitrification are marked with dashed-line boxes; AOA: Ammonia-Oxidizing Archaea;AOB: Ammonia-Oxidizing Bacteria.
图3 寡营养海上层水体理化参数(a)、氮吸收和硝化过程速率(b)的典型分布,上述过程及其相关浮游微生物在垂直精细结构上的差异(c)(据参考文献[16]修改)
Fig. 3 Distribution of physical and chemical parametersa), and rates of nitrogen uptake and nitrificationb), as well as vertical distribution of these processes and their associated microorganismsin the upper water column of the oligotrophic oceanc) (modified after reference16])
[1]
GRUBER N GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature2008451(7 176): 293-296.
[2]
ZHANG X N WARD B B SIGMAN D M. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics[J]. Chemical Reviews2020120(12): 5 308-5 351.
[3]
SUN Jun LI Xiaoqian CHEN Jianfang, et al. Progress in oceanic biological pump [J]. Haiyang Xuebao201638(4): 1-21.
孙军, 李晓倩, 陈建芳,等. 海洋生物泵研究进展 [J]. 海洋学报201638(4): 1-21.
[4]
FLYNN R F HARAGUCHI L MCQUAID J, et al. Nanoplankton: the dominant vector for carbon export across the Atlantic Southern Ocean in spring[J]. Science Advances20239(48). DOI: 10.1126/sciadv.adi3059 . Epub 2023 Dec 1.
[5]
KUYPERS M M M MARCHANT H K KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology201816(5): 263-276.
[6]
QIN W WEI S P ZHENG Y, et al. Ammonia-oxidizing bacteria and Archaea exhibit differential nitrogen source preferences[J]. Nature Microbiology20249(2): 524-536.
[7]
WAN X S SHENG H X DAI M H, et al. Epipelagic nitrous oxide production offsets carbon sequestration by the biological pump[J]. Nature Geoscience202316: 29-36.
[8]
YANG Jinyu TANG Jinming GUO Xianghui, et al. Nitrogen cycling progress and its budget in China marginal sea: case studies in the South China Sea [J]. Oceanologia et Limnologia Sinica202152(2): 314-322.
杨进宇, 汤锦铭, 郭香会,等. 中国边缘海氮循环过程和源汇格局——以南海为例 [J]. 海洋与湖沼202152(2): 314-322.
[9]
CHEN F J LAO Q B ZHANG S W, et al. Nitrate sources and biogeochemical processes identified using nitrogen and oxygen isotopes on the eastern coast of Hainan Island[J]. Continental Shelf Research2020, 207. DOI: 10.1016/j.csr.2020.104209 .
[10]
LIU S M NING X Y DONG S H, et al. Source versus recycling influences on the isotopic composition of nitrate and nitrite in the East China Sea[J]. Journal of Geophysical Research: Oceans2020125(8). DOI: 10.1029/2020JC016061 .
[11]
MDUTYANA M THOMALLA S J PHILIBERT R, et al. The seasonal cycle of nitrogen uptake and nitrification in the Atlantic sector of the southern ocean[J]. Global Biogeochemical Cycles202034(7). DOI: 10.1029/2019GB006363 .
[12]
WANG W T YU Z M WU Z X, et al. Rates of nitrification and nitrate assimilation in the Changjiang River estuary and adjacent waters based on the nitrogen isotope dilution method[J]. Continental Shelf Research2018163: 35-43.
[13]
YOOL A MARTIN A P FERNÁNDEZ C, et al. The significance of nitrification for oceanic new production[J]. Nature2007447(7 147): 999-1 002.
[14]
BOYD P W COLLINS S DUPONT S, et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-a review[J]. Global Change Biology201824(6): 2 239-2 261.
[15]
HUTCHINS D A JANSSON J K REMAIS J V, et al. Climate change microbiology: problems and perspectives[J]. Nature Reviews Microbiology201917: 391-396.
[16]
WAN X S SHENG H X DAI M H, et al. Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean[J]. Nature Communications20189(1). DOI: 10.1038/s41467-018-03363-0 .
[17]
IPCC. Climate change 2021: the physical science basis: contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change [M]. New York: Cambridge University Press, 2021.
