[1]Gorelick S M. A review of distributed parameter groundwater management modeling method [J]. Water Resources Research,1983, 19(2): 305-319. [2]Ahlfeld D P, Mulvey J M, Pinder G F. Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory, 2. Analysis of a field site [J]. Water Resources Research, 1988, 24(5): 443-452. [3]Wagner B J, Gorelick S M. Reliable aquifer remediation in the presence of spatially variable hydraulic conductivity: From data to design [J]. Water Resources Research, 1989, 25(10): 2 211-2 225. [4]Culver T B, Shoemaker C A. Dynamic optimal control for groundwater remediation with flexible management periods [J].Water Resources Research,1992, 28(3): 629641. [5]Tiedeman C, Gorelick S M. Analysis of uncertainty in optimal groundwater contaminant capture design [J].Water Resources Research,1993, 29(7):2 139-2 154. [6]Rizzo D M, Dougherty D E. Design optimization for multiple management period groundwater remediation [J].Water Resources Research,1998,32(8): 2 549-2 561. [7]Minsker B S, Shoemaker C A. Dynamic optimal control of insitu bioremediation of ground water [J].Journal of Water Resources Planning and Management, 1998, 124(3): 149161. [8]Zheng C, Wang P P. An integrated global and local optimization approach for remediation system design [J].Water Resources Research, 1999, 35(1):137-148. [9]Mayer A S, Kelley C T, Miller C T. Optimal design for problems involving flow and transport phenomena in saturated subsurface systems[J].Advances in Water Resources, 2002, 25:1 233-1 256. [10]McKinney D C, Lin M D. Genetic algorithm solution of groundwater management models [J].Water Resources Research,1994, 30(6): 1 897-1 906. [11]Bear J, Sun Y. Optimization of pump-treat-inject (PTI) design for the remediation of a contaminated aquifer: Multi-stage design with chance constraints [J]. Journal of Contaminant Hydrology, 1998, 29:225-244. [12]Aly A H, Peralta R C. Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm [J]. Water Resources Research, 1999, 35(8): 2 523-2 532. [13]Smalley J B, Minsker B, Goldberg D E. Riskbased in situ bioremediation design using a noisy genetic algorithm [J].Water Resources Research,2000,36(10): 3 043-3 052. [14]Zheng C, Wang P P. A field demonstration of the simulation-optimization approach for remediation system design[J].Ground Water, 2002, 40(3):258265. [15]US Environmental Protection Agency (USEPA). Cleaning Up the Nation's Waste Sites: Markets and Technology Trends, Exclusive Summary, Rep EPA 542-R-96-005, 1996 ed.[R]. Washington DC: Office of Solid Waste and Emergency Response, 1997 (available at http://www.epa.gov/tio/download/market). [16]Chien C C, Medina M A, Pinder G F, et al. Environmental Modeling and Management: Theory, Practice and Future Directions[M]. Today Media Inc,2002. [17]Carrera J, Usunoff E, Szidarovski F. A method for optimal observation network design for ground-water management [J].Journal of Hydrology,1984, 73:147-163. [18]Bogardi I, Bardossy A, Duckstein L. Multicriterion network design unsing geostatistics [J]. Water Resources Research,1985, 21(2): 199-208. [19]Rouhani S. Variance reduction analysis [J]. Water Resources Research, 1985, 21(6): 837-846. [20]Meyer P D, Brill E D. Method for locating wells in a groundwater monitoring network under conditions of uncertainty [J]. Water Resources Research,1988, 24(8): 1 277-1 282. [21]Rouhani S, Hall T J. Geostatistical schemes for groundwater sampling [J].Journal of Hydrology,1988, 81(1): 85-102. [22]Loaiciga H A. An optimization approach for ground-water quality monitoring network design [J]. Water Resources Research,1989, 25(8):1 771-1 780. [23]Andricevic R. A realtime approach to management and monitoring of ground water hydraulics [J].Water Resources Research, 1990, 26(11):2 747-2 755. [24]Hudak P F, Loaiciga H A. A location modeling approach for groundwater monitoring network augmentation [J]. Water Resources Research, 1992,28(3):643-649. [25]McKinney D C, Loucks D P. Network design for predicting groundwater contamination [J].Water Resources Research, 1992, 28(1):133-147. [26]James B R, Gorelick S M. When enough is enough: The worth of monitoring data