地球科学进展 ›› 2004, Vol. 19 ›› Issue (3): 429 -436. doi: 10.11867/j.issn.1001-8166.2004.03.0429

研究论文 上一篇    下一篇

地下水污染监测网的设计研究进展
吴剑锋 1;郑春苗 2   
  1. 南京大学地球科学系,江苏 南京 210093;Department of Geological Sciences,University of Alabama,Tuscaloosa AL 35487,USA
  • 收稿日期:2004-04-09 修回日期:2004-04-20 出版日期:2004-12-20
  • 通讯作者: 吴剑锋(1971-),男,江西都昌人,副教授,主要从事地下水流数值模拟研究. E-mail:E-mail:jfwu@nju.edu.cn
  • 基金资助:

    国家自然科学青年基金项目“遗传算法的改进及其在污染控制和治理理中的应用”(编号:40002022)资助

CONTAMINANT MONITORING NETWORK DESIGN:RECENT ADVANCES AND FUTURE DIRECTIONS

WU Jianfeng 1, ZHENG Chunmiao 2   

  1. 1.Department of Earth Sciences, Nanjing University, Nanjing 210093, China;2.Department of Geological Sciences, University of Alabama, Tuscaloosa AL 35487, USA
  • Received:2004-04-09 Revised:2004-04-20 Online:2004-12-20 Published:2004-06-01

地下水污染监测网的设计包括取样点在空间上的采样位置和时间上的取样频率这两方面的确定,其目的是为了准确刻画污染羽在含水层中随时间的变化状况。概要地回顾了近20年来地下水污染监测网设计的研究成果。分别介绍了统计方法、模拟方法和模拟-优化模型等监测网设计方法的研究进展。监测网设计方法的选择取决于最终的监测目的以及可供利用的基础资料。指出参数的不确定性是影响污染监测设计结果的最重要因素。如何将地下水污染监测网设计的理论研究真正与实际应用相结合是今后的主要研究方向。

 Groundwater monitoring network design involves the determination of sampling locations and sampling frequencies to characterize the contaminant plume in an aquifer over space and time. This paper provides a retrospective overview of the considerable advances in the field of groundwater monitoring network design over the last two decades. The methods commonly applied to sampling network design for contaminant plume monitoring can be divided into three categories: statistical methods, simulation modeling, and simulation-optimization modeling. Selection of appropriate methods for monitoring network design is ultimately dependent on the objectives of the site-specific monitoring networks and the amount and type of available data. Furthermore, it is pointed out that the most important factor affecting the final outcome of monitoring network design is the uncertainty in the aquifer and contaminant properties both spatially and temporally. The future research should focus on exploring the application of groundwater network design theories to real-world monitoring sites and developing efficient and robust simulation-optimization software for contaminant plume monitoring.

中图分类号: 