[18]
GRUBER N CLEMENT D CARTER B R, et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007[J]. Science2019363(6 432): 1 193-1 199.
[19]
LI C L WU Y X WANG X C, et al. Accelerated accumulation of anthropogenic CO2 drives rapid acidification in the north Pacific subtropical mode water during 1993-2020[J]. Geophysical Research Letters202249(24). DOI: 10.1029/2022GL101639 .
[20]
CHEN Jianfang ZHAI Weidong WANG Bin, et al. A review of the carbon cycle in river-estuary-coastal ocean continuum [J]. Journal of Marine Sciences202139(4): 11-21.
陈建芳, 翟惟东, 王斌,等. 河流—河口—近海连续体碳循环研究进展 [J]. 海洋学研究202139(4): 11-21.
[21]
QU Baoxiao SONG Jinming LI Xuegang. Advances in ocean acidification time-series studies [J]. Marine Science Bulletin202039(3): 281-290.
曲宝晓, 宋金明, 李学刚. 海洋酸化之时间序列研究进展 [J]. 海洋通报202039(3): 281-290.
[22]
HUTCHINS D A FU F X. Microorganisms and ocean global change[J]. Nature Microbiology2017, 2. DOI: 10.1038/nmicrobiol.2017.58 .
[23]
TAUCHER J BOXHAMMER T BACH L T, et al. Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification[J]. Nature Climate Change202111: 52-57.
[24]
WANG Y T FAN X GAO G, et al. Decreased motility of flagellated microalgae long-term acclimated to CO2-induced acidified waters[J]. Nature Climate Change202010: 561-567.
[25]
DUTKIEWICZ S MORRIS J J FOLLOWS M J, et al. Impact of ocean acidification on the structure of future phytoplankton communities[J]. Nature Climate Change20155: 1 002-1 006.
[26]
JONKERS L HILLEBRAND H KUCERA M. Global change drives modern plankton communities away from the pre-industrial state[J]. Nature2019570(7 761): 372-375.
[27]
SHI D L KRANZ S A KIM J M, et al. Ocean acidification slows nitrogen fixation and growth in the dominant diazotroph Trichodesmium under low-iron conditions[J]. Proceedings of the National Academy of Sciences of the United States of America2012109(45): E3094-E3100.
[28]
HONG H Z SHEN R ZHANG F T, et al. The complex effects of ocean acidification on the prominent N2-fixing Cyanobacterium Trichodesmium [J]. Science2017356(6 337): 527-531.
[29]
TAN E H ZOU W B ZHENG Z Z, et al. Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation[J]. Nature Climate Change202010: 349-355.
[30]
BEARDALL J RAVEN J A. Carbon acquisition by microalgae [M]// BOROWITZKA M, BEARDALL J, RAVEN J. The physiology of microalgae (developments in applied phycology). Springer, 2016.
[31]
SHI D L HONG H Z SU X, et al. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO2 and pH[J]. Journal of Phycology201955(3): 521-533.
[32]
GAO K S XU J T GAO G, et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity[J]. Nature Climate Change20122: 519-523.
[33]
XU D TONG S Y WANG B K, et al. Ocean acidification stimulation of phytoplankton growth depends on the extent of departure from the optimal growth temperature[J]. Marine Pollution Bulletin2022, 177. DOI: 10.1016/j.marpolbul.2022.113510 .
[34]
DAI R B WEN Z Z HONG H Z, et al. Eukaryotic phytoplankton drive a decrease in primary production in response to elevated CO2 in the tropical and subtropical oceans[J]. Proceedings of the National Academy of Sciences of the United States of America2025122(11). DOI: 10.1073/pnas.2423680122 .
[35]
WANNICKE N FREY C LAW C S, et al. The response of the marine nitrogen cycle to ocean acidification[J]. Global Change Biology201824(11): 5 031-5 043.
[36]
LI K Q LI M HE Y F, et al. Effects of pH and nitrogen form on Nitzschia closterium growth by linking dynamic with enzyme activity[J]. Chemosphere2020, 249. DOI: 10.1016/j.chemosphere.2020.126154 .
