[1] |
GRUBER N, GALLOWAY J N. An Earth-system perspective of the global nitrogen cycle[J]. Nature, 2008, 451(7 176): 293-296.
|
[2] |
ZHANG X N, WARD B B, SIGMAN D M. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics[J]. Chemical Reviews, 2020, 120(12): 5 308-5 351.
|
[3] |
SUN Jun, LI Xiaoqian, CHEN Jianfang, et al. Progress in oceanic biological pump [J]. Haiyang Xuebao, 2016, 38(4): 1-21.
|
|
孙军, 李晓倩, 陈建芳,等. 海洋生物泵研究进展 [J]. 海洋学报, 2016, 38(4): 1-21.
|
[4] |
FLYNN R F, HARAGUCHI L, MCQUAID J, et al. Nanoplankton: the dominant vector for carbon export across the Atlantic Southern Ocean in spring[J]. Science Advances, 2023, 9(48). DOI: 10.1126/sciadv.adi3059 . Epub 2023 Dec 1.
|
[5] |
KUYPERS M M M, MARCHANT H K, KARTAL B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5): 263-276.
|
[6] |
QIN W, WEI S P, ZHENG Y, et al. Ammonia-oxidizing bacteria and Archaea exhibit differential nitrogen source preferences[J]. Nature Microbiology, 2024, 9(2): 524-536.
|
[7] |
WAN X S, SHENG H X, DAI M H, et al. Epipelagic nitrous oxide production offsets carbon sequestration by the biological pump[J]. Nature Geoscience, 2023, 16: 29-36.
|
[8] |
YANG Jinyu, TANG Jinming, GUO Xianghui, et al. Nitrogen cycling progress and its budget in China marginal sea: case studies in the South China Sea [J]. Oceanologia et Limnologia Sinica, 2021, 52(2): 314-322.
|
|
杨进宇, 汤锦铭, 郭香会,等. 中国边缘海氮循环过程和源汇格局——以南海为例 [J]. 海洋与湖沼, 2021, 52(2): 314-322.
|
[9] |
CHEN F J, LAO Q B, ZHANG S W, et al. Nitrate sources and biogeochemical processes identified using nitrogen and oxygen isotopes on the eastern coast of Hainan Island[J]. Continental Shelf Research, 2020, 207. DOI: 10.1016/j.csr.2020.104209 .
|
[10] |
LIU S M, NING X Y, DONG S H, et al. Source versus recycling influences on the isotopic composition of nitrate and nitrite in the East China Sea[J]. Journal of Geophysical Research: Oceans, 2020, 125(8). DOI: 10.1029/2020JC016061 .
|
[11] |
MDUTYANA M, THOMALLA S J, PHILIBERT R, et al. The seasonal cycle of nitrogen uptake and nitrification in the Atlantic sector of the southern ocean[J]. Global Biogeochemical Cycles, 2020, 34(7). DOI: 10.1029/2019GB006363 .
|
[12] |
WANG W T, YU Z M, WU Z X, et al. Rates of nitrification and nitrate assimilation in the Changjiang River estuary and adjacent waters based on the nitrogen isotope dilution method[J]. Continental Shelf Research, 2018, 163: 35-43.
|
[13] |
YOOL A, MARTIN A P, FERNÁNDEZ C, et al. The significance of nitrification for oceanic new production[J]. Nature, 2007, 447(7 147): 999-1 002.
|
[14] |
BOYD P W, COLLINS S, DUPONT S, et al. Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change-a review[J]. Global Change Biology, 2018, 24(6): 2 239-2 261.
|
[15] |
HUTCHINS D A, JANSSON J K, REMAIS J V, et al. Climate change microbiology: problems and perspectives[J]. Nature Reviews Microbiology, 2019, 17: 391-396.
|
[16] |
WAN X S, SHENG H X, DAI M H, et al. Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean[J]. Nature Communications, 2018, 9(1). DOI: 10.1038/s41467-018-03363-0 .
|
[17] |
IPCC. Climate change 2021: the physical science basis: contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change [M]. New York: Cambridge University Press, 2021.
