[1] |
KANG S C, XU Y W, YOU Q L, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 2010, 5(1). DOI: 10.1088/1748-9326/5/1/015101 .
|
[2] |
YAO T D, XUE Y K, CHEN D L, et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100(3): 423-444.
|
[3] |
XU Xiangde, MA Yaoming, SUN Chan, et al. Effect of energy and water circulation over Tibetan Plateau [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1 293-1 305.
|
|
徐祥德, 马耀明, 孙婵, 等. 青藏高原能量、水分循环影响效应 [J]. 中国科学院院刊, 2019, 34 (11): 1 293-1 305.
|
[4] |
YAN Y P, YOU Q L, WU F Y, et al. Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau[J]. Climate Dynamics, 2020, 55(9): 2 405-2 419.
|
[5] |
LIU Y Z, LI Y H, HUANG J P, et al. Attribution of the Tibetan Plateau to northern drought[J]. National Science Review, 2020, 7(3): 489-492.
|
[6] |
HUANG J P, ZHOU X J, WU G X, et al. Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau[J]. Reviews of Geophysics, 2023, 61(3). DOI: 10.1029/2022RG000771 .
|
[7] |
YAO Nan, MA Yaoming. Characteristics over three plateaus in Asia and their synergistic impact on weather and climate in China: an overview [J]. Advances in Earth Science, 2023, 38(6): 580-593.
|
|
姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展 [J]. 地球科学进展, 2023, 38(6): 580-593.
|
[8] |
YOU Qinglong, KANG Shichang, LI Jiandong, et al. Several research frontiers of climate change over the Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2021, 43(3): 885-901.
|
|
游庆龙, 康世昌, 李剑东, 等. 青藏高原气候变化若干前沿科学问题 [J]. 冰川冻土, 2021, 43(3): 885-901.
|
[9] |
YOU Q L, CAI Z Y, PEPIN N, et al. Warming amplification over the Arctic pole and third pole: trends, mechanisms and consequences[J]. Earth-Science Reviews, 2021, 217. DOI:10.1016/j.earscirev.2021.103625 .
|
[10] |
YAO T D, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
|
[11] |
YAO T D, BOLCH T, CHEN D L, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3: 618-632.
|
[12] |
MA Ning. Comparison of variations in land surface evapotranspiration between typical alpine steppe and wetland ecosystems on the Tibetan Plateau over the last four decades [J]. Advances in Earth Science, 2021, 36(8): 836-848.
|
|
马宁. 近40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析 [J]. 地球科学进展, 2021, 36(8): 836-848.
|
[13] |
YOU Q L, WU F Y, SHEN L C, et al. Tibetan Plateau amplification of climate extremes under global warming of 1.5 ℃, 2 ℃ and 3 ℃[J]. Global and Planetary Change, 2020, 192. DOI: 10.1016/j.gloplacha.2020.103261 .
|
[14] |
YAO Tandong, ZHANG Taigang, WANG Weicai, et al. Glacial lake change and outburst risk assessment on the Asian water tower[J]. Advances in Earth Science, 2025, 40(3): 221-227.
|
|
姚檀栋, 张太刚, 王伟财, 等. 亚洲水塔冰湖变化与冰湖溃决灾害风险及应对[J]. 地球科学进展, 2025, 40(3): 221-227.
|
[15] |
WANG Jinsong, YAO Yubi, WANG Ying, et al. Meteorological droughts in the Qinghai-Tibet Plateau: research progress and prospects [J]. Advances in Earth Science, 2022, 37(5): 441-461.
|
|
王劲松, 姚玉璧, 王莺, 等. 青藏高原地区气象干旱研究进展与展望 [J]. 地球科学进展, 2022, 37(5): 441-461.
|
[16] |
LIU X D, CHEN B D. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 2000, 20(14): 1 729-1 742.
|
[17] |
KUANG X X, JIAO J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(8): 3 979-4 007.
|
[18] |
YOU Q L, MIN J Z, KANG S C. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades[J]. International Journal of Climatology, 2016, 36(6): 2 660-2 670.
|
[19] |
GUO D L, WANG H J. The significant climate warming in the northern Tibetan Plateau and its possible causes[J]. International Journal of Climatology, 2012, 32(12): 1 775-1 781.