[1]Gorelick S M. A review of distributed parameter groundwater management modeling method [J]. Water Resources Research,1983, 19(2): 305-319.
[2]Ahlfeld D P, Mulvey J M, Pinder G F. Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory, 2. Analysis of a field site [J]. Water Resources Research, 1988, 24(5): 443-452.
[3]Wagner B J, Gorelick S M. Reliable aquifer remediation in the presence of spatially variable hydraulic conductivity: From data to design [J]. Water Resources Research, 1989, 25(10): 2 211-2 225.
[4]Culver T B, Shoemaker C A. Dynamic optimal control for groundwater remediation with flexible management periods [J].Water Resources Research,1992, 28(3): 629641.
[5]Tiedeman C, Gorelick S M. Analysis of uncertainty in optimal groundwater contaminant capture design [J].Water Resources Research,1993, 29(7):2 139-2 154.
[6]Rizzo D M, Dougherty D E. Design optimization for multiple management period groundwater remediation [J].Water Resources Research,1998,32(8): 2 549-2 561.
[7]Minsker B S, Shoemaker C A. Dynamic optimal control of insitu bioremediation of ground water [J].Journal of Water Resources Planning and Management, 1998, 124(3): 149161.
[8]Zheng C, Wang P P. An integrated global and local optimization approach for remediation system design [J].Water Resources Research, 1999, 35(1):137-148.
[9]Mayer A S, Kelley C T, Miller C T. Optimal design for problems involving flow and transport phenomena in saturated subsurface systems[J].Advances in Water Resources, 2002, 25:1 233-1 256.
[10]McKinney D C, Lin M D. Genetic algorithm solution of groundwater management models [J].Water Resources Research,1994, 30(6): 1 897-1 906.
[11]Bear J, Sun Y. Optimization of pump-treat-inject (PTI) design for the remediation of a contaminated aquifer: Multi-stage design with chance constraints [J]. Journal of Contaminant Hydrology, 1998, 29:225-244.
[12]Aly A H, Peralta R C. Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm [J]. Water Resources Research, 1999, 35(8): 2 523-2 532.
[13]Smalley J B, Minsker B, Goldberg D E. Riskbased in situ bioremediation design using a noisy genetic algorithm [J].Water Resources Research,2000,36(10): 3 043-3 052.
[14]Zheng C, Wang P P. A field demonstration of the simulation-optimization approach for remediation system design[J].Ground Water, 2002, 40(3):258265.
[15]US Environmental Protection Agency (USEPA). Cleaning Up the Nation's Waste Sites: Markets and Technology Trends, Exclusive Summary, Rep EPA 542-R-96-005, 1996 ed.[R]. Washington DC: Office of Solid Waste and Emergency Response, 1997 (available at http://www.epa.gov/tio/download/market).
[16]Chien C C, Medina M A, Pinder G F, et al. Environmental Modeling and Management: Theory, Practice and Future Directions[M]. Today Media Inc,2002.
[17]Carrera J, Usunoff E, Szidarovski F. A method for optimal observation network design for ground-water management [J].Journal of Hydrology,1984, 73:147-163.
[18]Bogardi I, Bardossy A, Duckstein L. Multicriterion network design unsing geostatistics [J]. Water Resources Research,1985, 21(2): 199-208.
[19]Rouhani S. Variance reduction analysis [J]. Water Resources Research, 1985, 21(6): 837-846.
[20]Meyer P D, Brill E D. Method for locating wells in a groundwater monitoring network under conditions of uncertainty [J]. Water Resources Research,1988, 24(8): 1 277-1 282.
[21]Rouhani S, Hall T J. Geostatistical schemes for groundwater sampling [J].Journal of Hydrology,1988, 81(1): 85-102.
[22]Loaiciga H A. An optimization approach for ground-water quality monitoring network design [J]. Water Resources Research,1989, 25(8):1 771-1 780.
[23]Andricevic R. A realtime approach to management and monitoring of ground water hydraulics [J].Water Resources Research, 1990, 26(11):2 747-2 755.
[24]Hudak P F, Loaiciga H A. A location modeling approach for groundwater monitoring network augmentation [J]. Water Resources Research, 1992,28(3):643-649.
[25]McKinney D C, Loucks D P. Network design for predicting groundwater contamination [J].Water Resources Research, 1992, 28(1):133-147.
[26]James B R, Gorelick S M. When enough is enough: The worth of monitoring data in aquifer remediation design [J].Water Resources Research,1994, 30(12): 3 499-3 513.
