地球科学进展 ›› 2025, Vol. 40 ›› Issue (7): 672 -683. doi: 10.11867/j.issn.1001-8166.2025.051

综述与评述 上一篇    下一篇

青藏高原变暖的季节不对称性特征及其机理研究进展
吴芳营1(), 游庆龙1,2(), 蔡子怡1, 靳铮1,3, 康世昌4,5   
  1. 1.复旦大学 大气与海洋科学系/大气科学研究院,上海 200438
    2.极地海—冰—气系统与天气气候 教育部重点实验室,上海 200438
    3.成都理工大学 地理与规划学院,四川 成都 610059
    4.中国科学院西北生态环境资源研究院 冰冻圈科学国家重点实验室,甘肃 兰州 730000
    5.中国科学院、水利部成都山地灾害与环境研究所,四川 成都 610213
  • 收稿日期:2025-05-09 修回日期:2025-06-20 出版日期:2025-07-10
  • 通讯作者: 游庆龙 E-mail:wufy21@m.fudan.edu.cn;qlyou@fudan.edu.cn
  • 基金资助:
    国家重点研发计划“政府间国际科技创新合作”重点专项(2023YFE0123800);上海基础研究特区计划—复旦大学21TQ1400100(22TQ007);上海市海陆气界面过程与气候变化重点实验室开放课题(FDAOS-OP202411)

Research Progress on Seasonal Asymmetry Characteristics and Mechanisms of Warming over the Tibetan Plateau

Fangying WU1(), Qinglong YOU1,2(), Ziyi CAI1, Zheng JIN1,3, Shichang KANG4,5   

  1. 1.Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
    2.Key Laboratory of Polar Atmosphere-Ocean-Ice System for Weather and Climate, Ministry of Education, Shanghai 200438, China
    3.College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China
    4.National Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    5.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610213, China
  • Received:2025-05-09 Revised:2025-06-20 Online:2025-07-10 Published:2025-09-15
  • Contact: Qinglong YOU E-mail:wufy21@m.fudan.edu.cn;qlyou@fudan.edu.cn
  • About author:WU Fangying, research areas include climate change and diagnostic research on the Tibetan Plateau. E-mail: wufy21@m.fudan.edu.cn
  • Supported by:
    the National Key Research and Development Program of China “Intergovernmental International Science and Technology Innovation Cooperation” Key Special Project(2023YFE0123800);Shanghai Frontiers Science Research Base Project-Fudan University 21TQ1400100(22TQ007);The Open Research Program of the Shanghai Key Laboratory of Land-Ocean Interaction and Climate Change(FDAOS-OP202411)

在全球变暖背景下,青藏高原不仅经历了显著的“高原放大效应”,还表现出强烈的季节不对称性变暖特征,即冬季变暖显著强于其他季节,夏季变暖最弱。已有研究表明,青藏高原近地表变暖具有放大性、季节不对称性和海拔依赖型等典型特征,这一现象由局地过程和大气环流共同驱动。梳理了如积雪—反照率反馈、水汽和云—辐射反馈等主要局地过程,以及冰冻圈变化(如北极海冰减少)和欧亚气溶胶格局变化等因素,分析了这些过程与因素通过调控季节性环流异常,对高原变暖产生的潜在影响。近年来,基于观测、再分析数据与数值模拟的研究不断揭示其机制复杂性,但在数据不确定性、量化方法以及远程强迫机制链条等方面仍存在明显不足。未来研究需在提升高原数据质量、改进机制量化方法、揭示多圈层过程耦合与遥相关路径方面取得突破,以深化对青藏高原季节不对称性变暖的认识。

In the context of global warming, the Tibetan Plateau (TP) has experienced pronounced “Tibetan Amplification (TA)” and exhibits a strong seasonal asymmetry in warming, with winter warming significantly exceeding that of other seasons and summer warming being the weakest. Existing studies indicate that near-surface warming over the TP is characterized by amplification, asymmetry, and Elevation-Dependent Warming (EDW) driven jointly by local processes and atmospheric circulation. This paper reviews key local mechanisms, such as snow-albedo feedback, water vapor, and cloud-radiation feedback, as well as the potential influence of cryospheric changes (e.g., Arctic sea ice loss) and Eurasian aerosol pattern changes on TP warming through the modulation of seasonal circulation anomalies. Recent studies based on observations, reanalysis data, and numerical simulations have revealed the complexity of these mechanisms. However, significant uncertainties remain regarding the data quality, quantitative methods, and remote forcing pathways. Future studies should focus on improving the data quality over the TP, refining quantification methods, and elucidating multilayer coupling and teleconnection processes to deepen our understanding of the seasonal asymmetry of warming on the TP.