[37]
SHI D L LI W Y HOPKINSON B M, et al. Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana [J]. Limnology and Oceanography201560(5): 1 805-1 822.
[38]
CHEN Y W YANG J T TANG J M, et al. Changes in isotope fractionation during nitrate assimilation by marine eukaryotic and prokaryotic algae under different pH and CO2 conditions[J]. Limnology and Oceanography202469(5): 1 045-1 055.
[39]
SPACKEEN J L SIPLER R E XU K, et al. Interactive effects of elevated temperature and CO2 on nitrate, urea, and dissolved inorganic carbon uptake by a coastal California, USA, microbial community[J]. Marine Ecology Progress Series2017577: 49-65.
[40]
GU X Y LI K Q PANG K, et al. Effects of pH on the growth and NH4-N uptake of Skeletonema costatum and Nitzschia closterium [J]. Marine Pollution Bulletin2017124(2): 946-952.
[41]
MARTENS-HABBENA W BERUBE P M URAKAWA H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature2009461(7 266): 976-979.
[42]
QIN W AMIN S A MARTENS-HABBENA W, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation[J]. Proceedings of the National Academy of Sciences of the United States of America2014111(34): 12 504-12 509.
[43]
MICHAEL B J CHOW C E KING A L, et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification[J]. Proceedings of the National Academy of Sciences of the United States of America2011108(1): 208-213.
[44]
SHIOZAKI T IJICHI M FUJIWARA A, et al. Factors regulating nitrification in the Arctic ocean: potential impact of sea ice reduction and ocean acidification[J]. Global Biogeochemical Cycles201933(8): 1 085-1 099.
[45]
HUESEMANN M H SKILLMAN A D CRECELIUS E A. The inhibition of marine nitrification by ocean disposal of carbon dioxide[J]. Marine Pollution Bulletin200244(2): 142-148.
[46]
BOWEN J L KEARNS P J HOLCOMB M, et al. Acidification alters the composition of ammonia-oxidizing microbial assemblages in marine mesocosms[J]. Marine Ecology Progress Series2013492: 1-8.
[47]
MA L TAN S J LIU H B, et al. Distribution and activity of ammonia-oxidizers on the size-fractionated particles in the Pearl River estuary[J]. Frontiers in Marine Science2021, 8. DOI: 10.3389/fmars.2021.685955 .
[48]
ZHOU J ZHENG Y L HOU L J, et al. Nitrogen input modulates the effects of coastal acidification on nitrification and associated N2O emission[J]. Water Research2024, 261. DOI: 10.1016/j.watres.2024.122041 .
[49]
KITIDIS V LAVEROCK B MCNEILL L C, et al. Impact of ocean acidification on benthic and water column ammonia oxidation[J]. Geophysical Research Letters201138(21). DOI: 10.1029/2011GL049095 .
[50]
FULWEILER R W EMERY H E HEISS E M, et al. Assessing the role of pH in determining water column nitrification rates in a coastal system[J]. Estuaries and Coasts201134(6): 1 095-1 102.
[51]
REES A P BROWN I J JAYAKUMAR A, et al. The inhibition of N2O production by ocean acidification in cold temperate and polar waters[J]. Deep Sea Research Part II: Topical Studies in Oceanography2016127: 93-101.
[52]
BREIDER F YOSHIKAWA C MAKABE A, et al. Response of N2O production rate to ocean acidification in the western North Pacific[J]. Nature Climate Change20199(12): 954-958.
[53]
ZHOU J ZHENG Y L HOU L J, et al. Effects of acidification on nitrification and associated nitrous oxide emission in estuarine and coastal waters[J]. Nature Communications202314(1). DOI: 10.1038/s41467-023-37104-9 .
[54]
PARK S, BAE W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry200944(6): 631-640.
[55]
HONG Yiguo JIAO Lijing WU Jiapeng, et al. Progress on the community distribution and ecological functions of nitrite-oxidizing bacteria [J]. Journal of Tropical Oceanography202140(2): 139-146.
洪义国, 焦黎静, 吴佳鹏, 等. 海洋亚硝酸盐氧化细菌的多样性分布及其生态功能研究进展 [J]. 热带海洋学报202140(2): 139-146.