|
[18] |
GRUBER N, CLEMENT D, CARTER B R, et al. The oceanic sink for anthropogenic CO2 from 1994 to 2007[J]. Science, 2019, 363(6 432): 1 193-1 199.
|
[19] |
LI C L, WU Y X, WANG X C, et al. Accelerated accumulation of anthropogenic CO 2 drives rapid acidification in the north Pacific subtropical mode water during 1993-2020[J]. Geophysical Research Letters, 2022, 49(24). DOI: 10.1029/2022GL101639 .
|
[20] |
CHEN Jianfang, ZHAI Weidong, WANG Bin, et al. A review of the carbon cycle in river-estuary-coastal ocean continuum [J]. Journal of Marine Sciences, 2021, 39(4): 11-21.
|
|
陈建芳, 翟惟东, 王斌,等. 河流—河口—近海连续体碳循环研究进展 [J]. 海洋学研究, 2021, 39(4): 11-21.
|
[21] |
QU Baoxiao, SONG Jinming, LI Xuegang. Advances in ocean acidification time-series studies [J]. Marine Science Bulletin, 2020, 39(3): 281-290.
|
|
曲宝晓, 宋金明, 李学刚. 海洋酸化之时间序列研究进展 [J]. 海洋通报, 2020, 39(3): 281-290.
|
[22] |
|
[23] |
TAUCHER J, BOXHAMMER T, BACH L T, et al. Changing carbon-to-nitrogen ratios of organic-matter export under ocean acidification[J]. Nature Climate Change, 2021, 11: 52-57.
|
[24] |
WANG Y T, FAN X, GAO G, et al. Decreased motility of flagellated microalgae long-term acclimated to CO2-induced acidified waters[J]. Nature Climate Change, 2020, 10: 561-567.
|
[25] |
DUTKIEWICZ S, MORRIS J J, FOLLOWS M J, et al. Impact of ocean acidification on the structure of future phytoplankton communities[J]. Nature Climate Change, 2015, 5: 1 002-1 006.
|
[26] |
JONKERS L, HILLEBRAND H, KUCERA M. Global change drives modern plankton communities away from the pre-industrial state[J]. Nature, 2019, 570(7 761): 372-375.
|
[27] |
SHI D L, KRANZ S A, KIM J M, et al. Ocean acidification slows nitrogen fixation and growth in the dominant diazotroph Trichodesmium under low-iron conditions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(45): E3094-E3100.
|
[28] |
HONG H Z, SHEN R, ZHANG F T, et al. The complex effects of ocean acidification on the prominent N2-fixing Cyanobacterium Trichodesmium [J]. Science, 2017, 356(6 337): 527-531.
|
[29] |
TAN E H, ZOU W B, ZHENG Z Z, et al. Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation[J]. Nature Climate Change, 2020, 10: 349-355.
|
[30] |
BEARDALL J, RAVEN J A. Carbon acquisition by microalgae [M]// BOROWITZKA M, BEARDALL J, RAVEN J. The physiology of microalgae (developments in applied phycology). Springer, 2016.
|
[31] |
SHI D L, HONG H Z, SU X, et al. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO2 and pH[J]. Journal of Phycology, 2019, 55(3): 521-533.
|
[32] |
GAO K S, XU J T, GAO G, et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity[J]. Nature Climate Change, 2012, 2: 519-523.
|
[33] |
XU D, TONG S Y, WANG B K, et al. Ocean acidification stimulation of phytoplankton growth depends on the extent of departure from the optimal growth temperature[J]. Marine Pollution Bulletin, 2022, 177. DOI: 10.1016/j.marpolbul.2022.113510 .
|
[34] |
DAI R B, WEN Z Z, HONG H Z, et al. Eukaryotic phytoplankton drive a decrease in primary production in response to elevated CO 2 in the tropical and subtropical oceans[J]. Proceedings of the National Academy of Sciences of the United States of America, 2025, 122(11). DOI: 10.1073/pnas.2423680122 .
|
[35] |
WANNICKE N, FREY C, LAW C S, et al. The response of the marine nitrogen cycle to ocean acidification[J]. Global Change Biology, 2018, 24(11): 5 031-5 043.