中图分类号: 

图1 青藏高原环境示意图5
Fig. 1 The environment of the Tibetan Plateau5
图2 青藏高原变暖对东亚和南亚冰—陆—气与海—气交互作用影响示意图
Fig. 2 Schematic diagram of the impact of Tibetan Plateau warming on East Asia and South Asia through cryosphere-land-atmosphere and ocean-atmosphere interactions
表1 基于站点观测的青藏高原变暖研究汇总
Table 1 Summary of studies on warming over the Tibetan Plateau based on station observations
图3 基于CN05.1观测数据的19612022年青藏高原平均地表气温( T2m )变化趋势特征
(a)~(c) 高原年(a)、夏季(b)、冬季(c)T2m趋势分布(圆点表示通过0.05水平的显著性检验);(d) 高原夏季和冬季T2m的海拔依赖型特征;(e)1961—2022年夏季全球(CRU)、北半球(CRU)、高原(CN05.1)平均的T2m时间序列,图中数字代表对应区域的趋势(单位:℃/10a,**表示通过0.05水平的显著性检验);(f)与(e)含义相同,但是为冬季数据。
Fig. 3 Characteristics of the trend in mean surface air temperatureT2mover the Tibetan PlateauTPfrom 1961 to 2022 based on CN05.1
(a)~(c) Distribution of trend of annual (a), summer (b), winter (c) T2m over the TP (dots indicate significance test at the 0.05 level); (d) The elevation dependent warming over the TP in summer and winter; (e) Time series of T2m over the global (CRU), Northern Hemisphere (CRU), and TP (CN05.1) in summer from 1961 to 2022, with the numbers representing the trends of the corresponding regions (unit: ℃/10a, ** indicates the trend passing the significance test at the 0.05 level); (f) same as (e), but (f) represents the data from winter.
图4 基于CN05.1观测数据的19612022年青藏高原 T2ma)、 T2m_maxb)、 T2m_minc)以及日较差(d)的时间序列(参考时段19812010年)
右下角数字为变化趋势(单位:℃/10a),**表示通过0.05水平的显著性检验。
Fig. 4 Time series of T2ma), maximum T2mT2m_max ) (band minimum T2mT2m_min )(c), and diurnal temperature rangedover the Tibetan Plateau from 1961 to 2022 based on CN05.1reference period 1981-2010
The number in the lower right corner indicates the change trend (unit: ℃/10a), ** indicates the trend passing the significance test at the 0.05 level.
图5 主要局地过程5和大气环流过程41对青藏高原地表气温( T2m )变暖影响的示意图
DLR:向下长波辐射;USR:向上短波辐射;NSR:净短波辐射; GHGs:人为温室气体。
Fig. 5 Schematic diagram of the impact of major local processes5and atmospheric circulation processes41on air temperatureT2mwarming over the Tibetan Plateau
DLR: Downward Longwave Radiation; USR: Upward Shortwave Radiation; NSR: Net Shortwave Radiation; GHGs: Anthropogenic Greenhouse Gases.
图6 青藏高原夏季(a)和冬季(b)变暖不对称性的主导因素示意图
图中包括积雪—反照率反馈、水汽效应4159和云—辐射反馈57的空间差异,以及大气环流变化的差异等。
Fig. 6 Schematic diagram of the dominant factors of asymmetric warming in summeraand winterbover the Tibetan Plateau
Including spatial differences in snow-albedo feedback, water vapor effect4159, and cloud-radiation feedback57, as well as differences in atmospheric circulation changes.
[1] KANG S C, XU Y W, YOU Q L, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters20105(1). DOI: 10.1088/1748-9326/5/1/015101 .
[2] YAO T D, XUE Y K, CHEN D L, et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society2019100(3): 423-444.
[3] XU Xiangde, MA Yaoming, SUN Chan, et al. Effect of energy and water circulation over Tibetan Plateau [J]. Bulletin of Chinese Academy of Sciences201934(11): 1 293-1 305.
徐祥德, 马耀明, 孙婵, 等. 青藏高原能量、水分循环影响效应 [J]. 中国科学院院刊201934 (11): 1 293-1 305.
