地球科学进展 ›› 2025, Vol. 40 ›› Issue (7): 661 -671. doi: 10.11867/j.issn.1001-8166.2025.050

综述与评述 上一篇    下一篇

陆面过程的可预报性研究进展与展望
孙国栋1,6,7(), 彭飞2, 任秋杰3, 张琦渝4, 岳丹丹5   
  1. 1.中国科学院大气物理研究所 地球系统数值模拟与应用全国重点实验室,北京 100029
    2.中国气象局 地球系统数值预报中心,北京 100081
    3.郑州轻工业大学 数学与信息科学学院,河南 郑州 450002
    4.致灾天气数智融合预报预警重庆市重点实验室,重庆市气象科学研究所,重庆 401147
    5.沈阳农业大学 土地与环境学院,辽宁 沈阳 110866
    6.中国科学院大气物理研究所 大气科学和地球流体力学 数值模拟国家重点实验室,北京 100029
    7.中国科学院大学,北京 100049
  • 收稿日期:2025-04-11 修回日期:2025-06-12 出版日期:2025-07-10
  • 基金资助:
    国家重点研发计划项目(2023YFF0805202);国家自然科学基金项目(42175077);国家自然科学基金项目(42475063)

Predictability of Land Surface Processes: Research Progress and Prospects

Guodong SUN1,6,7(), Fei PENG2, Qiujie REN3, Qiyu ZHANG4, Dandan YUE5   

  1. 1.State Key Laboratory of Earth System Numerical Modeling and Application, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    2.CMA Earth System Modeling and Prediction Centre, Beijing 100081, China
    3.School of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou 450002, China
    4.Chongqing Key Laboratory of Numerical Model-AI Integrated Forecast and Warning for Severe Weather, Chongqing Institute of Meteorological Sciences, Chongqing 401147, China
    5.College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China
    6.The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    7.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2025-04-11 Revised:2025-06-12 Online:2025-07-10 Published:2025-09-15
  • About author:SUN Guodong, research areas include predictability and land-atmosphere interaction. E-mail: sungd@mail.iap.ac.cn
  • Supported by:
    the National Key Research and Development Program of China(2023YFF0805202);The National Natural Science Foundation of China(42175077)

陆面是地球系统的重要组成部分。陆面通过能量、水分和碳氮循环等过程,与大气相互耦合和相互作用,对天气和气候系统产生重要影响。陆面过程的数值模拟和预报研究是当前国际学术界的热点之一。然而,目前陆面过程的数值模拟和预报研究仍存在较大的不确定性。评估目前陆面过程的数值模拟和预报的不确定性程度,探寻其不确定性来源,并研究减少这种不确定性的方法和途径,均属于陆面过程可预报性的研究范畴。从气候变化和模式物理过程角度,回顾了目前陆面过程可预报性研究的3个问题:一是气候变化和模式物理过程不确定性,对陆面过程数值模拟和预测不确定性的影响程度;二是导致上述不确定性的关键物理过程;三是如何利用目标观测和集合预报提高陆面过程的数值模拟能力和预测技巧。最后,针对如何提高陆面过程的数值模拟能力和预测技巧进行了展望,包括如何对敏感的物理参数进行加强观测,以及集合预报技术的进一步拓展。

Land surfaces are important components of the Earth’s system. The land surface has an important influence on the weather and climate system through processes such as energy, moisture, carbon, and nitrogen cycles, coupling, and interactions with the atmosphere. The study of numerical modelling and forecasting of land surface processes is a hot topic in international research. However, the numerical modelling and forecasting of land surface processes are subject to large uncertainties. Assessing the current level of uncertainty in numerical modelling and forecasting of land surface processes, searching for sources of uncertainty in numerical modelling and forecasting of land surface processes, and exploring ways and means to reduce the uncertainty in numerical modelling and forecasting of land surface processes fall within the scope of research on the predictability of land surface processes. This paper reviews the progress of the author's research in these three areas and discusses key scientific issues and techniques that need to be focused on in future research on the predictability of land-surface processes.