[27]Meyer P D, Valocchi A J, Eheart J W. Monitoring network design to provide initial detection of groundwater contamination [J]. Water Resources Research, 1994, 30(9): 2 647-2 659.
[28]Wagner B J. Sampling design methods for groundwater modeling under uncertainty [J].Water Resources Research,1995, 31(10): 2 581-2 591.
[29]Meyer P D, Eheart J W, Ranjithan S, et al. Design of Groundwater monitoring networks for landfills [A]. In: Kundzewicz Z W ed. Proceedings of the International Workshop on New Uncertainty Concepts in Hydrology and Water Resources [C].  Cambridge: Cambridge University Press,1995.190-196.
[30]Andricevic R. Evaluation of sampling in the subsurface [J]. Water Resources Research, 1996, 32(4):863-874.
[31]Storck P, Eheart J W, Valocchi A J. A method for the optimal location of monitoring wells for detection of groundwater contamination in three-dimensional aquifers [J].Water Resources Research, 1997, 33(9):2 081-2 088.
[32]Bogaert P, Russo DOptimal spatial sampling design for the estimation of the variogram based on a squares approach [J].Water Resources Research, 1999, 35(4):1 275-1 289.
[33]Montas H J, Mohtar R H, Hassan A E, et al. Heuristic space-time design of monitoring wells for contaminant plume characterization in stochastic flow fields [J]. Journal of Contaminant Hydrology, 2000, 43:271-301.
[34]Reed P B, Minsker B, Valocchi A J. Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation[J]. Water Resources Research,2000, 36(12): 3 731-3 741.
[35]Wu Yanqing(仵彦卿), Li Junting(李俊亭), Zhang Zhuoyuan(张倬元). Optimal Design of the Groundwater Regime Observation Network[M]. Chengdu: Press of Chengdu University of Science and Technology, 1993(in Chinese).
[36]Wu Yanqing (仵彦卿).Cokriging technique applied to optimal design of regional groundwater regime observation network[J].Journal of Xi’an College of Geology (西安地质学院学报), 1995, 17(1): 82-89(in Chinese).
[37]Guo Zhanrong (郭占荣), Liu Zhiming (刘志明), Zhu Yanhua(朱延华). The applications of kriging estimation to optimal design of groundwater observation network[J].Acta Geoscientia Sinica—Bulletin of the Chinese Academy of Geological Sciences (地球学报——中国地质科学院院报), 1998, 19(4): 429-433 (in Chinese).
[38]Chen Zhihua(陈植华), Ding Guoping(丁国平), Hu Cheng(胡成). Introduction of the approaches to design monitoring network of water resources system[J].Geological Science and Technology Information (地质科技情报), 2000,10(4): 83-88(in Chinese).
[39]Loaiciga H A, Charbeneau R J, Everett L G, et al.Review of groundwater quality monitoring network design [J].Journal of Hydraulic Engineering, 1992, 118(1): 11-37.
[40]Matheron G. Principles of geostatistics [J].Economic Geology, 1963, 58:1 246-1 266.
[41]ASCE Task Committee on Geostatistical Techniques in Geohydrology of the Ground Water Hydrology Committee of the ASCE Hydraulics Division. Review of geostatistics in geohydrology, I: Basic concepts[J].Journal of Hydraulic Engineering, 1990, 116(5): 612-632.
[42]ASCE Task Committee on Geostatistical Techniques in Geohydrology of the Ground Water Hydrology Committee of the ASCE Hydraulics Division. Review of geostatistics in geohydrology II: Applications[J].Journal of Hydraulic Engineering, 1990, 116(5): 633-658.
[43]Deutsch C V, Journel A G. GSLIB: Geostatistical Software Library and User's Guide(2nd)[M]. New York: Oxford University Press, 1998.
[44]Olea R A. Geostatistics for Engineers and Earth Sciences [M]. Boston: Kluwer Academic Publishers, 1999.
[45]Graham W, McLaughlin D. Stochastic analysis of nonstationary subsurface solute transport 1:Unconditional moments[J].Water Resources Research,1989, 25(2): 215-232.
[46]Graham W, McLaughlin D. Stochastic analysis of nonstationary subsurface solute transport 1:Conditional moments[J].Water Resources Research,1989,25(11): 2 331-2 356.
[47]Woldt W, Bogardi I. Ground water monitoring network design using multiple criteria decision making and geostatistics[J].Water Resources Bulletin,1992, 28(1): 45-62.
[48]Grabow G L, Mote C R, Sanders W L,et al. Groundwater monitoring network design using minimum well density [J].Water Science and Technology-A Journal of the International Association on Water Pollution Research, 1993, 28:327-335.