[4] YAN Y P, YOU Q L, WU F Y, et al. Surface mean temperature from the observational stations and multiple reanalyses over the Tibetan Plateau[J]. Climate Dynamics202055(9): 2 405-2 419.
[5] LIU Y Z, LI Y H, HUANG J P, et al. Attribution of the Tibetan Plateau to northern drought[J]. National Science Review20207(3): 489-492.
[6] HUANG J P, ZHOU X J, WU G X, et al. Global climate impacts of land-surface and atmospheric processes over the Tibetan Plateau[J]. Reviews of Geophysics202361(3). DOI: 10.1029/2022RG000771 .
[7] YAO Nan, MA Yaoming. Characteristics over three plateaus in Asia and their synergistic impact on weather and climate in China: an overview [J]. Advances in Earth Science202338(6): 580-593.
姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展 [J]. 地球科学进展202338(6): 580-593.
[8] YOU Qinglong, KANG Shichang, LI Jiandong, et al. Several research frontiers of climate change over the Tibetan Plateau [J]. Journal of Glaciology and Geocryology202143(3): 885-901.
游庆龙, 康世昌, 李剑东, 等. 青藏高原气候变化若干前沿科学问题 [J]. 冰川冻土202143(3): 885-901.
[9] YOU Q L, CAI Z Y, PEPIN N, et al. Warming amplification over the Arctic pole and third pole: trends, mechanisms and consequences[J]. Earth-Science Reviews2021, 217. DOI:10.1016/j.earscirev.2021.103625 .
[10] YAO T D, THOMPSON L, YANG W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change20122(9): 663-667.
[11] YAO T D, BOLCH T, CHEN D L, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment20223: 618-632.
[12] MA Ning. Comparison of variations in land surface evapotranspiration between typical alpine steppe and wetland ecosystems on the Tibetan Plateau over the last four decades [J]. Advances in Earth Science202136(8): 836-848.
马宁. 近40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析 [J]. 地球科学进展202136(8): 836-848.
[13] YOU Q L, WU F Y, SHEN L C, et al. Tibetan Plateau amplification of climate extremes under global warming of 1.5 ℃, 2 ℃ and 3 ℃[J]. Global and Planetary Change2020, 192. DOI: 10.1016/j.gloplacha.2020.103261 .
[14] YAO Tandong, ZHANG Taigang, WANG Weicai, et al. Glacial lake change and outburst risk assessment on the Asian water tower[J]. Advances in Earth Science202540(3): 221-227.
姚檀栋, 张太刚, 王伟财, 等. 亚洲水塔冰湖变化与冰湖溃决灾害风险及应对[J]. 地球科学进展202540(3): 221-227.
[15] WANG Jinsong, YAO Yubi, WANG Ying, et al. Meteorological droughts in the Qinghai-Tibet Plateau: research progress and prospects [J]. Advances in Earth Science202237(5): 441-461.
王劲松, 姚玉璧, 王莺, 等. 青藏高原地区气象干旱研究进展与展望 [J]. 地球科学进展202237(5): 441-461.
[16] LIU X D, CHEN B D. Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology200020(14): 1 729-1 742.
[17] KUANG X X, JIAO J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research: Atmospheres2016121(8): 3 979-4 007.
[18] YOU Q L, MIN J Z, KANG S C. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades[J]. International Journal of Climatology201636(6): 2 660-2 670.
[19] GUO D L, WANG H J. The significant climate warming in the northern Tibetan Plateau and its possible causes[J]. International Journal of Climatology201232(12): 1 775-1 781.
[20] WEI Y Q, FANG Y P. Spatio-temporal characteristics of global warming in the Tibetan Plateau during the last 50 years based on a generalised temperature zone-elevation model[J]. PLoS ONE20138(4). DOI: 10.1371/journal.pone.0060044 .
[21] YOU Q L, JIANG Z H, MOORE G W K, et al. Revisiting the relationship between observed warming and surface pressure in the Tibetan Plateau[J]. Journal of Climate201730(5): 1 721-1 737.
[22] WU F Y, YOU Q L, CAI Z Y, et al. Significant elevation dependent warming over the Tibetan Plateau after removing longitude and latitude factors[J]. Atmospheric Research2023, 284. DOI: 10.1016/j.atmosres.2022.106603 .