in aquifer remediation design [J].Water Resources Research,1994, 30(12): 3 499-3 513. [27]Meyer P D, Valocchi A J, Eheart J W. Monitoring network design to provide initial detection of groundwater contamination [J]. Water Resources Research, 1994, 30(9): 2 647-2 659. [28]Wagner B J. Sampling design methods for groundwater modeling under uncertainty [J].Water Resources Research,1995, 31(10): 2 581-2 591. [29]Meyer P D, Eheart J W, Ranjithan S, et al. Design of Groundwater monitoring networks for landfills [A]. In: Kundzewicz Z W ed. Proceedings of the International Workshop on New Uncertainty Concepts in Hydrology and Water Resources [C]. Cambridge: Cambridge University Press,1995.190-196. [30]Andricevic R. Evaluation of sampling in the subsurface [J]. Water Resources Research, 1996, 32(4):863-874. [31]Storck P, Eheart J W, Valocchi A J. A method for the optimal location of monitoring wells for detection of groundwater contamination in three-dimensional aquifers [J].Water Resources Research, 1997, 33(9):2 081-2 088. [32]Bogaert P, Russo DOptimal spatial sampling design for the estimation of the variogram based on a squares approach [J].Water Resources Research, 1999, 35(4):1 275-1 289. [33]Montas H J, Mohtar R H, Hassan A E, et al. Heuristic space-time design of monitoring wells for contaminant plume characterization in stochastic flow fields [J]. Journal of Contaminant Hydrology, 2000, 43:271-301. [34]Reed P B, Minsker B, Valocchi A J. Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation[J]. Water Resources Research,2000, 36(12): 3 731-3 741. [35]Wu Yanqing(仵彦卿), Li Junting(李俊亭), Zhang Zhuoyuan(张倬元). Optimal Design of the Groundwater Regime Observation Network[M]. Chengdu: Press of Chengdu University of Science and Technology, 1993(in Chinese). [36]Wu Yanqing (仵彦卿).Cokriging technique applied to optimal design of regional groundwater regime observation network[J].Journal of Xi’an College of Geology (西安地质学院学报), 1995, 17(1): 82-89(in Chinese). [37]Guo Zhanrong (郭占荣), Liu Zhiming (刘志明), Zhu Yanhua(朱延华). The applications of kriging estimation to optimal design of groundwater observation network[J].Acta Geoscientia Sinica—Bulletin of the Chinese Academy of Geological Sciences (地球学报——中国地质科学院院报), 1998, 19(4): 429-433 (in Chinese). [38]Chen Zhihua(陈植华), Ding Guoping(丁国平), Hu Cheng(胡成). Introduction of the approaches to design monitoring network of water resources system[J].Geological Science and Technology Information (地质科技情报), 2000,10(4): 83-88(in Chinese). [39]Loaiciga H A, Charbeneau R J, Everett L G, et al.Review of groundwater quality monitoring network design [J].Journal of Hydraulic Engineering, 1992, 118(1): 11-37. [40]Matheron G. Principles of geostatistics [J].Economic Geology, 1963, 58:1 246-1 266. [41]ASCE Task Committee on Geostatistical Techniques in Geohydrology of the Ground Water Hydrology Committee of the ASCE Hydraulics Division. Review of geostatistics in geohydrology, I: Basic concepts[J].Journal of Hydraulic Engineering, 1990, 116(5): 612-632. [42]ASCE Task Committee on Geostatistical Techniques in Geohydrology of the Ground Water Hydrology Committee of the ASCE Hydraulics Division. Review of geostatistics in geohydrology II: Applications[J].Journal of Hydraulic Engineering, 1990, 116(5): 633-658. [43]Deutsch C V, Journel A G. GSLIB: Geostatistical Software Library and User's Guide(2nd)[M]. New York: Oxford University Press, 1998. [44]Olea R A. Geostatistics for Engineers and Earth Sciences [M]. Boston: Kluwer Academic Publishers, 1999. [45]Graham W, McLaughlin D. Stochastic analysis of nonstationary subsurface solute transport 1:Unconditional moments[J].Water Resources Research,1989, 25(2): 215-232. [46]Graham W, McLaughlin D. Stochastic analysis of nonstationary subsurface solute transport 1:Conditional moments[J].Water Resources Research,1989,25(11): 2 331-2 356. [47]Woldt W, Bogardi I. Ground water monitoring network design using multiple criteria decision making and geostatistics[J].Water Resources Bulletin,1992, 28(1): 45-62. [48]Grabow G L, Mote C R, Sanders W L,et al. Groundwater monitoring network design using minimum well density [J].Water