中图分类号: 

图1 不同研究区域模拟的土壤湿度季节平均值的最大不确定性
(a)中国东北半湿润气候类型;(b)华北半干旱气候类型;(c)华北半湿润气候类型;(d)华南湿润气候类型。每个研究区域的序列号:东北部(126.0°~127.5°E,46.0°~47.5°N)、北部(112.5°~114.0°E,37.5°~39.0°N;113.5°~115.0°E,32.5°~34.0°N)和南部(116.0°~117.5°E,26.0°~27.5°N)。不同地区使用相同的序列号,但每个地区的序号对应不同的经度和纬度。研究区域一共含16个研究单元,N代表对研究区域进行编号,4个数字中的前2位代表经度,后2位代表纬度。例如,在中国东北,N0203的经度和纬度分别为126.5°E和47.0°N37
Fig. 1 Maximum uncertainty in seasonal means of simulated soil moisture in different study areas
(a) Northeast China with the semi-humid climate type; (b) North China with the semi-arid climate type; (c) North China with the semi-humid climate type; (d) South China with the humid climate type. Each study region is assigned a serial number as follows: Northeast (126.0°~127.5°E, 46.0°~47.5°N), North (112.5°~114.0°E, 37.5°~39.0°N; 113.5°~115.0°E, 32.5°~34.0°N), and South (116.0°~117.5°E, 26.0°~27.5°N). The same serial numbering system is applied across all regions, but the specific longitude and latitude corresponding to each serial number differ by region. The study area comprises 16 research units, where N denotes the unit number assigned to the study area. The first two digits represent the longitude, and the last two digits represent the latitude. For instance, in Northeast China, the serial number N0203 corresponds to a longitude of 126.5°E and a latitude of 47.0°N37.
图2 由物理参数的不确定性导致的蒸散发的不确定性程度38
Fig. 2 Degree of uncertainty in evapotranspirationETdue to uncertainty in physical parameters38
图3 减少由不同方法识别敏感参数的误差带来的收益40
Fig. 3 Reducing gains from errors in identifying sensitive parameters by different methods40
图4 CNOP-PEP方法44
Fig. 4 CNOP-PEP method44
图5 不同集合预报方法对青藏高原蒸散发的集合预报技巧44
(a)蒸散发的均方根误差(单位:mm/a);(b)蒸散发的相对改进程度(单位:百分比);横坐标为不同方法。
Fig. 5 Ensemble forecasting techniques for evapotranspiration on the Tibetan Plateau using different ensemble forecasting methods44
(a)Root mean square error of evapotranspiration (unit: mm/a); (b) Relative improvement of evapotranspiration (unit: percentage). The horizontal axis represents different methods.
[1] MCGUIRE A D, SITCH S, CLEIN J S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models [J]. Global Biogeochemical Cycles200115: 183-206.
[2] FRIEDLINGSTEIN P, MEINSHAUSEN M, ARORA V K, et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks [J]. Journal of Climate201427: 511-526.
[3] LORENZ R, DAVIN E L, SENEVIRATNE S I. Modeling land-climate coupling in Europe: impact of land surface representation on climate variability and extremes: land-climate coupling in Europe [J]. Journal of Geophysical Research: Atmospheres2012, 117. DOI:10.1029/2012JD017755 .
[4] FINDELL K L, GENTINE P, LINTNER B R, et al. Data length requirements for observational estimates of land-atmosphere coupling strength [J]. Journal of Hydrometeorology201516: 1 615-1 635.
[5] BAUR F, KEIL C, CRAIG G C. Soil moisture-precipitation coupling over Central Europe: interactions between surface anomalies at different scales and the dynamical implication [J]. Quarterly Journal of the Royal Meteorological Society2018144: 2 863-2 875.
[6] DENISSEN J M C, TEULING A J, REICHSTEIN M, et al. Critical soil moisture derived from satellite observations over Europe [J]. Journal of Geophysical Research: Atmospheres2020, 125. DOI:10.1029/2019JD031672 .
[7] JACH L, SCHWITALLA T, BRANCH O, et al. Sensitivity of land-atmosphere coupling strength to changing atmospheric temperature and moisture over Europe [J]. Earth System Dynamics202213: 109-132.