[23] DUAN A M, XIAO Z X. Does the climate warming hiatus exist over the Tibetan Plateau?[J]. Scientific Reports2015, 5. DOI: 10.1038/srep13711 .
[24] JIANG J, ZHOU T J, QIAN Y, et al. Precipitation regime changes in High Mountain Asia driven by cleaner air[J]. Nature2023623(7 987): 544-549.
[25] JIANG J, ZHOU T J. Observational constraint on the contributions of greenhouse gas emission and anthropogenic aerosol removal to Tibetan Plateau future warming[J]. Geophysical Research Letters202350(17). DOI: 10.1029/2023GL105427 .
[26] ZHANG C, QIN D H, ZHAI P M. Amplification of warming on the Tibetan Plateau[J]. Advances in Climate Change Research202314(4): 493-501.
[27] IPCC. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change [R]. Cambridge: Cambridge University Press, 2021.
[28] LIU X D, YIN Z Y, SHAO X M, et al. Temporal trends and variability of daily maximum and minimum, extreme temperature events, and growing season length over the eastern and central Tibetan Plateau during 1961-2003[J]. Journal of Geophysical Research: Atmospheres2006111(D19). DOI: 10.1029/2005JD006915 .
[29] YOU Q L, MIN J Z, JIAO Y, et al. Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades[J]. International Journal of Climatology201636(6): 2 633-2 643.
[30] LIU X D, CHENG Z G, YAN L B, et al. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings[J]. Global and Planetary Change200968(3): 164-174.
[31] PEPIN N C, ARNONE E, GOBIET A, et al. Climate changes and their elevational patterns in the mountains of the world[J]. Reviews of Geophysics202260(1). DOI: 10.1029/2020RG000730 .
[32] PEPIN N, BRADLEY R S, DIAZ H F, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change20155: 424-430.
[33] RANGWALA I, MILLER J R. Climate change in mountains: a review of elevation-dependent warming and its possible causes[J]. Climatic Change2012114(3): 527-547.
[34] YOU Q L, CHEN D L, WU F Y, et al. Elevation dependent warming over the Tibetan Plateau: patterns, mechanisms and perspectives[J]. Earth-Science Reviews2020, 210. DOI: 10.1016/j.earscirev.2020.103349 .
[35] LIU Xiaodong, HOU Ping. Relationship between climate warming and altitude in Qinghai-Tibet Plateau and its adjacent areas in recent 30 years[J]. Plateau Meteorology199817(3): 245-249.
刘晓东, 侯萍. 青藏高原及其邻近地区近30年气候变暖与海拔高度的关系[J]. 高原气象199817(3): 245-249.
[36] DU Jun. Change of temperature in Tibetan Plateau from 1961 to 2000[J]. Acta Geographica Sinica200156(6): 682-690.
杜军. 西藏高原近40年的气温变化[J]. 地理学报200156(6): 682-690.
[37] WANG Pengling, TANG Guoli, CAO Lijuan, et al. Surface air temperature variability and its relationship with altitude & latitude over the Tibetan Plateau in 1981-2010[J]. Progressus Inquisitiones de Mutatione Climatis20128(5): 4-10.
王朋岭, 唐国利, 曹丽娟, 等. 1981—2010年青藏高原地区气温变化与高程及纬度的关系[J]. 气候变化研究进展20128(5): 4-10.
[38] GUO D L, SUN J Q, YANG K, et al. Revisiting recent elevation-dependent warming on the Tibetan Plateau using satellite-based data sets[J]. Journal of Geophysical Research: Atmospheres2019124(15): 8 511-8 521.
[39] DUAN A M, PENG Y Z, LIU J P, et al. Sea ice loss of the Barents-Kara Sea enhances the winter warming over the Tibetan Plateau[J]. NPJ Climate and Atmospheric Science20225(1):1-6.
[40] ZHAO M C, YANG X Q, TAO L F, et al. Processes determining the seasonality of accelerated Tibetan Plateau warming during recent decades[J]. Climate Dynamics202563(2). DOI: 10.1007/s00382-025-07596-w .
[41] WU F Y, YOU Q L, PEPIN N, et al. Surface warming in summer over the Tibetan Plateau: local and atmospheric circulation processes 1 1 resubmitted to global and planetary change 24th, April 2025[J]. Global and Planetary Change2025, 252. DOI: 10.1016/j.gloplacha.2025.104904 .
[42] CHEN B, CHAO W C, LIU X. Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: a model study[J]. Climate Dynamics200320(4): 401-413.