[49]Cameron K, Hunter P. Optimization of LTM networks: Statistical approaches to spatial and temporal redundancy [A]. In proceedings from theAmerican Institute of Chemical Engineers,2000 Spring National Meeting, Remedial Process Optimization Topical Conference [C]. Atlanta, Georgia,2000.
[50]Sanders T G, Ward R C, Steele T D,et al. Design of Networks for Monitoring Water Quality(2nd)[M].Littleton, Colorado: Water Resources Publications, 1987.
[51]Tuckfield R C. Estimating and approach sampling frequency for monitoring ground water well contamination [A]. In: Institute of Nuclear Materials Management Proceedings [C]. 1994, 23:80-85.
[52]Spruill T B, Candela L. Two approaches to design of monitoring networks [J].Ground Water,1990, 28(3): 430-442.
[53]Ridley M N, Johnson V M, Tuckfield R C. Cost-effective Sampling of Groundwater Monitoring Wells. UCRL-JC-118909 [R]. Livermore, California:Lawrence Livermore National Laboratory, 1995.
[54]Johnson V, Tuckfield R C, Ridley M N, et al. Reducing the sampling frequency of groundwater monitoring wells[J].Environmental Science and Technology, 1996, 30(1): 355-358.
[55]US Environmental Protection Agency. Test methods of evaluating solid wastes[A]. In: Field manual physical/chemical methods, SW-846(3rd)[C].Washington DC, 1986.
[56]Aziz J J, Newell C J, Ling M,et al. Monitoring and Remediation Optimization System (MAROS) Software Version 2.0 Users Guide [R]. US Air Force Center for Environmental Excellence, Brooks AFB, Texas, 2003 (available at http://www.gsi-net.com/).
[57]Aziz J J, Ling M, Rifai H S,et al. MAROS: A decision support system for optimizing monitoring plans[J].Ground Water,2003, 40(6): 355367.
[58]Andricevic R, Foufoula-Georgiou E. A transfer function approach to sampling network design for groundwater contamination [J]. Water Resources Research, 1991, 27(10): 2 759-2 769.
[59]Hudak P F, Loaiciga H A. An optimization method for monitoring network design in multilayered groundwater flow systems[J].Water Resources Research, 1993, 29(8): 2 835-2 845.
[60]McDonald M G, Harbaugh A W. A modular three-dimensional finite-difference ground water flow model[R].USGS Techniques of Water Resources Investigations, Book 6, 1988.
[61]Harbaugh A W, Banta E R, Hill M C,et al. MODFLOW2000, the US Geological Survey modular ground-water model User guide to modularization concepts and the GroundWater Flow Process [R]. US Geological Survey Open-File Report 00-92, 2000.
[62]Zheng C, Wang P P. MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground water systems: Documentation and user's guide, Contract Report SERDP-99-1 [R]. US Army Engineer Research and Development Center, Vicksburg, Mississippi, 1999 (available at http://hydro.geo.ua.edu/mt3d).
[63]Yeh W WG. Review of parameter identification procedures in groundwater hydrology: The inverse problem[J].Water Resources Research, 1986,22(2): 95-108.
[64]Larabi A, Smedt F D. Solving three-dimensional hexahedral finite element groundwater models by preconditioned conjugate methods[J]. Water Resources Research,1994, 30(2): 509-521.
[65]Abbaspour K C, vanGenuchten M T, Schulin R, et al. A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters [J].Water Resources Research, 1997, 33(8): 1 879-1 892.
[66]Morshed J, Kaluarachchi J J. Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery [J].Water Resources Research, 1998, 34(5): 1 101-1 113.
[67]Karpouzos D K, Delay F, Katsifarakis K L, et al. A multipopulation genetic algorithm to solve the inverse problem in hydrogeology [J].Water Resources Research, 2001, 37(5): 2 291-2 302.
[68]Wu Jianfeng (吴剑锋), Qian Jiazhong (钱家忠), Zhu Xueyu (朱学愚), et al. Sequential uncertainty domain based genetic algorithm for inverse estimation of hydrogeology parameters[J]. Journal of Hydraulic Engineering (水利学报), 2002, 5: 27-32 (in Chinese).
[69]Kelson V A, Hunt R J, Haitjema H M. Improving a regional model using reduced complexity and parameter estimation [J].Ground Water, 2002,40(2): 132-143.
[70]Doherty J. Ground water model calibration using pilot points and regularization [J].Ground Water, 2002, 41(2): 170-177.
[71]Samanta S, Mackay D S. Flexible automated parameterization of hydrologic models using fuzzy logic [J].Water Resources Research, 2003, 39(1):Art. No. 1009.