[8] FU C, AN Z. Study of aridization in northern China—a global change issue facing directly the demand of nation [J]. Earth Science Frontiers20029(2): 271-275.
[9] HUANG J, LI Y, FU C, et al. Dryland climate change: recent progress and challenges [J]. Reviews of Geophysics201755: 719-778.
[10] DAI Y, ZENG Q. A Land Surface Model (IAP94) for climate studies part I: formulation and validation in off-line experiments [J]. Advances in Atmospheric Sciences199714(4): 433-460.
[11] ZHENG Hui, LIU Shuhua, PRABHAKAR C, et al. Description and evaluation of the Peking University Land Model (PKULM) [J]. Chinese Journal of Geophysics201659(1): 79-92.
郑辉, 刘树华, Prabhakar C, 等. 北京大学陆面过程模式PKULM(Peking University Land Model)介绍及检验 [J]. 地球物理学报201659(1): 79-92.
[12] DAI Yongjiu. Issues in research and development of land surface process model [J]. Transactions of Atmospheric Sciences202043(1): 33-38.
戴永久. 陆面过程模式研发中的问题 [J]. 大气科学学报202043(1): 33-38.
[13] ZHOU Guangsheng, ZHOU Mengzi, ZHOU Li, et al. Prospects for land-atmosphere interaction [J]. Advances in Earth Science202439(7): 661-670.
周广胜, 周梦子, 周莉, 等. 陆—气相互作用研究展望 [J]. 地球科学进展202439(7): 661-670.
[14] MANABE S. Climate and the circulation: I. the atmospheric circulation and the hydrology of the Earth’s surface [J]. Monthly Weather Review196997: 739-774.
[15] ZENG X D, SHEN S S P, ZENG X B, et al. Multiple equilibrium states and the abrupt transitions in a dynamical system of soil water interacting with vegetation [J]. Geophysical Research Letters2004, 31. DOI:10.1029/2003GL018910 .
[16] ZENG Q C, ZENG X D. An analytical dynamic model of grass field ecosystem with two variables[J]. Ecological Modelling199685: 187-196.
[17] LUO Y Q, KEENAN T F, SMITH M. Predictability of the terrestrial carbon cycle [J]. Global Change Biology201521: 1 737-1 751.
[18] SELLERS P J, MINTZ Y, SUD Y C, et al. A Simple Biosphere model (SIB) for use within general circulation models [J]. Journal of the Atmospheric Sciences198643(6): 505-531.
[19] JI J. A climate-vegetation interaction model: simulating physical and biological processes at the surface [J]. Journal of Biogeography199522(2/3): 445-451.
[20] DAI Y. The Common Land Model (CoLM) user’s guide [R]. Beijing: School of Geography, Beijing Normal University, 2005.
[21] OLESON K W, NIU G Y, YANG Z L, et al. Improvements to the Community Land Model and their impact on the hydrological cycle [J]. Journal of Geophysical Research2008, 113. DOI:10.1029/2007JG000563 .
[22] MU M, DUAN W, WANG J. The predictability problems in numerical weather and climate prediction [J]. Advances in Atmospheric Sciences200219(2): 191-204.
[23] LORENZ E N. Section of planetary sciences: the predictability of hydrodynamic flow [J]. Transactions of the New York Academy of Sciences196325: 409-432.
[24] LORENZ E N. A study of the predictability of a 28-variable atmospheric model [J]. Tellus196517: 321-333.
[25] LORENZ E N. The predictability of a flow which possesses many scales of motion [J]. Tellus196921: 289-307.
[26] MU M, DUAN W S. A nonlinear theory and technology for reducing the uncertainty of high-impact ocean-atmosphere event prediction [J]. Advances in Atmospheric Sciences202542(10): 1 981-1 995.
[27] MU M, DUAN W, WANG B. Conditional nonlinear optimal perturbation and its applications [J]. Nonlinear Processes in Geophysics200310: 493-501.
[28] MU M, DUAN W, WANG Q, et al. An extension of conditional nonlinear optimal perturbation approach and its applications [J]. Nonlinear Processes in Geophysics201017(2): 211-220.