[43] YOU Q L, ZHANG Y Q, XIE X Y, et al. Robust elevation dependency warming over the Tibetan Plateau under global warming of 1.5℃ and 2℃[J]. Climate Dynamics201953(3): 2 047-2 060.
[44] PEPIN N, DENG H J, ZHANG H B, et al. An examination of temperature trends at high elevations across the Tibetan Plateau: the use of MODIS LST to understand patterns of elevation-dependent warming[J]. Journal of Geophysical Research: Atmospheres2019124(11): 5 738-5 756.
[45] GUO D L, PEPIN N, YANG K, et al. Local changes in snow depth dominate the evolving pattern of elevation-dependent warming on the Tibetan Plateau[J]. Science Bulletin202166(11): 1 146-1 150.
[46] DUAN A M, WU G X. Change of cloud amount and the climate warming on the Tibetan Plateau[J]. Geophysical Research Letters200633(22). DOI: 10.1029/2006GL027946 .
[47] YAN L B, LIU Z Y, CHEN G S, et al. Mechanisms of elevation-dependent warming over the Tibetan Plateau in quadrupled CO2 experiments[J]. Climatic Change2016135(3): 509-519.
[48] RANGWALA I, MILLER J R, XU M. Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor[J]. Geophysical Research Letters200936(6). DOI: 10.1029/2009GL037245 .
[49] RUCKSTUHL C, PHILIPONA R, MORLAND J, et al. Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes[J]. Journal of Geophysical Research: Atmospheres2007112(D3). DOI: 10.1029/2006JD007850 .
[50] ZHANG Renhe, ZHOU Shunwu. The air temperature change over the Tibetan Plateau during 1979-2002 and its possible linkage with ozone depletion[J]. Acta Meteorologica Sinica200866(6): 916-925.
张人禾, 周顺武. 青藏高原气温变化趋势与同纬度带其他地区的差异以及臭氧的可能作用[J]. 气象学报200866(6): 916-925.
[51] NAIR V S, BABU S S. Contrasting effects of aerosols on surface temperature over the Indo-Gangetic Plain and Tibetan Plateau[J]. Journal of Earth System Science2024133(3). DOI:10.1007/s12040-024-02387-z .
[52] LÜTHI Z L, ŠKERLAK B, KIM S W, et al. Atmospheric brown clouds reach the Tibetan Plateau by crossing the Himalayas[J]. Atmospheric Chemistry and Physics201515(11): 6 007-6 021.
[53] LI C L, BOSCH C, KANG S C, et al. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers[J]. Nature Communications2016, 7. DOI: 10.1007/s12040-024-02387-z .
[54] YANG J H, KANG S C, CHEN D L, et al. South Asian black carbon is threatening the water sustainability of the Asian Water Tower[J]. Nature Communications202213(1). DOI: 10.1038/s41467-022-35128-1 .
[55] JI Z M, KANG S C, CONG Z Y, et al. Simulation of carbonaceous aerosols over the Third Pole and adjacent regions: distribution, transportation, deposition, and climatic effects[J]. Climate Dynamics201545(9): 2 831-2 846.
[56] CHEN J C, XU J Z, WU Z J, et al. Decreased dust particles amplify the cloud cooling effect by regulating cloud ice formation over the Tibetan Plateau[J]. Science Advances202410(37). DOI: 10.1126/sciadv.ado0885 .
[57] HU S Z, HSU P C, LI W K, et al. Mechanisms of Tibetan Plateau warming amplification in recent decades and future projections[J]. Journal of Climate202336(17): 5 775-5 792.
[58] JI P, YUAN X, LI D. Atmospheric radiative processes accelerate ground surface warming over the southeastern Tibetan Plateau during 1998-2013[J]. Journal of Climate202033(5): 1 881-1 895.
[59] WU F Y, YOU Q L, PEPIN N, et al. Quantifying processes of winter daytime and nighttime warming over the Tibetan Plateau[J]. Climate Dynamics2024. DOI:10.1007/s00382-024-07506-6 .
[60] SHI C M, WANG K C, SUN C, et al. Significantly lower summer minimum temperature warming trend on the southern Tibetan Plateau than over the Eurasian continent since the Industrial Revolution[J]. Environmental Research Letters201914(12). DOI:10.1088/1748-9326/ab55fc .
