[1] |
MCGUIRE A D, SITCH S, CLEIN J S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models [J]. Global Biogeochemical Cycles, 2001, 15: 183-206.
|
[2] |
FRIEDLINGSTEIN P, MEINSHAUSEN M, ARORA V K, et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks [J]. Journal of Climate, 2014, 27: 511-526.
|
[3] |
LORENZ R, DAVIN E L, SENEVIRATNE S I. Modeling land-climate coupling in Europe: impact of land surface representation on climate variability and extremes: land-climate coupling in Europe [J]. Journal of Geophysical Research: Atmospheres, 2012, 117. DOI:10.1029/2012JD017755 .
|
[4] |
FINDELL K L, GENTINE P, LINTNER B R, et al. Data length requirements for observational estimates of land-atmosphere coupling strength [J]. Journal of Hydrometeorology, 2015, 16: 1 615-1 635.
|
[5] |
BAUR F, KEIL C, CRAIG G C. Soil moisture-precipitation coupling over Central Europe: interactions between surface anomalies at different scales and the dynamical implication [J]. Quarterly Journal of the Royal Meteorological Society, 2018, 144: 2 863-2 875.
|
[6] |
DENISSEN J M C, TEULING A J, REICHSTEIN M, et al. Critical soil moisture derived from satellite observations over Europe [J]. Journal of Geophysical Research: Atmospheres, 2020, 125. DOI:10.1029/2019JD031672 .
|
[7] |
JACH L, SCHWITALLA T, BRANCH O, et al. Sensitivity of land-atmosphere coupling strength to changing atmospheric temperature and moisture over Europe [J]. Earth System Dynamics, 2022, 13: 109-132.
|
[8] |
FU C, AN Z. Study of aridization in northern China—a global change issue facing directly the demand of nation [J]. Earth Science Frontiers, 2002, 9(2): 271-275.
|
[9] |
HUANG J, LI Y, FU C, et al. Dryland climate change: recent progress and challenges [J]. Reviews of Geophysics, 2017, 55: 719-778.
|
[10] |
DAI Y, ZENG Q. A Land Surface Model (IAP94) for climate studies part I: formulation and validation in off-line experiments [J]. Advances in Atmospheric Sciences, 1997, 14(4): 433-460.
|
[11] |
ZHENG Hui, LIU Shuhua, PRABHAKAR C, et al. Description and evaluation of the Peking University Land Model (PKULM) [J]. Chinese Journal of Geophysics, 2016, 59(1): 79-92.
|
|
郑辉, 刘树华, Prabhakar C, 等. 北京大学陆面过程模式PKULM(Peking University Land Model)介绍及检验 [J]. 地球物理学报, 2016, 59(1): 79-92.
|
[12] |
DAI Yongjiu. Issues in research and development of land surface process model [J]. Transactions of Atmospheric Sciences, 2020, 43(1): 33-38.
|
|
戴永久. 陆面过程模式研发中的问题 [J]. 大气科学学报, 2020, 43(1): 33-38.
|
[13] |
ZHOU Guangsheng, ZHOU Mengzi, ZHOU Li, et al. Prospects for land-atmosphere interaction [J]. Advances in Earth Science, 2024, 39(7): 661-670.
|
|
周广胜, 周梦子, 周莉, 等. 陆—气相互作用研究展望 [J]. 地球科学进展, 2024, 39(7): 661-670.
|
[14] |
MANABE S. Climate and the circulation: I. the atmospheric circulation and the hydrology of the Earth’s surface [J]. Monthly Weather Review, 1969, 97: 739-774.
|
[15] |
ZENG X D, SHEN S S P, ZENG X B, et al. Multiple equilibrium states and the abrupt transitions in a dynamical system of soil water interacting with vegetation [J]. Geophysical Research Letters, 2004, 31. DOI:10.1029/2003GL018910 .
|
[16] |
ZENG Q C, ZENG X D. An analytical dynamic model of grass field ecosystem with two variables[J]. Ecological Modelling, 1996, 85: 187-196.
|
[17] |
LUO Y Q, KEENAN T F, SMITH M. Predictability of the terrestrial carbon cycle [J]. Global Change Biology, 2015, 21: 1 737-1 751.
|
[18] |
SELLERS P J, MINTZ Y, SUD Y C, et al. A Simple Biosphere model (SIB) for use within general circulation models [J]. Journal of the Atmospheric Sciences, 1986, 43(6): 505-531.