[29] PAN Z, ANDRADE D, SEGAL M, et al. Uncertainty in future soil carbon trends at a central U.S. site under an ensemble of GCM scenario climates [J]. Ecological Modelling2010221:876-881.
[30] SEAGER R, TING M, Li C, et al. Projections of declining surface-water availability for the southwestern United States [J]. Nature Climate Change20133: 482-486.
[31] SUN G D, MU M. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model [J]. Climatic Change2013120: 755-769.
[32] PENG F, MU M, SUN G D. Responses of soil moisture to climate change based on projections by the end of 21st century under the high emission scenario in the ‘Huang-Huai-Hai Plain’ region of China [J]. Journal of Hydro-environment Research201714: 105-118.
[33] PENG F, MU M, SUN G. Evaluations of uncertainty and sensitivity in soil moisture modeling on the Tibetan Plateau [J]. Tellus A: Dynamic Meteorology and Oceanography202072(1): 1-16.
[34] XIE Dongdong, SUN Guodong, SHAO Aimei, et al. A study of simulation uncertainties caused by parameter uncertainties in a grassland ecosystem model [J]. Climate and Environmental Research201318(3): 375-386.
谢东东, 孙国栋, 邵爱梅, 等. 草原生态系统模式中参数不确定性导致的模拟结果不确定性研究 [J]. 气候与环境研究201318(3): 375-386.
[35] LAWRENCE D M, FISHER R A, KOVEN C D, et al. The Community Land Model version 5: description of new features, benchmarking, and impact of forcing uncertainty [J]. Journal of Advances in Modeling Earth Systems201911: 4 245-4 287.
[36] MOUAD E, GARAMBOIS P, HUYNH N, et al. Improving parameter regionalization learning for spatialized differentiable hydrological models by assimilation of satellite-based soil moisture data[J]. Journal of Hydrology2025. DOI:10.1016/j.jhydrol .
[37] SUN G D, PENG F, MU M. Uncertainty assessment and sensitivity analysis of soil moisture based on model parameters-results from four regions in China [J]. Journal of Hydrology2017555: 347-360.
[38] SUN G D, MU M, REN Q J, et al. Determinants of physical processes and their contributions for uncertainties in simulated evapotranspiration over the Tibetan Plateau [J]. Journal of Geophysical Research: Atmospheres2022, 127. DOI: 10.1029/2021JD035756 .
[39] ZHANG K, MA J, ZHU G, et al. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data[J]. Journal of Geophysical Research Atmospheres2017122: 230-245.
[40] SUN G D, MU M, YOU Q L. Identification of key physical processes and improvements for simulating and predicting net primary production over the Tibetan Plateau [J]. Journal of Geophysical Research: Atmospheres2020, 125. DOI:10.1029/2020JD033128 .
[41] SUN G D. Evaluation of sensitive physical parameter combinations for determining the uncertainty of fire simulations and predictions in China [J]. Atmospheric Science Letters202223(6). DOI: 10.1002/asl.1085 .
[42] CAO M, WANG W, XING W, et al. Multiple sources of uncertainties in satellite retrieval of terrestrial actual evapotranspiration [J]. Journal of Hydrology2021, 601. DOI:10.1016/j.jhydrol.2021.126642 .
[43] WEI G, ZHOU L, LIU H, et al. Improving evapotranspiration model performance by treating energy imbalance and interaction [J]. Water Resources Research202056(9). DOI:10.1029/2020WR027367 .
[44] SUN G D, MU M, ZHANG Q Y, et al. Verification of long-term ensemble evapotranspiration hindcast using a conditional nonlinear optimal parameter perturbation ensemble prediction method on the Tibetan Plateau [J]. Journal of Geophysical Research: Atmospheres2024, 129. DOI:10.1029/2023jd040076 .