|
[36] |
LI K Q, LI M, HE Y F, et al. Effects of pH and nitrogen form on Nitzschia closterium growth by linking dynamic with enzyme activity[J]. Chemosphere, 2020, 249. DOI: 10.1016/j.chemosphere.2020.126154 .
|
[37] |
SHI D L, LI W Y, HOPKINSON B M, et al. Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana [J]. Limnology and Oceanography, 2015, 60(5): 1 805-1 822.
|
[38] |
CHEN Y W, YANG J T, TANG J M, et al. Changes in isotope fractionation during nitrate assimilation by marine eukaryotic and prokaryotic algae under different pH and CO2 conditions[J]. Limnology and Oceanography, 2024, 69(5): 1 045-1 055.
|
[39] |
SPACKEEN J L, SIPLER R E, XU K, et al. Interactive effects of elevated temperature and CO2 on nitrate, urea, and dissolved inorganic carbon uptake by a coastal California, USA, microbial community[J]. Marine Ecology Progress Series, 2017, 577: 49-65.
|
[40] |
GU X Y, LI K Q, PANG K, et al. Effects of pH on the growth and NH4-N uptake of Skeletonema costatum and Nitzschia closterium [J]. Marine Pollution Bulletin, 2017, 124(2): 946-952.
|
[41] |
MARTENS-HABBENA W, BERUBE P M, URAKAWA H, et al. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria[J]. Nature, 2009, 461(7 266): 976-979.
|
[42] |
QIN W, AMIN S A, MARTENS-HABBENA W, et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34): 12 504-12 509.
|
[43] |
MICHAEL B J, CHOW C E, KING A L, et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(1): 208-213.
|
[44] |
SHIOZAKI T, IJICHI M, FUJIWARA A, et al. Factors regulating nitrification in the Arctic ocean: potential impact of sea ice reduction and ocean acidification[J]. Global Biogeochemical Cycles, 2019, 33(8): 1 085-1 099.
|
[45] |
HUESEMANN M H, SKILLMAN A D, CRECELIUS E A. The inhibition of marine nitrification by ocean disposal of carbon dioxide[J]. Marine Pollution Bulletin, 2002, 44(2): 142-148.
|
[46] |
BOWEN J L, KEARNS P J, HOLCOMB M, et al. Acidification alters the composition of ammonia-oxidizing microbial assemblages in marine mesocosms[J]. Marine Ecology Progress Series, 2013, 492: 1-8.
|
[47] |
MA L, TAN S J, LIU H B, et al. Distribution and activity of ammonia-oxidizers on the size-fractionated particles in the Pearl River estuary[J]. Frontiers in Marine Science, 2021, 8. DOI: 10.3389/fmars.2021.685955 .
|
[48] |
ZHOU J, ZHENG Y L, HOU L J, et al. Nitrogen input modulates the effects of coastal acidification on nitrification and associated N 2O emission[J]. Water Research, 2024, 261. DOI: 10.1016/j.watres.2024.122041 .
|
[49] |
KITIDIS V, LAVEROCK B, MCNEILL L C, et al. Impact of ocean acidification on benthic and water column ammonia oxidation[J]. Geophysical Research Letters, 2011, 38(21). DOI: 10.1029/2011GL049095 .
|
[50] |
FULWEILER R W, EMERY H E, HEISS E M, et al. Assessing the role of pH in determining water column nitrification rates in a coastal system[J]. Estuaries and Coasts, 2011, 34(6): 1 095-1 102.
|
[51] |
REES A P, BROWN I J, JAYAKUMAR A, et al. The inhibition of N2O production by ocean acidification in cold temperate and polar waters[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2016, 127: 93-101.
|
[52] |
BREIDER F, YOSHIKAWA C, MAKABE A, et al. Response of N2O production rate to ocean acidification in the western North Pacific[J]. Nature Climate Change, 2019, 9(12): 954-958.
|
[53] |
ZHOU J, ZHENG Y L, HOU L J, et al. Effects of acidification on nitrification and associated nitrous oxide emission in estuarine and coastal waters[J]. Nature Communications, 2023, 14(1). DOI: 10.1038/s41467-023-37104-9 .