|
[20] |
WEI Y Q, FANG Y P. Spatio-temporal characteristics of global warming in the Tibetan Plateau during the last 50 years based on a generalised temperature zone-elevation model[J]. PLoS ONE, 2013, 8(4). DOI: 10.1371/journal.pone.0060044 .
|
[21] |
YOU Q L, JIANG Z H, MOORE G W K, et al. Revisiting the relationship between observed warming and surface pressure in the Tibetan Plateau[J]. Journal of Climate, 2017, 30(5): 1 721-1 737.
|
[22] |
WU F Y, YOU Q L, CAI Z Y, et al. Significant elevation dependent warming over the Tibetan Plateau after removing longitude and latitude factors[J]. Atmospheric Research, 2023, 284. DOI: 10.1016/j.atmosres.2022.106603 .
|
[23] |
DUAN A M, XIAO Z X. Does the climate warming hiatus exist over the Tibetan Plateau?[J]. Scientific Reports, 2015, 5. DOI: 10.1038/srep13711 .
|
[24] |
JIANG J, ZHOU T J, QIAN Y, et al. Precipitation regime changes in High Mountain Asia driven by cleaner air[J]. Nature, 2023, 623(7 987): 544-549.
|
[25] |
JIANG J, ZHOU T J. Observational constraint on the contributions of greenhouse gas emission and anthropogenic aerosol removal to Tibetan Plateau future warming[J]. Geophysical Research Letters, 2023, 50(17). DOI: 10.1029/2023GL105427 .
|
[26] |
ZHANG C, QIN D H, ZHAI P M. Amplification of warming on the Tibetan Plateau[J]. Advances in Climate Change Research, 2023, 14(4): 493-501.
|
[27] |
IPCC. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [R]. Cambridge: Cambridge University Press, 2021.
|
[28] |
LIU X D, YIN Z Y, SHAO X M, et al. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961-2003[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D19). DOI: 10.1029/2005JD006915 .
|
[29] |
YOU Q L, MIN J Z, JIAO Y, et al. Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades[J]. International Journal of Climatology, 2016, 36(6): 2 633-2 643.
|
[30] |
LIU X D, CHENG Z G, YAN L B, et al. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings[J]. Global and Planetary Change, 2009, 68(3): 164-174.
|
[31] |
PEPIN N C, ARNONE E, GOBIET A, et al. Climate changes and their elevational patterns in the mountains of the world[J]. Reviews of Geophysics, 2022, 60(1). DOI: 10.1029/2020RG000730 .
|
[32] |
PEPIN N, BRADLEY R S, DIAZ H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5: 424-430.
|
[33] |
RANGWALA I, MILLER J R. Climate change in mountains: a review of elevation-dependent warming and its possible causes[J]. Climatic Change, 2012, 114(3): 527-547.
|
[34] |
YOU Q L, CHEN D L, WU F Y, et al. Elevation dependent warming over the Tibetan Plateau: patterns, mechanisms and perspectives[J]. Earth-Science Reviews, 2020, 210. DOI: 10.1016/j.earscirev.2020.103349 .
|
[35] |
LIU Xiaodong, HOU Ping. Relationship between climate warming and altitude in Qinghai-Tibet Plateau and its adjacent areas in recent 30 years[J]. Plateau Meteorology, 1998, 17(3): 245-249.
|
|
刘晓东, 侯萍. 青藏高原及其邻近地区近30年气候变暖与海拔高度的关系[J]. 高原气象, 1998, 17(3): 245-249.
|
[36] |
DU Jun. Change of temperature in Tibetan Plateau from 1961 to 2000[J]. Acta Geographica Sinica, 2001, 56(6): 682-690.
|
|
杜军. 西藏高原近40年的气温变化[J]. 地理学报, 2001, 56(6): 682-690.
|
[37] |
WANG Pengling, TANG Guoli, CAO Lijuan, et al. Surface air temperature variability and its relationship with altitude & latitude over the Tibetan Plateau in 1981-2010[J]. Progressus Inquisitiones de Mutatione Climatis, 2012, 8(5): 4-10.
|
|
王朋岭, 唐国利, 曹丽娟, 等. 1981—2010年青藏高原地区气温变化与高程及纬度的关系[J]. 气候变化研究进展, 2012, 8(5): 4-10.