Science and Technology-A Journal of the International Association on Water Pollution Research, 1993, 28:327-335. [49]Cameron K, Hunter P. Optimization of LTM networks: Statistical approaches to spatial and temporal redundancy [A]. In proceedings from theAmerican Institute of Chemical Engineers,2000 Spring National Meeting, Remedial Process Optimization Topical Conference [C]. Atlanta, Georgia,2000. [50]Sanders T G, Ward R C, Steele T D,et al. Design of Networks for Monitoring Water Quality(2nd)[M].Littleton, Colorado: Water Resources Publications, 1987. [51]Tuckfield R C. Estimating and approach sampling frequency for monitoring ground water well contamination [A]. In: Institute of Nuclear Materials Management Proceedings [C]. 1994, 23:80-85. [52]Spruill T B, Candela L. Two approaches to design of monitoring networks [J].Ground Water,1990, 28(3): 430-442. [53]Ridley M N, Johnson V M, Tuckfield R C. Cost-effective Sampling of Groundwater Monitoring Wells. UCRL-JC-118909 [R]. Livermore, California:Lawrence Livermore National Laboratory, 1995. [54]Johnson V, Tuckfield R C, Ridley M N, et al. Reducing the sampling frequency of groundwater monitoring wells[J].Environmental Science and Technology, 1996, 30(1): 355-358. [55]US Environmental Protection Agency. Test methods of evaluating solid wastes[A]. In: Field manual physical/chemical methods, SW-846(3rd)[C].Washington DC, 1986. [56]Aziz J J, Newell C J, Ling M,et al. Monitoring and Remediation Optimization System (MAROS) Software Version 2.0 Users Guide [R]. US Air Force Center for Environmental Excellence, Brooks AFB, Texas, 2003 (available at http://www.gsi-net.com/). [57]Aziz J J, Ling M, Rifai H S,et al. MAROS: A decision support system for optimizing monitoring plans[J].Ground Water,2003, 40(6): 355367. [58]Andricevic R, Foufoula-Georgiou E. A transfer function approach to sampling network design for groundwater contamination [J]. Water Resources Research, 1991, 27(10): 2 759-2 769. [59]Hudak P F, Loaiciga H A. An optimization method for monitoring network design in multilayered groundwater flow systems[J].Water Resources Research, 1993, 29(8): 2 835-2 845. [60]McDonald M G, Harbaugh A W. A modular three-dimensional finite-difference ground water flow model[R].USGS Techniques of Water Resources Investigations, Book 6, 1988. [61]Harbaugh A W, Banta E R, Hill M C,et al. MODFLOW2000, the US Geological Survey modular ground-water model User guide to modularization concepts and the GroundWater Flow Process [R]. US Geological Survey Open-File Report 00-92, 2000. [62]Zheng C, Wang P P. MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground water systems: Documentation and user's guide, Contract Report SERDP-99-1 [R]. US Army Engineer Research and Development Center, Vicksburg, Mississippi, 1999 (available at http://hydro.geo.ua.edu/mt3d). [63]Yeh W WG. Review of parameter identification procedures in groundwater hydrology: The inverse problem[J].Water Resources Research, 1986,22(2): 95-108. [64]Larabi A, Smedt F D. Solving three-dimensional hexahedral finite element groundwater models by preconditioned conjugate methods[J]. Water Resources Research,1994, 30(2): 509-521. [65]Abbaspour K C, vanGenuchten M T, Schulin R, et al. A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters [J].Water Resources Research, 1997, 33(8): 1 879-1 892. [66]Morshed J, Kaluarachchi J J. Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery [J].Water Resources Research, 1998, 34(5): 1 101-1 113. [67]Karpouzos D K, Delay F, Katsifarakis K L, et al. A multipopulation genetic algorithm to solve the inverse problem in hydrogeology [J].Water Resources Research, 2001, 37(5): 2 291-2 302. [68]Wu Jianfeng (吴剑锋), Qian Jiazhong (钱家忠), Zhu Xueyu (朱学愚), et al. Sequential uncertainty domain based genetic algorithm for inverse estimation of hydrogeology parameters[J]. Journal of Hydraulic Engineering (水利学报), 2002, 5: 27-32 (in Chinese). [69]Kelson V A, Hunt R J, Haitjema H M. Improving a regional model using reduced complexity and parameter estimation [J].Ground Water, 2002,40(2): 132-143. [70]Doherty J. Ground water model calibration using