地球科学进展 doi: 10.11867/j.issn.1001-8166.2024.023.

   

珠穆朗玛峰北坡桤木属大气花粉 传输路径与来源
程久菊 1,2,吕新苗 1*,朱立平 1,2,马庆峰 1,HUMAGAIN SIMA 1,2,PAUDAYAL N KHUM 3
  
  1. (1. 中国科学院青藏高原研究所 青藏高原地球系统与资源环境全国重点实验室,北京 100101;2. 中国科学 院大学,北京 100049;3.Central Department of Geology, Tribhuvan University, Kathmandu, Nepal)
  • 通讯作者: 吕新苗,副研究员,主要从事大气花粉及其应用研究. E-mail:lvxm@itpcas.ac.cn
  • 基金资助:
    第二次青藏高原综合科学考察研究项目(编号:2019QZKK0202);国家自然科学基金(编号:41831177,41671214)资助.

Transport Pathway and Source Area of Airborne Alnus Pollen on the Northern Slope of the Mt. Qomolangma Region

CHENG Jiuju 1, 2, LÜ Xinmiao 1*, ZHU Liping 1, 2, MA Qingfeng 1,HUMAGAIN SIMA 1, 2, PAUDAYAL KHUM N 3   

  1. (1. State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Central Department of Geology, Tribhuvan University, Kathmandu, Nepal)
  • Contact: LÜ Xinmiao, Associate professor, research area includes airborne pollen and its application.E-mail: lvxm@itpcas.ac.cn
  • About author:CHENG Jiuju, Master student, research area includes airborne pollen in the Tibetan Plateau. E-mail: chengjiuju@itpcas.ac.cn
  • Supported by:
    Project supported by the Second Tibetan Plateau Scientific Expedition and Research Program (Grant No. 2019QZKK0202); The National Natural Science Foundation of China (Grant No. 41831177, Grant No. 41671214).
认识区域大气花粉组成及其形成条件有利于明确不同类型花粉组合的气候与环境意义。 利用布卡大气花粉采样器在珠穆朗玛峰北坡开展了连续2 年(2012—2013 年)的大气花粉观测研 究。基于后向轨迹和潜在来源区域模型,探讨了占秋季主要组分的桤木属花粉传输路径与潜在来 源区域,分析了桤木属花粉与其植物分布和大气环流的关系及气候指示意义。结果显示:①桤木 属花粉季气团传输路径主要来自于采样点西南方向;②桤木属花粉潜在来源区域与其气团传输路 径基本一致,主要是喜马拉雅山脉中段,包括尼泊尔中部和东部以及西藏南部等地区;③桤木属花 粉数量、传输路径和来源区域的年际变化与大气环流有关,受高空西风影响的西南气团对桤木属 花粉影响更大。研究结果可以为认识珠穆朗玛峰北坡外来花粉的气候意义提供科学依据。
Abstract:Understanding the composition and formation conditions of regional airborne pollen is helpful to clarify the environmental significance of different pollen assemblages. The Burkard pollen trap was used to observe airborne pollen on the northern slope of Mount Qomolangma for two consecutive years (2012 and 2013). Based on backward air mass trajectory model and source receptor models, the pathway and potential source of Alnus pollen which is the main component in autumn were discussed. The relationship between Alnus pollen and plant distribution and atmospheric circulation were analyzed as well as its environmental significance. Three main results were obtained. First, the air mass transport pathway during Alnus pollen season mainly came from the southwest direction of the sampling site. Second, the potential source area of Alnus pollen was mainly located in the middle Himalaya region including central and eastern Nepal, southern Tibet, etc, which is basically corresponded with the main air mass transport pathway. Third, the interannual changes of Alnus pollen quantity, transport pathway and potential source area may be related to atmospheric circulation. The southwest air mass influenced by upper westerly had a stronger influence on Alnus pollen. The results provide foundational insights into the climatic significance of exotic pollen on the northern slope of the Mt. Qomolangma region.

中图分类号: 

[1] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[2] 胥佩, 李茂善, 常娜, 龚铭, 伏薇. 藏东南林芝地区冬季大气边界层参数化方案适应性研究[J]. 地球科学进展, 2023, 38(9): 954-966.
[3] 刘操, 饶维龙, 孙文科. 利用大地测量手段推算印度板块与欧亚板块初始碰撞时间[J]. 地球科学进展, 2023, 38(7): 745-756.
[4] 姚楠, 马耀明. 亚洲三大高原感热变化及其对中国天气气候协同影响研究进展[J]. 地球科学进展, 2023, 38(6): 580-593.
[5] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[6] 薄立明, 魏伟, 赵浪, 尹力, 夏俊楠. 青藏高原水生态空间格局时空演化特征及驱动机制[J]. 地球科学进展, 2023, 38(4): 401-413.
[7] 王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究[J]. 地球科学进展, 2023, 38(4): 414-428.
[8] 吴景全, 李全莲, 武小波, 王宁练, 康世昌, 王世金. 青藏高原不同载体中微生物类脂物 GDGTs的研究进展及展望[J]. 地球科学进展, 2023, 38(11): 1158-1172.
[9] 王劲松, 姚玉璧, 王莺, 王素萍, 刘晓云, 周悦, 杜昊霖, 张宇, 任余龙. 青藏高原地区气象干旱研究进展与展望[J]. 地球科学进展, 2022, 37(5): 441-461.
[10] 柴磊, 王小萍. 青藏高原持久性有机污染物研究现状与展望[J]. 地球科学进展, 2022, 37(2): 187-201.
[11] 李虎, 潘小多. 青藏高原水汽输送过程及水汽源地研究方法综述[J]. 地球科学进展, 2022, 37(10): 1025-1036.
[12] 张璐, 李倩惠, 孟露, 张强, 张宏昇, 何清, 赵天良. 深厚大气边界层演变与湍流运动、沙尘滞空的研究[J]. 地球科学进展, 2022, 37(10): 991-1004.
[13] 昝金波, 宁文晓, 杨胜利, 方小敏, 康健, 罗元龙. 表土磁学特征揭示的青藏高原及其周边地区的气候边界[J]. 地球科学进展, 2022, 37(1): 14-25.
[14] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[15] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
阅读次数
全文


摘要