|
[38] |
GUO D L, SUN J Q, YANG K, et al. Revisiting recent elevation-dependent warming on the Tibetan Plateau using satellite-based data sets[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(15): 8 511-8 521.
|
[39] |
DUAN A M, PENG Y Z, LIU J P, et al. Sea ice loss of the Barents-Kara Sea enhances the winter warming over the Tibetan Plateau[J]. NPJ Climate and Atmospheric Science, 2022, 5(1):1-6.
|
[40] |
ZHAO M C, YANG X Q, TAO L F, et al. Processes determining the seasonality of accelerated Tibetan Plateau warming during recent decades[J]. Climate Dynamics, 2025, 63(2). DOI: 10.1007/s00382-025-07596-w .
|
[41] |
WU F Y, YOU Q L, PEPIN N, et al. Surface warming in summer over the Tibetan Plateau: local and atmospheric circulation processes 1 1 resubmitted to global and planetary change 24th, April 2025[J]. Global and Planetary Change, 2025, 252. DOI: 10.1016/j.gloplacha.2025.104904 .
|
[42] |
CHEN B, CHAO W C, LIU X. Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: a model study[J]. Climate Dynamics, 2003, 20(4): 401-413.
|
[43] |
YOU Q L, ZHANG Y Q, XIE X Y, et al. Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5℃ and 2℃[J]. Climate Dynamics, 2019, 53(3): 2 047-2 060.
|
[44] |
PEPIN N, DENG H J, ZHANG H B, et al. An examination of temperature trends at high elevations across the Tibetan Plateau: the use of MODIS LST to understand patterns of elevation-dependent warming[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(11): 5 738-5 756.
|
[45] |
GUO D L, PEPIN N, YANG K, et al. Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau[J]. Science Bulletin, 2021, 66(11): 1 146-1 150.
|
[46] |
DUAN A M, WU G X. Change of cloud amount and the climate warming on the Tibetan Plateau[J]. Geophysical Research Letters, 2006, 33(22). DOI: 10.1029/2006GL027946 .
|
[47] |
YAN L B, LIU Z Y, CHEN G S, et al. Mechanisms of elevation-dependent warming over the Tibetan Plateau in quadrupled CO2 experiments[J]. Climatic Change, 2016, 135(3): 509-519.
|
[48] |
RANGWALA I, MILLER J R, XU M. Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor[J]. Geophysical Research Letters, 2009, 36(6). DOI: 10.1029/2009GL037245 .
|
[49] |
RUCKSTUHL C, PHILIPONA R, MORLAND J, et al. Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D3). DOI: 10.1029/2006JD007850 .
|
[50] |
ZHANG Renhe, ZHOU Shunwu. The air temperature change over the Tibetan Plateau during 1979-2002 and its possible linkage with ozone depletion[J]. Acta Meteorologica Sinica, 2008, 66(6): 916-925.
|
|
张人禾, 周顺武. 青藏高原气温变化趋势与同纬度带其他地区的差异以及臭氧的可能作用[J]. 气象学报, 2008, 66(6): 916-925.
|
[51] |
NAIR V S, BABU S S. Contrasting effects of aerosols on surface temperature over the Indo-Gangetic Plain and Tibetan Plateau[J]. Journal of Earth System Science, 2024, 133(3). DOI:10.1007/s12040-024-02387-z .
|
[52] |
LÜTHI Z L, ŠKERLAK B, KIM S W, et al. Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas[J]. Atmospheric Chemistry and Physics, 2015, 15(11): 6 007-6 021.
|
[53] |
LI C L, BOSCH C, KANG S C, et al. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers[J]. Nature Communications, 2016, 7. DOI: 10.1007/s12040-024-02387-z .
|
[54] |
YANG J H, KANG S C, CHEN D L, et al. South Asian black carbon is threatening the water sustainability of the Asian Water Tower[J]. Nature Communications, 2022, 13(1). DOI: 10.1038/s41467-022-35128-1 .
|
[55] |
JI Z M, KANG S C, CONG Z Y, et al. Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects[J]. Climate Dynamics, 2015, 45(9): 2 831-2 846.
|
[56] |
CHEN J C, XU J Z, WU Z J, et al. Decreased dust particles amplify the cloud cooling effect by regulating cloud ice formation over the Tibetan Plateau[J]. Science Advances, 2024, 10(37). DOI: 10.1126/sciadv.ado0885 .