|
[19] |
JI J. A climate-vegetation interaction model: simulating physical and biological processes at the surface [J]. Journal of Biogeography, 1995, 22(2/3): 445-451.
|
[20] |
DAI Y. The Common Land Model (CoLM) user’s guide [R]. Beijing: School of Geography, Beijing Normal University, 2005.
|
[21] |
OLESON K W, NIU G Y, YANG Z L, et al. Improvements to the Community Land Model and their impact on the hydrological cycle [J]. Journal of Geophysical Research, 2008, 113. DOI:10.1029/2007JG000563 .
|
[22] |
MU M, DUAN W, WANG J. The predictability problems in numerical weather and climate prediction [J]. Advances in Atmospheric Sciences, 2002, 19(2): 191-204.
|
[23] |
LORENZ E N. Section of planetary sciences: the predictability of hydrodynamic flow [J]. Transactions of the New York Academy of Sciences, 1963, 25: 409-432.
|
[24] |
LORENZ E N. A study of the predictability of a 28-variable atmospheric model [J]. Tellus, 1965, 17: 321-333.
|
[25] |
LORENZ E N. The predictability of a flow which possesses many scales of motion [J]. Tellus, 1969, 21: 289-307.
|
[26] |
MU M, DUAN W S. A nonlinear theory and technology for reducing the uncertainty of high-impact ocean-atmosphere event prediction [J]. Advances in Atmospheric Sciences, 2025, 42(10): 1 981-1 995.
|
[27] |
MU M, DUAN W, WANG B. Conditional nonlinear optimal perturbation and its applications [J]. Nonlinear Processes in Geophysics, 2003, 10: 493-501.
|
[28] |
MU M, DUAN W, WANG Q, et al. An extension of conditional nonlinear optimal perturbation approach and its applications [J]. Nonlinear Processes in Geophysics, 2010, 17(2): 211-220.
|
[29] |
PAN Z, ANDRADE D, SEGAL M, et al. Uncertainty in future soil carbon trends at a central U.S. site under an ensemble of GCM scenario climates [J]. Ecological Modelling, 2010,221:876-881.
|
[30] |
SEAGER R, TING M, Li C, et al. Projections of declining surface-water availability for the southwestern United States [J]. Nature Climate Change, 2013, 3: 482-486.
|
[31] |
SUN G D, MU M. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model [J]. Climatic Change, 2013, 120: 755-769.
|
[32] |
PENG F, MU M, SUN G D. Responses of soil moisture to climate change based on projections by the end of 21st century under the high emission scenario in the ‘Huang-Huai-Hai Plain’ region of China [J]. Journal of Hydro-environment Research, 2017, 14: 105-118.
|
[33] |
PENG F, MU M, SUN G. Evaluations of uncertainty and sensitivity in soil moisture modeling on the Tibetan Plateau [J]. Tellus A: Dynamic Meteorology and Oceanography, 2020, 72(1): 1-16.
|
[34] |
XIE Dongdong, SUN Guodong, SHAO Aimei, et al. A study of simulation uncertainties caused by parameter uncertainties in a grassland ecosystem model [J]. Climate and Environmental Research, 2013, 18(3): 375-386.
|
|
谢东东, 孙国栋, 邵爱梅, 等. 草原生态系统模式中参数不确定性导致的模拟结果不确定性研究 [J]. 气候与环境研究, 2013, 18(3): 375-386.
|
[35] |
LAWRENCE D M, FISHER R A, KOVEN C D, et al. The Community Land Model version 5: description of new features, benchmarking, and impact of forcing uncertainty [J]. Journal of Advances in Modeling Earth Systems, 2019, 11: 4 245-4 287.
|
[36] |
MOUAD E, GARAMBOIS P, HUYNH N, et al. Improving parameter regionalization learning for spatialized differentiable hydrological models by assimilation of satellite-based soil moisture data[J]. Journal of Hydrology, 2025. DOI:10.1016/j.jhydrol .
|
[37] |
SUN G D, PENG F, MU M. Uncertainty assessment and sensitivity analysis of soil moisture based on model parameters-results from four regions in China [J]. Journal of Hydrology, 2017, 555: 347-360.
|
[38] |
SUN G D, MU M, REN Q J, et al. Determinants of physical processes and their contributions for uncertainties in simulated evapotranspiration over the Tibetan Plateau [J]. Journal of Geophysical Research: Atmospheres, 2022, 127. DOI: 10.1029/2021JD035756 .