[45] LI Xin. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems [J]. Science China: Earth Sciences201343(11): 1 735-1 742.
李新. 陆地表层系统模拟和观测的不确定性及其控制 [J]. 中国科学: 地球科学201343(11): 1 735-1 742.
[46] CHEN Jing, LI Xiaoli. The review of 10 years development of the GRAPES Global/Regional Ensemble Prediction [J]. Advances in Meteorological Science and Technology202010(2): 9-18,29.
陈静, 李晓莉. GRAPES全球/区域集合预报系统10年发展回顾及展望[J]. 气象科技进展202010(2): 9-18,29.
[47] DUAN Q, GUPTA V K, SOROUSHIAN S. A shuffled complex evolution approach for effective and efficient global minimization [J]. Journal of Optimization Theory and Applications199376: 501-521.
[48] RODELL M, HOUSER P R, JAMBOR U, et al. The global land data assimilation system [J]. Bulletin of the American Meteorological Society200485: 381-394.
[49] LI Xin, HUANG Chunlin, CHE Tao, et al. Progress and prospects in the research of the Chinese Land Data Assimilation System [J]. Progress in Natural Sciences200717(2): 163-173.
李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻 [J]. 自然科学进展200717(2): 163-173.
[50] YANG K, WATANABE T, KOIKE T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget [J]. Journal of the Meteorological Society of Japan200785: 229-242.
[51] TIAN X, XIE Z, DAI A, et al. A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature [J]. Journal of Geophysical Research: Atmospheres2009114(D16). DOI:10.1029/2008JD011600 .
[52] SHI C X, XIE Z H, QIAN H, et al. China land soil moisture EnKF data assimilation based on satellite remote sensing data [J]. Science China Earth Sciences201154: 1 430-1 440.
[53] LI X, LIU F, FANG M. Harmonizing models and observations: data assimilation in Earth system science [J]. Science China Earth Sciences202063(8): 1 059-1 068.
[54] TIAN J, LU H, YANG K, et al. Quick estimation of parameters for the land surface data assimilation system and its influence based on the extended Kalman filter and automatic differentiation [J]. Science China Earth Sciences202366: 2 546-2 562.
[55] SCHAAKE J C, HAMILL T M, BUZZA R, et al. The hydrological ensemble prediction experiment [J]. Bulletin of the American Meteorological Society200788: 1 541-1 548.
[56] CLOKE H, PAPPENBERGER F. Ensemble flood forecasting: a review [J]. Journal of Hydrology2009375(3/4): 613-626.
[1] 周广胜, 周梦子, 周莉, 汲玉河. 陆—气相互作用研究展望[J]. 地球科学进展, 2024, 39(7): 661-670.
[2] 段晚锁, 秦晓昊. 非线性最优扰动方法在热带气旋目标观测研究和外场试验中的应用[J]. 地球科学进展, 2022, 37(2): 165-176.
[3] 高丽, 郑嘉雯, 招佐森, 罗月琳, 任鹏飞, 姚国华. 中国气象局数值天气集合预报统一后处理系统的研发与应用[J]. 地球科学进展, 2022, 37(12): 1211-1222.
[4] 刘德强,冯杰,丁瑞强,李建平. 台风目标观测研究进展回顾[J]. 地球科学进展, 2021, 36(6): 564-578.
[5] 金荣花,马杰,任宏昌,尹姗,蔡芗宁,黄威. 我国1030天延伸期预报技术进展与发展对策[J]. 地球科学进展, 2019, 34(8): 814-825.
[6] 高丽,陈静,郑嘉雯,陈权亮. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7): 706-716.
[7] 朱月佳,邢蕊,朱明佳,王东勇,邱学兴. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7): 731-746.
[8] 周彦昭, 李新. 涡动相关能量闭合问题的研究进展[J]. 地球科学进展, 2018, 33(9): 898-913.
[9] 管晓丹, 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10): 995-1004.
[10] 张丽霞, 张文霞, 周天军, 吴波. ENSEMBLES耦合模式对全球陆地季风区夏季降水的年代际预测能力评估[J]. 地球科学进展, 2017, 32(4): 409-419.
[11] 李建平, 赵森, 李艳杰, 汪雷, 孙诚. 扰动位能在东亚夏季风变化中的作用研究现状及展望[J]. 地球科学进展, 2016, 31(2): 115-125.
[12] 杨秋明. 10~30 d延伸期天气预报方法研究进展与展望[J]. 地球科学进展, 2015, 30(9): 970-984.
[13] 兰鑫宇, 郭子祺, 田野, 雷霞, 王婕. 土壤湿度遥感估算同化研究综述[J]. 地球科学进展, 2015, 30(6): 668-679.
[14] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 29(6): 674-682.
[15] 王磊, 李秀萍, 周璟, 刘文彬, 阳坤. 青藏高原水文模拟的现状及未来[J]. 地球科学进展, 2014, 2014(6): 674-682.
阅读次数
全文


摘要