[56]
DAIMS H LEBEDEVA E V PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature2015528(7 583): 504-509.
[57]
van de WAAL D B LITCHMAN E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2020375(1 798). DOI: 10.1098/rstb.2019.0706 .
[58]
KEITH MOORE J FU W W PRIMEAU F, et al. Sustained climate warming drives declining marine biological productivity[J]. Science2018359(6 380): 1 139-1 143.
[59]
BAER S E CONNELLY T L SIPLER R E, et al. Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer[J]. Global Biogeochemical Cycles201428(12): 1 455-1 466.
[60]
ARANGUREN-GASSIS M LITCHMAN E. Thermal performance of marine diatoms under contrasting nitrate availability[J]. Journal of Plankton Research202042(6): 680-688.
[61]
YU C LI C WANG T, et al. Combined effects of experimental warming and eutrophication on phytoplankton dynamics and nitrogen uptake[J]. Water201810(8). DOI: 10.3390/w10081057 .
[62]
THOMAS M K ARANGUREN-GASSIS M KREMER C T, et al. Temperature-nutrient interactions exacerbate sensitivity to warming in phytoplankton[J]. Global Change Biology201723(8): 3 269-3 280.
[63]
LOMAS M W GLIBERT P M. Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool-water diatoms[J]. Limnology and Oceanography199944(3): 556-572.
[64]
CASEY J R BOITEAU R M ENGQVIST M K M, et al. Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology[J]. Science Advances20228(3). DOI: 10.1126/sciadv.abl4930 .
[65]
FERNÁNDEZ-GONZÁLEZ C TARRAN G A SCHUBACK N, et al. Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic[J]. Communications Biology20225(1). DOI: 10.1038/s42003-022-03971-z .
[66]
GLEICH S J PLOUGH L V GLIBERT P M. Photosynthetic efficiency and nutrient physiology of the diatom Thalassiosira pseudonana at three growth temperatures[J]. Marine Biology2020167(9). DOI:10.1007/s00227-020-03741-7 .
[67]
JABRE L J ALLEN A E SCOTT P M J, et al. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming southern ocean[J]. Proceedings of the National Academy of Sciences of the United States of America2021118(30). DOI: 10.1073/pnas.2107238118 .
[68]
MARAÑÓN E. Cell size as a key determinant of phytoplankton metabolism and community structure[J]. Annual Review of Marine Science20157: 241-264.
[69]
SANTOS-GARCIA M GANESHRAM R S TUERENA R E, et al. Nitrate isotope investigations reveal future impacts of climate change on nitrogen inputs and cycling in Arctic fjords: Kongsfjorden and Rijpfjorden (Svalbard)[J]. Biogeosciences202219(24): 5 973-6 002.
[70]
ARANGUREN-GASSIS M KREMER C T KLAUSMEIER C A, et al. Nitrogen limitation inhibits marine diatom adaptation to high temperatures[J]. Ecology Letters201922(11): 1 860-1 869.
[71]
FINKEL Z V BEARDALL J FLYNN K J, et al. Phytoplankton in a changing world: cell size and elemental stoichiometry[J]. Journal of Plankton Research201032(1): 119-137.
[72]
EDWARDS K F KLAUSMEIER C A LITCHMAN E. Evidence for a three-way trade-off between nitrogen and phosphorus competitive abilities and cell size in phytoplankton[J]. Ecology201192(11): 2 085-2 095.
[73]
MARINOV I DONEY S C LIMA I D. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light[J]. Biogeosciences20107(12): 3 941-3 959.
[74]
BARTON A D IRWIN A J FINKEL Z V, et al. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities[J]. Proceedings of the National Academy of Sciences of the United States of America2016113(11): 2 964-2 969.
[75]
GLIBERT P M WILKERSON F P DUGDALE R C, et al. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions[J]. Limnology and Oceanography201661(1): 165-197.
[76]
TAUCHER J JONES J JAMES A, et al. Combined effects of CO2 and temperature on carbon uptake and partitioning by the marine diatoms Thalassiosira weissflogii and Dactyliosolen fragilissimus [J]. Limnology and Oceanography201560(3): 901-919.