|
[39] |
ZHANG K, MA J, ZHU G, et al. Parameter sensitivity analysis and optimization for a satellite-based evapotranspiration model across multiple sites using Moderate Resolution Imaging Spectroradiometer and flux data[J]. Journal of Geophysical Research Atmospheres, 2017, 122: 230-245.
|
[40] |
SUN G D, MU M, YOU Q L. Identification of key physical processes and improvements for simulating and predicting net primary production over the Tibetan Plateau [J]. Journal of Geophysical Research: Atmospheres, 2020, 125. DOI:10.1029/2020JD033128 .
|
[41] |
SUN G D. Evaluation of sensitive physical parameter combinations for determining the uncertainty of fire simulations and predictions in China [J]. Atmospheric Science Letters, 2022, 23(6). DOI: 10.1002/asl.1085 .
|
[42] |
CAO M, WANG W, XING W, et al. Multiple sources of uncertainties in satellite retrieval of terrestrial actual evapotranspiration [J]. Journal of Hydrology, 2021, 601. DOI:10.1016/j.jhydrol.2021.126642 .
|
[43] |
WEI G, ZHOU L, LIU H, et al. Improving evapotranspiration model performance by treating energy imbalance and interaction [J]. Water Resources Research, 2020, 56(9). DOI:10.1029/2020WR027367 .
|
[44] |
SUN G D, MU M, ZHANG Q Y, et al. Verification of long-term ensemble evapotranspiration hindcast using a conditional nonlinear optimal parameter perturbation ensemble prediction method on the Tibetan Plateau [J]. Journal of Geophysical Research: Atmospheres, 2024, 129. DOI:10.1029/2023jd040076 .
|
[45] |
LI Xin. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems [J]. Science China: Earth Sciences, 2013, 43(11): 1 735-1 742.
|
|
李新. 陆地表层系统模拟和观测的不确定性及其控制 [J]. 中国科学: 地球科学, 2013, 43(11): 1 735-1 742.
|
[46] |
CHEN Jing, LI Xiaoli. The review of 10 years development of the GRAPES Global/Regional Ensemble Prediction [J]. Advances in Meteorological Science and Technology, 2020, 10(2): 9-18,29.
|
|
陈静, 李晓莉. GRAPES全球/区域集合预报系统10年发展回顾及展望[J]. 气象科技进展, 2020, 10(2): 9-18,29.
|
[47] |
DUAN Q, GUPTA V K, SOROUSHIAN S. A shuffled complex evolution approach for effective and efficient global minimization [J]. Journal of Optimization Theory and Applications, 1993, 76: 501-521.
|
[48] |
RODELL M, HOUSER P R, JAMBOR U, et al. The global land data assimilation system [J]. Bulletin of the American Meteorological Society, 2004, 85: 381-394.
|
[49] |
LI Xin, HUANG Chunlin, CHE Tao, et al. Progress and prospects in the research of the Chinese Land Data Assimilation System [J]. Progress in Natural Sciences, 2007, 17(2): 163-173.
|
|
李新, 黄春林, 车涛, 等. 中国陆面数据同化系统研究的进展与前瞻 [J]. 自然科学进展, 2007, 17(2): 163-173.
|
[50] |
YANG K, WATANABE T, KOIKE T, et al. Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget [J]. Journal of the Meteorological Society of Japan, 2007, 85: 229-242.
|
[51] |
TIAN X, XIE Z, DAI A, et al. A dual-pass variational data assimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature [J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D16). DOI:10.1029/2008JD011600 .
|
[52] |
SHI C X, XIE Z H, QIAN H, et al. China land soil moisture EnKF data assimilation based on satellite remote sensing data [J]. Science China Earth Sciences, 2011, 54: 1 430-1 440.
|
[53] |
LI X, LIU F, FANG M. Harmonizing models and observations: data assimilation in Earth system science [J]. Science China Earth Sciences, 2020, 63(8): 1 059-1 068.
|
[54] |
TIAN J, LU H, YANG K, et al. Quick estimation of parameters for the land surface data assimilation system and its influence based on the extended Kalman filter and automatic differentiation [J]. Science China Earth Sciences, 2023, 66: 2 546-2 562.
|
[55] |
SCHAAKE J C, HAMILL T M, BUZZA R, et al. The hydrological ensemble prediction experiment [J]. Bulletin of the American Meteorological Society, 2007, 88: 1 541-1 548.
|
[56] |
CLOKE H, PAPPENBERGER F. Ensemble flood forecasting: a review [J]. Journal of Hydrology, 2009, 375(3/4): 613-626.
|