pilot points and regularization [J].Ground Water, 2002, 41(2): 170-177. [71]Samanta S, Mackay D S. Flexible automated parameterization of hydrologic models using fuzzy logic [J].Water Resources Research, 2003, 39(1):Art. No. 1009. [72]Leng C H, Yeh H D. Aquifer parameter identification using the extended Kalman filter [J].Water Resources Research,2003, 39(3): Art. No. 1062. [73]Massman J, Freeze R A. Ground water contaminant from waste management sites: The interaction between risk-based engineering design and regulatory policy, 1. Methodology [J]. Water Resources Research, 1987, 23(2): 351-367. [74]Massman J, Freeze R A. Ground water contaminant from waste management sites: The interaction between risk-based engineering design and regulatory policy, 2. Results [J]. Water Resources Research, 1987, 23(2): 368-380. [75]Wagner B J. Recent advances in simulation-optimization groundwater management modeling [J].Review of Geophysics, US National Report to International Union of Geodesy and Geophysics 1991-1994, 1995,(Supp.):1 021-1 028. [76]Knopman D S, Voss C I. Sampling design for groundwater solute transport: Tests of methods and analysis [J].Water Resources Research, 1991,27(5): 925-949. [77]Scheibe T D, Lettenmaier D P. Risk-based selection of monitoring wells for assessing agricultural chemical contaminant of ground water [J].Ground Water,1989, 11(4): 98-108. [78]Mahar P S, Datta B. Optimal monitoring network and ground-water-pollution source identification [J].Journal of Water Resources Planning and Management,1997, 123(4): 199-207. [79]Mahar P S, Datta B. Optimal identification of ground-water pollution and parameter identification [J].Journal of Water Resources Planning and Management,2001, 127(1): 20-29. [80]Ben-Jemaa F, Marino M A, Loaiciga H A. Sampling design for contaminant distribution in lake sediments [J].Journal of Water Resources Planning and Management,1995, 121(1): 71-79. [81]Lee YM, Ellis J H. Comparison of algorithms for nonlinear integer optimization: Application to monitoring network design [J].Journal of Environmental Engineering, 1996, 122(6):524-531. [82]Hudak P F, Loaiciga H A, Marino M A. Regional-scale ground water quality monitoring via integer programming [J].Journal of Hydrology, 1995,164(1~4): 153-170. [83]Freeze R A, Gorelick S M. Convergence of stochastic optimization and decision analysis in the engineering design of aquifer remediation [J].Ground Water, 1999, 37(6): 934-954. [84]Gelhar L W. Stochastic subsurface hydrology from theory to applications [J].Water Resources Research,1986, 22(13): 135S-145S. [85]Kunstmann H, Kinzelbach W. Computation of stochastic wellhead protection zones by combining the first-order second-moment method and Kolmogorov backward equation analysis [J]. Journal of Hydrology, 2000, 237:127-146. [86]Gelhar L W, Axness C L. Three-dimensional stochastic analysis of macrodispersion in aquifers [J]. Water Resources Research, 1983, 19(1):161-180. [87]Neuman S P, Winters C L, Newman C N. Stochastic theory of field-scale Fickian dispersion in anisotropic porous media [J].Water Resources Research, 1987, 23(3): 453-466. [88]Dagan G. Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers [J]. Water Resources Research, 1988, 24(9):1 491-1 500. [89]Pham D T, Karaboga D.Intelligent Optimization Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks [M]. New York: Springer-Verlag, 2000. [90]Gopalakrishnan G, Minsker B S, Goldberg D E. Optimal sampling in a noisy genetic algorithm for riskbased remediation design [A]. In: Phelps D, Sehlke D, eds. Bridging the Gap: Meeting the World's Water and Environmental Resources Challenges, Proceedings of World Water and Environmental Resources Congress, ASCE[C]. Washington DC, 2001 (available at http://cee.ce.uiuc.edu/emsa/). [91]AFCEE.Long-Term Monitoring Optimization Guide, Final version 1.1. US Air Force Center for Environmental Excellence[R]. Brooks AFB,Texas, 1997 (available at http://www.afcee.brooks.af.mil/er/rpo.htm). [92]Wu J, Guvansen D. MAROS: A decision support tool for improving the cost-effectiveness of ground water monitoring plans [J]. Ground Water,2003, 41(5): 566-568. |