[61] WANG Z L, LEI Y D, CHE H Z, et al. Aerosol forcing regulating recent decadal change of summer water vapor budget over the Tibetan Plateau[J]. Nature Communications202415(1). DOI: 10.1038/s41467-024-46635-8 .
[62] LI Hu, PAN Xiaoduo. An overview of research methods on water vapor transport and sources in the Tibetan Plateau[J]. Advances in Earth Science202237(10): 1 025-1 036.
李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展202237(10): 1 025-1 036.
[63] YOU Q L, KANG S C, PEPIN N, et al. Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961-2005[J]. Geophysical Research Letters200835(4). DOI: 10.1029/2007GL032669 .
[64] SHEN M G, PIAO S L, JEONG S J, et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth[J]. Proceedings of the National Academy of Sciences of the United States of America2015112(30): 9 299-9 304.
[65] ZHANG X Q, REN Y, YIN Z Y, et al. Spatial and temporal variation patterns of reference evapotranspiration across the Qinghai-Tibetan Plateau during 1971-2004[J]. Journal of Geophysical Research: Atmospheres2009114(D15). DOI: 10.1029/2009JD011753 .
[66] LIU Y M, LU M M, YANG H J, et al. Land-atmosphere-ocean coupling associated with the Tibetan Plateau and its climate impacts[J]. National Science Review20207(3): 534-552.
[67] WU G X, LIU Y M, ZHANG Q, et al. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. Journal of Hydrometeorology20078(4): 770-789.
[68] YANG M X, NELSON F E, SHIKLOMANOV N I, et al. Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research[J]. Earth-Science Reviews2010103(1/2): 31-44.
[69] LI C F, YANAI M. The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast[J]. Journal of Climate19969(2): 358-375.
[70] WANG C, DONG W, WEI Z. A study on relationship between freezingthawing processes of the Qinghai-Xizang Plateau and the atmospheric circulation over East Asia [J]. Chinese Journal of Geophysics200346 (3): 438-448.
[71] QIN Y, ABATZOGLOU J T, SIEBERT S, et al. Agricultural risks from changing snowmelt[J]. Nature Climate Change202010: 459-465.
[72] AMBADAN J T, BERG A A, MERRYFIELD W J, et al. Influence of snowmelt on soil moisture and on near surface air temperature during winter-spring transition season[J]. Climate Dynamics201851(4): 1 295-1 309.
[73] WU F Y, YOU Q L, ZHANG J T, et al. Understanding of CMIP6 surface temperature cold bias over the westerly and monsoon regions of the Tibetan Plateau[J]. Climate Dynamics202462(5): 4 133-4 153.
[74] XIANG B Q, XIE S P, KANG S M, et al. An emerging Asian aerosol dipole pattern reshapes the Asian summer monsoon and exacerbates Northern Hemisphere warming[J]. NPJ Climate and Atmospheric Science2023, 6. DOI:10.1038/s41612-023-00400-8 .
[75] LIU T, CHEN D A, YANG L, et al. Teleconnections among tipping elements in the Earth system[J]. Nature Climate Change202313(1): 67-74.
[1] 何编, 冯适健, 吴国雄, 刘屹岷, 生宸, 何欣雨. 基于位涡理论的青藏高原热力强迫数值模拟研究进展[J]. 地球科学进展, 2025, 40(5): 441-455.
[2] 郭灵辉, 闫静静, 罗媛媛, 徐紫萌, 高江波, 吴绍洪, 冯千凤. 华北地区冬小麦生育期中短尺度气象干旱演变特征及影响因素解析[J]. 地球科学进展, 2025, 40(4): 374-387.
[3] 许菡颖, 韩存博, 马耀明, 张蕴帅. 青藏高原大气边界层数值模拟研究进展[J]. 地球科学进展, 2024, 39(9): 915-929.
[4] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[5] 程久菊, 吕新苗, 朱立平, 马庆峰, SIMA HUMAGAIN, KHUM PAUDAYAL N. 珠穆朗玛峰北坡桤木属大气花粉传输路径与来源[J]. 地球科学进展, 2024, 39(4): 419-428.
[6] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[7] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[8] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745-756.
[9] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[10] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[11] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[12] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[13] 吴景全, 李全莲, 武小波, 王宁练, 康世昌, 王世金. 青藏高原不同载体中微生物类脂物GDGTs的研究进展及展望[J]. 地球科学进展, 2023, 38(11): 1158-1172.
[14] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[15] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
阅读次数
全文


摘要