[77]
HORAK R E A QIN W SCHAUER A J, et al. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea[J]. The ISME Journal20137(10): 2 023-2 033.
[78]
ZHENG Z Z WAN X H XU M N, et al. Effects of temperature and particles on nitrification in a eutrophic coastal bay in southern China[J]. Journal of Geophysical Research: Biogeosciences2017122(9): 2 325-2 337.
[79]
ZHENG Z Z ZHENG L W XU M N, et al. Substrate regulation leads to differential responses of microbial ammonia-oxidizing communities to ocean warming[J]. Nature Communications202011(1). DOI: 10.1038/s41467-020-17366-3 .
[80]
TAYLOR A E GIGUERE A T ZOEBELEIN C M, et al. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of Archaea and bacteria[J]. The ISME Journal201711(4): 896-908.
[81]
HAWLEY A K BREWER H M NORBECK A D, et al. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes[J]. Proceedings of the National Academy of Sciences of the United States of America2014111(31): 11 395-11 400.
[82]
XU M N LI X L SHI D L, et al. Coupled effect of substrate and light on assimilation and oxidation of regenerated nitrogen in the euphotic ocean[J]. Limnology and Oceanography201964(3): 1 270-1 283.
[83]
MAO T Q ZHANG Y OU Y F, et al. Temperature differentially regulates estuarine microbial N2O production along a salinity gradient[J]. Water Research2024, 267. DOI: 10.1016/j.watres.2024.122454 .
[84]
HUTCHINS D A CAPONE D G. The marine nitrogen cycle: new developments and global change[J]. Nature Reviews Microbiology202220(7): 401-414.
[85]
DAI M H LUO Y W ACHTERBERG E P, et al. Upper ocean biogeochemistry of the oligotrophic north Pacific subtropical gyre: from nutrient sources to carbon export[J]. Reviews of Geophysics202361(3). DOI: 10.1029/2022RG000800 .
[86]
HUANG Bangqin XIAO Wupeng LIU Xin. Spatial-temporal distributions and successional patterns of phytoplankton communities in the Chinese marginal seas [J]. Journal of Xiamen University (Natural Science)202160(2): 390-397.
黄邦钦, 肖武鹏, 柳欣. 中国边缘海浮游植物群落时空格局与演变趋势 [J]. 厦门大学学报(自然科学版)202160(2): 390-397.
[1] 童森炜, 杨进宇, 万显会, 牛晴晴, 高树基. 海洋氮循环中间体羟胺的研究进展[J]. 地球科学进展, 2023, 38(7): 688-702.
[2] 陈阳军, 陈敏. 亚硝酸盐氮、氧同位素技术及其在海洋氮循环中的应用[J]. 地球科学进展, 2021, 36(12): 1224-1234.
[3] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[4] 王金平, 张志强, 高峰, 王文娟. 英国海洋科技计划重点布局及对我国的启示*[J]. 地球科学进展, 2014, 29(7): 865-873.
[5] 祁第, 陈立奇. 北冰洋酸化指标——海水文石饱和度变异的研究进展*[J]. 地球科学进展, 2014, 29(5): 569-576.
[6] 余克服, 张光学, 汪稔. 南海珊瑚礁: 从全球变化到油气勘探—第三届地球系统科学大会专题评述[J]. 地球科学进展, 2014, 29(11): 1287-1293.
[7] 宋国栋,刘素美. 海洋环境中的厌氧铵氧化研究进展[J]. 地球科学进展, 2012, 27(5): 529-538.
[8] 杨志,陈敏. 海水硝酸盐氮、氧同位素组成研究进展[J]. 地球科学进展, 2012, 27(3): 268-275.
[9] 苏 翔,刘传联. 海洋酸化对颗石藻的影响[J]. 地球科学进展, 2012, 27(11): 1274-1280.
[10] 曹知勉,戴民汉. 海洋钙离子非保守行为及海洋钙问题[J]. 地球科学进展, 2008, 23(1): 8-16.
[11] 朴河春,刘广深,洪业汤. 全球冻融地区土壤是重要的N20释放源的综合分析[J]. 地球科学进展, 1995, 10(3): 283-288.
阅读次数
全文


摘要