|
[54] |
PARK S, BAE W. Modeling kinetics of ammonium oxidation and nitrite oxidation under simultaneous inhibition by free ammonia and free nitrous acid[J]. Process Biochemistry, 2009, 44(6): 631-640.
|
[55] |
HONG Yiguo, JIAO Lijing, WU Jiapeng, et al. Progress on the community distribution and ecological functions of nitrite-oxidizing bacteria [J]. Journal of Tropical Oceanography, 2021, 40(2): 139-146.
|
|
洪义国, 焦黎静, 吴佳鹏, 等. 海洋亚硝酸盐氧化细菌的多样性分布及其生态功能研究进展 [J]. 热带海洋学报, 2021, 40(2): 139-146.
|
[56] |
DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7 583): 504-509.
|
[57] |
van de WAAL D B, LITCHMAN E. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2020, 375(1 798). DOI: 10.1098/rstb.2019.0706 .
|
[58] |
KEITH MOORE J, FU W W, PRIMEAU F, et al. Sustained climate warming drives declining marine biological productivity[J]. Science, 2018, 359(6 380): 1 139-1 143.
|
[59] |
BAER S E, CONNELLY T L, SIPLER R E, et al. Effect of temperature on rates of ammonium uptake and nitrification in the western coastal Arctic during winter, spring, and summer[J]. Global Biogeochemical Cycles, 2014, 28(12): 1 455-1 466.
|
[60] |
ARANGUREN-GASSIS M, LITCHMAN E. Thermal performance of marine diatoms under contrasting nitrate availability[J]. Journal of Plankton Research, 2020, 42(6): 680-688.
|
[61] |
YU C, LI C, WANG T, et al. Combined effects of experimental warming and eutrophication on phytoplankton dynamics and nitrogen uptake[J]. Water, 2018, 10(8). DOI: 10.3390/w10081057 .
|
[62] |
THOMAS M K, ARANGUREN-GASSIS M, KREMER C T, et al. Temperature-nutrient interactions exacerbate sensitivity to warming in phytoplankton[J]. Global Change Biology, 2017, 23(8): 3 269-3 280.
|
[63] |
LOMAS M W, GLIBERT P M. Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool-water diatoms[J]. Limnology and Oceanography, 1999, 44(3): 556-572.
|
[64] |
CASEY J R, BOITEAU R M, ENGQVIST M K M, et al. Basin-scale biogeography of marine phytoplankton reflects cellular-scale optimization of metabolism and physiology[J]. Science Advances, 2022, 8(3). DOI: 10.1126/sciadv.abl4930 .
|
[65] |
FERNÁNDEZ-GONZÁLEZ C, TARRAN G A, SCHUBACK N, et al. Phytoplankton responses to changing temperature and nutrient availability are consistent across the tropical and subtropical Atlantic[J]. Communications Biology, 2022, 5(1). DOI: 10.1038/s42003-022-03971-z .
|
[66] |
GLEICH S J, PLOUGH L V, GLIBERT P M. Photosynthetic efficiency and nutrient physiology of the diatom Thalassiosira pseudonana at three growth temperatures[J]. Marine Biology, 2020, 167(9). DOI: 10.1007/s00227-020-03741-7 .
|
[67] |
JABRE L J, ALLEN A E, SCOTT P M J, et al. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming southern ocean[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(30). DOI: 10.1073/pnas.2107238118 .
|
[68] |
MARAÑÓN E. Cell size as a key determinant of phytoplankton metabolism and community structure[J]. Annual Review of Marine Science, 2015, 7: 241-264.
|
[69] |
SANTOS-GARCIA M, GANESHRAM R S, TUERENA R E, et al. Nitrate isotope investigations reveal future impacts of climate change on nitrogen inputs and cycling in Arctic fjords: Kongsfjorden and Rijpfjorden (Svalbard)[J]. Biogeosciences, 2022, 19(24): 5 973-6 002.
