地球科学进展 ›› 1998, Vol. 13 ›› Issue (4): 376 -382. doi: 10.11867/j.issn.1001-8166.1998.04.0376

干旱气候变化与可持续发展 上一篇    下一篇

冰雪层中记录气候与环境变化的痕量含碳杂质
谢树成,姚檀栋   
  1. 中国科学院兰州冰川冻土研究所冰心与寒区环境开放实验室 兰州 730000
  • 收稿日期:1997-07-10 修回日期:1998-01-01 出版日期:1998-08-01
  • 通讯作者: 谢树成
  • 基金资助:

    "九五"国家攀登计划"青藏高原冰心记录与过去2000年气候变化研究"(项目编号:KZ951-A1-204-02-03)与国家自然科学基金项目"青藏高原冰心中甲烷气体与全球变化研究"(项目编号: 49671021) 资助。

TRACE CARBONACEOUS IMPURITIES FOR CLIMATIC AND ENVIRONMENTAL IMPLICATIONS IN ICE AND SNOW LAYERS

Xie Shucheng,Yao Tandong   

  1. Laboratory of Ice Core and Cold Region Environment,Lanzhou Institute of Glaciology and Geocryology, CAS, Lanzhou 730000
  • Received:1997-07-10 Revised:1998-01-01 Online:1998-08-01 Published:1998-08-01

冰雪层是记录全球变化的主要信息载体之一,其中由生源要素碳形成的杂质种类最多。总结了这些含碳杂质记录古气候和古环境变化方面的研究进展,涉及温室气体、低分子可溶性有机酸、人为有机污染物以及孢粉和高碳数有机质。讨论了今后这些研究的重点所在。

Ice and snow layers are the main information recorders for global changes. The widespread carbonaceous im purities exist in three states of gas, liquid and solid in the layers. The paper summarizes the development of the studies on these carbonaceous impurities for climatic and environmental im plications. The following impurities are discussed as greenhouse gases, high soluble organic acids with low molecular weight, organic pollutants from activities of mankind, spores and pollens, and organic matter with high carbon numbers. Some important study trends on the impurities are presented.

中图分类号: 

[1] Barnola J M, Raynaud D, Korotkevich T S, et al. Vostok icecore provide 160 000 year record of atmospheric CO2. Nature, 1987, 329:408-414.
[2] Labegrie L D. Changes in the oceanic 13C/12C ratio during the last 140 000 years: high-latitude surface water records.Palaeogeo Palaeoclim Palaeoeco, 1985, 50: 217-240.
[3] Raynaud D, Jouzel J, Barnola J M, et al. The ice record of greenhouse gases. Science, 1993, 259: 926-934.
[4] 姚檀栋. 二氧化碳对气候的影响及气候趋势问题. 地理科学, 1987, 7(2):163-170.
[5] Nisbet F G. The end of ice age. Can J Earth Sci, 1990, 27: 148-157.
[6] Judge A S, Majorowicz J A. Geothermal conditions for gas hydrate stability in the Beaufort-Mackenzie aera: the global change aspect. Palaeogeo Palaeoclim Palaeoeco, 1992, 98: 251-263.
[7] Kvenvolden K A. Gas hydrates Geological perspective and global change. Reviews of Geophysics, 1993, 31(2): 173-187.
[8] Keene W C, Galloway J N. Considerations regarding sources for formic and acetic acids in the troposphere. J Geophys Res,1986, 91: 14 466-14 474.
[9] Maupetit F. Carboxylic acids in high-elevation Alpine glacier snow. J of Geoph Res, 1994, 91(186): 144-166.
[10] Neftel A, Moore E, Oeschger H, et al. Evidence from polar ice cores for the increase in at mospheric CO2 in the past two centuries. Nature, 1985, 315: 45-47.
[11] 秦大河. 南极冰盖表层雪内的物理过程和现代气候及环境记录. 北京:科学出版社, 1995,125-140.
[12] Legrand M, Saigne F C. Methanesulfonic acid in South Polar snow layers: A record of strong El Nino. Geophysical Research Letters, 1991, 18(2): 187-190.
[13] Ivey J P, Davies D M, Morgan V, et al. Methanesulphonate in Antarctic ice. Tellus, 1986, 38B:375-379.
[14] Legrand M, Saigne F C, Saltzman E S, et al. Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle. Nature, 1991, 350: 144-146.
[15] Anderson C P, Ewing T. Exploring the still unexplored. Nature, 1991, 350:287-288.
[16] Penner J E, Dickinson R E, O'Neil C A. Effects of aerosol from biomass burning on the global radiation budget. Science,1992, 256:1 432-1 433.
[17] Chylek P, Johnson B, Wu H. Black carbon concentration in a Greenland Dye-3 ice core. Geophys Res Lett, 1992, 19: 1 951-1 953.
[18] Lunde G. Organic micropollutants in precipitation in Norway. Atmo Environ, 1977, 11:1 007-1 014.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[8] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[9] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[10] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[11] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[12] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[13] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[14] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[15] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
阅读次数
全文


摘要