|
[57] |
HU S Z, HSU P C, LI W K, et al. Mechanisms of Tibetan Plateau warming amplification in recent decades and future projections[J]. Journal of Climate, 2023, 36(17): 5 775-5 792.
|
[58] |
JI P, YUAN X, LI D. Atmospheric radiative processes accelerate ground surface warming over the southeastern Tibetan Plateau during 1998-2013[J]. Journal of Climate, 2020, 33(5): 1 881-1 895.
|
[59] |
WU F Y, YOU Q L, PEPIN N, et al. Quantifying processes of winter daytime and nighttime warming over the Tibetan Plateau[J]. Climate Dynamics, 2024. DOI:10.1007/s00382-024-07506-6 .
|
[60] |
SHI C M, WANG K C, SUN C, et al. Significantly lower summer minimum temperature warming trend on the southern Tibetan Plateau than over the Eurasian continent since the Industrial Revolution[J]. Environmental Research Letters, 2019, 14(12). DOI:10.1088/1748-9326/ab55fc .
|
[61] |
WANG Z L, LEI Y D, CHE H Z, et al. Aerosol forcing regulating recent decadal change of summer water vapor budget over the Tibetan Plateau[J]. Nature Communications, 2024, 15(1). DOI: 10.1038/s41467-024-46635-8 .
|
[62] |
LI Hu, PAN Xiaoduo. An overview of research methods on water vapor transport and sources in the Tibetan Plateau[J]. Advances in Earth Science, 2022, 37(10): 1 025-1 036.
|
|
李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1 025-1 036.
|
[63] |
YOU Q L, KANG S C, PEPIN N, et al. Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961-2005[J]. Geophysical Research Letters, 2008, 35(4). DOI: 10.1029/2007GL032669 .
|
[64] |
SHEN M G, PIAO S L, JEONG S J, et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30): 9 299-9 304.
|
[65] |
ZHANG X Q, REN Y, YIN Z Y, et al. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D15). DOI: 10.1029/2009JD011753 .
|
[66] |
LIU Y M, LU M M, YANG H J, et al. Land-atmosphere-ocean coupling associated with the Tibetan Plateau and its climate impacts[J]. National Science Review, 2020, 7(3): 534-552.
|
[67] |
WU G X, LIU Y M, ZHANG Q, et al. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. Journal of Hydrometeorology, 2007, 8(4): 770-789.
|
[68] |
YANG M X, NELSON F E, SHIKLOMANOV N I, et al. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research[J]. Earth-Science Reviews, 2010, 103(1/2): 31-44.
|
[69] |
LI C F, YANAI M. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast[J]. Journal of Climate, 1996, 9(2): 358-375.
|
[70] |
WANG C, DONG W, WEI Z. A study on relationship between freezingthawing processes of the Qinghai-Xizang Plateau and the atmospheric circulation over East Asia [J]. Chinese Journal of Geophysics, 2003, 46 (3): 438-448.
|
[71] |
QIN Y, ABATZOGLOU J T, SIEBERT S, et al. Agricultural risks from changing snowmelt[J]. Nature Climate Change, 2020, 10: 459-465.
|
[72] |
AMBADAN J T, BERG A A, MERRYFIELD W J, et al. Influence of snowmelt on soil moisture and on near surface air temperature during winter-spring transition season[J]. Climate Dynamics, 2018, 51(4): 1 295-1 309.
|
[73] |
WU F Y, YOU Q L, ZHANG J T, et al. Understanding of CMIP6 surface temperature cold bias over the westerly and monsoon regions of the Tibetan Plateau[J]. Climate Dynamics, 2024, 62(5): 4 133-4 153.
|
[74] |
XIANG B Q, XIE S P, KANG S M, et al. An emerging Asian aerosol dipole pattern reshapes the Asian summer monsoon and exacerbates Northern Hemisphere warming[J]. NPJ Climate and Atmospheric Science, 2023, 6. DOI:10.1038/s41612-023-00400-8 .
|
[75] |
LIU T, CHEN D A, YANG L, et al. Teleconnections among tipping elements in the Earth system[J]. Nature Climate Change, 2023, 13(1): 67-74.
|