[72]Leng C H, Yeh H D. Aquifer parameter identification using the extended Kalman filter [J].Water Resources Research,2003, 39(3): Art. No. 1062.
[73]Massman J, Freeze R A. Ground water contaminant from waste management sites: The interaction between risk-based engineering design and regulatory policy, 1. Methodology [J]. Water Resources Research, 1987, 23(2): 351-367.
[74]Massman J, Freeze R A. Ground water contaminant from waste management sites: The interaction between risk-based engineering design and regulatory policy, 2. Results [J]. Water Resources Research, 1987, 23(2): 368-380.
[75]Wagner B J. Recent advances in simulation-optimization groundwater management modeling [J].Review of Geophysics, US National Report to International Union of Geodesy and Geophysics 1991-1994, 1995,(Supp.):1 021-1 028.
[76]Knopman D S, Voss C I. Sampling design for groundwater solute transport: Tests of methods and analysis [J].Water Resources Research, 1991,27(5): 925-949.
[77]Scheibe T D, Lettenmaier D P. Risk-based selection of monitoring wells for assessing agricultural chemical contaminant of ground water [J].Ground Water,1989, 11(4): 98-108.
[78]Mahar P S, Datta B. Optimal monitoring network and ground-water-pollution source identification [J].Journal of Water Resources Planning and Management,1997, 123(4): 199-207.
[79]Mahar P S, Datta B. Optimal identification of ground-water pollution and parameter identification [J].Journal of Water Resources Planning and Management,2001, 127(1): 20-29.
[80]Ben-Jemaa F, Marino M A, Loaiciga H A. Sampling design for contaminant distribution in lake sediments [J].Journal of Water Resources Planning and Management,1995, 121(1): 71-79.
[81]Lee YM, Ellis J H. Comparison of algorithms for nonlinear integer optimization: Application to monitoring network design [J].Journal of Environmental Engineering, 1996, 122(6):524-531.
[82]Hudak P F, Loaiciga H A, Marino M A. Regional-scale ground water quality monitoring via integer programming [J].Journal of Hydrology, 1995,164(1~4): 153-170.
[83]Freeze R A, Gorelick S M. Convergence of stochastic optimization and decision analysis in the engineering design of aquifer remediation [J].Ground Water, 1999, 37(6): 934-954.
[84]Gelhar L W. Stochastic subsurface hydrology from theory to applications [J].Water Resources Research,1986, 22(13): 135S-145S.
[85]Kunstmann H, Kinzelbach W. Computation of stochastic wellhead protection zones by combining the first-order second-moment method and Kolmogorov backward equation analysis [J]. Journal of Hydrology, 2000, 237:127-146.
[86]Gelhar L W, Axness C L. Three-dimensional stochastic analysis of macrodispersion in aquifers [J]. Water Resources Research, 1983, 19(1):161-180.
[87]Neuman S P, Winters C L, Newman C N. Stochastic theory of field-scale Fickian dispersion in anisotropic porous media [J].Water Resources Research, 1987, 23(3): 453-466.
[88]Dagan G. Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers [J]. Water Resources Research, 1988, 24(9):1 491-1 500.
[89]Pham D T, Karaboga D.Intelligent Optimization Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks [M]. New York: Springer-Verlag, 2000.
[90]Gopalakrishnan G, Minsker B S, Goldberg D E. Optimal sampling in a noisy genetic algorithm for riskbased remediation design [A]. In: Phelps D, Sehlke D, eds. Bridging the Gap: Meeting the World's Water and Environmental Resources Challenges, Proceedings of World Water and Environmental Resources Congress, ASCE[C]. Washington DC, 2001 (available at http://cee.ce.uiuc.edu/emsa/).
[91]AFCEE.Long-Term Monitoring Optimization Guide, Final version 1.1. US Air Force Center for Environmental Excellence[R]. Brooks AFB,Texas, 1997 (available at http://www.afcee.brooks.af.mil/er/rpo.htm).
[92]Wu J, Guvansen D. MAROS: A decision support tool for improving the cost-effectiveness of ground water monitoring plans [J]. Ground Water,2003, 41(5): 566-568.

[1] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[2] 滕彦国,苏洁,翟远征,王金生. 地下水污染风险评价的迭置指数法研究综述[J]. 地球科学进展, 2012, 27(10): 1140-1147.
[3] 高霏,刘菲,陈鸿汉. 三氯乙烯污染土壤和地下水污染源区的修复研究进展[J]. 地球科学进展, 2008, 23(8): 821-829.
[4] 周爱国,李小倩,刘存富,周建伟,蔡鹤生,余婷婷. 氯代挥发性有机物(VOCs)氯同位素测试技术及其在地下水污染中的应用研究进展[J]. 地球科学进展, 2008, 23(4): 342-349.
阅读次数
全文


摘要