地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.037

   

基于位涡理论的青藏高原热力强迫数值模拟研究进展
何编1,2,冯适健1,2,3,吴国雄1,2,3,刘屹岷1,2,3,生宸2,何欣雨1,2,3   
  1. (1. 中国科学院大气物理研究所,地球系统数值模拟与应用全国重点实验室,北京 100029;2. 中国科学院 大气物理研究所,大气科学与地球物理流体力学数值模拟国家重点实验室,北京 100029; 3. 中国科学院大学 地球与行星科学学院,北京 100049)
  • 基金资助:
    国家自然科学基金优秀青年科学基金项目(编号:42122035);国家自然科学基金面上项目(编号:42475020)资助.

Research Progress on Numerical Simulations of the Tibetan Plateau Thermodynamic Forcing Based on Potential Vorticity Theory

HE Bian1, 2, FENG Shijian1, 2, 3, WU Guoxiong1, 2, 3, LIU Yimin1, 2, 3, SHENG Chen2, HE Xinyu1, 2, 3   

  1. (1. Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 2. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; 3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China)
  • About author:HE Bian, Professor, research areas include Tibetan Plateau climate dynamics and modeling. E-mail: heb@lasg.iap.ac.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant No. 42122035; 42475020).
青藏高原热动力强迫作用对亚洲夏季风的形成和变化具有重要影响。然而,由于观测和 数值模式本身的局限性,人们对青藏高原动力和热力作用影响季风形成的相对重要性仍存在争 议。针对相关的理论和数值模拟问题,提出了基于位涡理论的青藏高原地表位涡强迫概念,并揭 示了其与亚洲夏季风的关系。针对上述研究开展了回顾和总结,发现青藏高原动力、热力强迫影 响的相对重要性与试验设计和模式模拟性能本身具有密切联系;青藏高原地表位涡指数可以作为 衡量其相对重要性的一个指标;相比于感热通量,表面位涡能够更好地表征夏季高原表面的强迫 作用,并可以作为量化指标评估不同数值模拟方案中高原表面强迫的强度和对季风降水的影响; 从气候尺度而言,高原表面加热是导致夏季风在陆地上形成的主导因素;而从延伸期预测的角度, 高原上空的热力和动力扰动时空尺度如何调控天气尺度波是影响下游降水预测的关键因子。相 关理论和数值模拟研究可为进一步深化青藏高原气候动力学的认识提供参考。未来需要加强高 原观测,并推动模式物理过程的发展,以进一步提高青藏高原气候数值模拟和预测水平。
Abstract: The thermodynamic forcing of the Tibetan Plateau plays a crucial role in modulating the formation and variability of the Asian summer monsoon. However, due to limitations in both observations and numerical models, the relative importance of the Plateau's dynamic and thermal effects on monsoon development remains a subject of ongoing debate. In recent years, we have proposed a new framework based on Potential Vorticity (PV) theory, introducing the concept of surface PV forcing over the Tibetan Plateau, and revealing its relationship with Asian summer monsoon. This paper reviews and summarizes the aforementioned researches. Our major findings include that the relative significance of TP thermodynamic forcing is closely linked with experimental design and model simulation performance, and the surface PV index can serve as an index to gauge this relative significance; compared with sensible heat flux, surface PV better characterizes the summer surface forcing over the Plateau and can serve as quantitative indicator to assess the strength of TP surface forcing under different numerical experiment configurations and evaluated its influence on monsoonal rainfall; climatologically, TP surface heating dominates the formation of summer monsoon over land; moreover, from an extended-range forecasting perspective, the spatiotemporal scales of thermodynamic disturbances over TP modulating synopticscale waves are key factors influencing the predictability of downstream precipitation. Especially, we quantify the intensity of TP surface forcing in climate system models and its sensitivity in affecting monsoon precipitation across different regions in 2022. We highlight that accurate simulation of TP surface PV forcing in June 2022 was essential for reproducing persistent rainfall over South China.These theoretical and modeling efforts contribute to a deeper understanding of the climatic dynamics associated with the Tibetan Plateau. Additionally, observational data scarcity particularly over high-elevation western TP regions due to terrain and environmental constraints has led to insufficient knowledge of boundary-layer processes and biased physical parameterizations in climate models. Therefore, advancing TP simulation capabilities and enhancing comprehension of TP climate dynamics necessitates integrating observations, modeling, and theoretical research into a cohesive framework. Such an integrated approach will improve prediction skills for weather and climate extremes across the TP and surrounding regions.

中图分类号: 

[1] 许菡颖, 韩存博, 马耀明, 张蕴帅. 青藏高原大气边界层数值模拟研究进展[J]. 地球科学进展, 2024, 39(9): 915-929.
[2] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[3] 郭颖, 冯文杰, 李少华, 闫淑红. 砂质辫状河中河边滩和河心滩沉积构型:基于沉积演化过程的精细解析[J]. 地球科学进展, 2024, 39(4): 405-418.
[4] 程久菊, 吕新苗, 朱立平, 马庆峰, SIMA HUMAGAIN, KHUM PAUDAYAL N. 珠穆朗玛峰北坡桤木属大气花粉传输路径与来源[J]. 地球科学进展, 2024, 39(4): 419-428.
[5] 何锦秋, 李海鹏, 侯明才. 沉积源—汇系统数值模拟研究进展:多模型比较与应用[J]. 地球科学进展, 2024, 39(11): 1136-1155.
[6] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[7] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[8] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745-756.
[9] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[10] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[11] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[12] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[13] 吴景全, 李全莲, 武小波, 王宁练, 康世昌, 王世金. 青藏高原不同载体中微生物类脂物GDGTs的研究进展及展望[J]. 地球科学进展, 2023, 38(11): 1158-1172.
[14] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[15] 魏思华, 田军. 晚中新世低大气 pCO2 背景下暖室气候的成因机制[J]. 地球科学进展, 2022, 37(4): 417-428.
阅读次数
全文


摘要