|
[70] |
ARANGUREN-GASSIS M, KREMER C T, KLAUSMEIER C A, et al. Nitrogen limitation inhibits marine diatom adaptation to high temperatures[J]. Ecology Letters, 2019, 22(11): 1 860-1 869.
|
[71] |
FINKEL Z V, BEARDALL J, FLYNN K J, et al. Phytoplankton in a changing world: cell size and elemental stoichiometry[J]. Journal of Plankton Research, 2010, 32(1): 119-137.
|
[72] |
EDWARDS K F, KLAUSMEIER C A, LITCHMAN E. Evidence for a three-way trade-off between nitrogen and phosphorus competitive abilities and cell size in phytoplankton[J]. Ecology, 2011, 92(11): 2 085-2 095.
|
[73] |
MARINOV I, DONEY S C, LIMA I D. Response of ocean phytoplankton community structure to climate change over the 21st century: partitioning the effects of nutrients, temperature and light[J]. Biogeosciences, 2010, 7(12): 3 941-3 959.
|
[74] |
BARTON A D, IRWIN A J, FINKEL Z V, et al. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(11): 2 964-2 969.
|
[75] |
GLIBERT P M, WILKERSON F P, DUGDALE R C, et al. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions[J]. Limnology and Oceanography, 2016, 61(1): 165-197.
|
[76] |
TAUCHER J, JONES J, JAMES A, et al. Combined effects of CO2 and temperature on carbon uptake and partitioning by the marine diatoms Thalassiosira weissflogii and Dactyliosolen fragilissimus [J]. Limnology and Oceanography, 2015, 60(3): 901-919.
|
[77] |
HORAK R E A, QIN W, SCHAUER A J, et al. Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea[J]. The ISME Journal, 2013, 7(10): 2 023-2 033.
|
[78] |
ZHENG Z Z, WAN X H, XU M N, et al. Effects of temperature and particles on nitrification in a eutrophic coastal bay in southern China[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(9): 2 325-2 337.
|
[79] |
ZHENG Z Z, ZHENG L W, XU M N, et al. Substrate regulation leads to differential responses of microbial ammonia-oxidizing communities to ocean warming[J]. Nature Communications, 2020, 11(1). DOI: 10.1038/s41467-020-17366-3 .
|
[80] |
TAYLOR A E, GIGUERE A T, ZOEBELEIN C M, et al. Modeling of soil nitrification responses to temperature reveals thermodynamic differences between ammonia-oxidizing activity of Archaea and bacteria[J]. The ISME Journal, 2017, 11(4): 896-908.
|
[81] |
HAWLEY A K, BREWER H M, NORBECK A D, et al. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(31): 11 395-11 400.
|
[82] |
XU M N, LI X L, SHI D L, et al. Coupled effect of substrate and light on assimilation and oxidation of regenerated nitrogen in the euphotic ocean[J]. Limnology and Oceanography, 2019, 64(3): 1 270-1 283.
|
[83] |
MAO T Q, ZHANG Y, OU Y F, et al. Temperature differentially regulates estuarine microbial N 2O production along a salinity gradient[J]. Water Research, 2024, 267. DOI: 10.1016/j.watres.2024.122454 .
|
[84] |
HUTCHINS D A, CAPONE D G. The marine nitrogen cycle: new developments and global change[J]. Nature Reviews Microbiology, 2022, 20(7): 401-414.
|
[85] |
DAI M H, LUO Y W, ACHTERBERG E P, et al. Upper ocean biogeochemistry of the oligotrophic north Pacific subtropical gyre: from nutrient sources to carbon export[J]. Reviews of Geophysics, 2023, 61(3). DOI: 10.1029/2022RG000800 .
|
[86] |
HUANG Bangqin, XIAO Wupeng, LIU Xin. Spatial-temporal distributions and successional patterns of phytoplankton communities in the Chinese marginal seas [J]. Journal of Xiamen University (Natural Science), 2021, 60(2): 390-397.
|
|
黄邦钦, 肖武鹏, 柳欣. 中国边缘海浮游植物群落时空格局与演变趋势 [J]. 厦门大学学报(自然科学版), 2021, 60(2): 390-397.
|