Please wait a minute...
img img
高级检索
地球科学进展  1998, Vol. 13 Issue (4): 382-386    DOI: 10.11867/j.issn.1001-8166.1998.04.0382
干旱气候变化与可持续发展     
树轮氢、氧同位素研究进展
陈拓,秦大河,康兴成,任贾文,侯书贵
中国科学院兰州冰川冻土研究所冰心与寒区环境开放实验室 兰州 730000
PROGRESS IN TREE-RING HYDROGEN AND OXYGEN ISOTOPE RESEARCH
Chen Tuo,Qin Dahe,Kang Xingcheng,Ren Jiawen,Hou Shugui
Laboratory of Ice Core and Cold Region Environment, Lanzhou Institute of Glaciology amd Geocryology, CAS, Lanzhou  730000
 全文: PDF(911 KB)  
摘要:

总结了树轮氢氧同位素的分馏原理及其时间序列和空间变化与气候变迁之间的关系。研究表明,树轮氢氧同位素组成的变异反映了源水同位素组成、温度、相对湿度和降水量的变化。同时,对今后树轮同位素的发展方向作了展望。

关键词: 树轮氢氧同位素分馏气候变迁    
Abstract:

The fractionation model of hydrogen and oxygen isotope in plants and the recent progress in tree-ring hydrogen and oxygen isotope research are overviewed. The composition of hydrogen and oxygen isotope in tree ring are correlated with the isotopic composition of source water, temperature, relative humidity or the amount of meteoric water, so it could provide favorable conditions to reconstruction paleoclimate with high resolution, accurate dating and good continuity, which may not be substituted by other mediums. In addition, the future trends in tree-ring hydrogen and oxygen isotopic research are presented, including inter-regional cooperation, the comparison with other mediums and interdiscipline and so on.

Key words: Tree ring    Hydrogen and oxygen isotope    Fractionation model    Climate change.
收稿日期: 1997-11-19 出版日期: 1998-08-01
:  P467  
基金资助:

中国科学院"九五"重大项目"亚洲季风气候变迁与全球变化"(KZ951-402-03)资助。

通讯作者: 陈拓   
作者简介: 陈拓, 男, 1971 年 6 月出生, 博士生, 自然地理学专业。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

陈拓,秦大河,康兴成,任贾文,侯书贵. 树轮氢、氧同位素研究进展[J]. 地球科学进展, 1998, 13(4): 382-386.

Chen Tuo,Qin Dahe,Kang Xingcheng,Ren Jiawen,Hou Shugui. PROGRESS IN TREE-RING HYDROGEN AND OXYGEN ISOTOPE RESEARCH. Advances in Earth Science, 1998, 13(4): 382-386.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.1998.04.0382        http://www.adearth.ac.cn/CN/Y1998/V13/I4/382

[1] Craig H. Isotopic variations in meteoric waters. Science, 1961, 133(3 465):1 702-1 703.
[2] Dansgaard W. Stable isotopes in precipitation. Tellus, 1964, 16(4):436-468.
[3] Sternberg L D S L. Oxygen and hydrogen isotopes ratios in plant cellulose: mechanisms and applications. In:Rundel P W,Ehleringer J R,Nagy K A,eds. Stable Isotopes in Ecological Research. New York: Springer-Verlag, 1988.124-142.
[4] DeNiro M J, Epstein S. Relationship between oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide and water.Science,1979,204(4 388): 51-53.
[5] Ehleringer J R, Dawson T E. Water uptake by plants: perspectives from stable isotope composition. Plant Cell Environ,1992, 15:1 073-1 082.
[6] White J W C. Stable hydrogen isotope ratios in plants: a review of current theory and some potential application. In: Rundel P W, Ehleringer J R , Nagy K A, eds. Stable Isotopes in Ecological Research. New Y ork: Springer-Verlag, 1988.142-162.
[7] Sternberg L D S L, DeNiro M J. Biogeochemical implication of the isotopic equlibrium fractionation factor between oxygen atoms of acetone and water. Geochim Cosmochim Acta, 1983, 47(12):2 271-2 274.
[8] Edwards T W D, Fritz P. Assessingmeteoric water composition and relative humidity from 18O and 2H in wood cellulose:paleoclimatic impliations for Southern Ontario, Canada. Appl Geochem, 1986, 1: 715-723.
[9] Gat J R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci, 1996, 24(1) : 225-262.
[10] Feng X, Epstein S. Climatic implication of an 8000-year hydrogen isotope time series from Bristlecone pine trees. Science, 1994, 265(5 175): 1 079-1 081.
[11] Edwards T W D, Aravena R O, Fritz P, et al. Interpreting paleoclimate from 18O and 2H in wood cellulose: comparison with evidence from fossil insects and relict permafrost in Southwester Ontario. Can J Earth Sci, 1985, 22(11) : 1 720-1 726.
[12] Buhay W M, Edwards T W D. Climate in Southwestern Ontario, Canada, between AD 1610 and 1885 inferred from oxygen and hydrogen isotopic measurements of wood cellulose from tree in different hydrologic settings. Quat Res, 1995, 44(3):438-446.
[13] Burke R L, Stuiver M. Oxygen isotope ratios in tree reflect mean annual temperature and relative humidity. Science,1981, 211(4 489):1 417-1 419.
[14] Gray J, Thompson P. Natural variations in the 18O content of cellulose. In: Jacoby G C, eds. Carbon D ioxide Effects: Res and Assessment Program, Proc Int Meeting on Stable Isotopes in Tree-ring Res. New York: Lamont-Doherty Geol Observ Columbia Univ, 1980. 84-92.
[15] Yapp C J, Epstein S. A re-examination of cellulose carbon bound hydrogen δD measurement and some factors affecting plant-water D/H relationships. Geochim Cosmochim Acta, 1982, 46(6): 955-965.
[16] Feng X, Epstein S. Climatic temperature records in δD data from tree rings. Geochim Cosmochim Acta, 1995, 59(14):3 029-3 037.
[17] Saurer M, Borella S, Leuenberger M. δ18O of tree rings of beech (Fagus silvatica) as a record of δ18O of the growing season precipitation. Tellus, 1997, 49B(1):80-92.
[18] Houghton J T, Jenkins G J, Ephraums T J, eds. Climate change: The IPCC Scientific Assessment. Cambridge University Press, 1990.
[19] Epstein S, Yapp C J. Climatic implication of the D/ H ratio of hydrogen in C-H groups in tree cellulose. Earth Planet Sci Lett, 1976, 30(2): 252-261.
[20] Ramesh R, Bhattacharya S K, Gopalan K. Climatic correlations in the stable isotope records of silver fir (A bies pindrow) tree from Kashmir, India. Earth Planet Sci Lett, 1986, 79(1):66-74.
[21] Epstein S, Thompson P, Yapp C J. Oxygen and hydrogen isotopic ratios in plant cellulose. Science, 1977, 198(4 323):1 209-1 215.
[23] Dongmamn G, Nurnberg H W, Forst el H, et al. On the enrichment of H218O in the leaves of transpiring plants. Rad Environ Biophys, 1974, 11(1): 41-52.
[24] Gray J, Song S J. Climatic im plications of the natural variations of D/H ratios in tree ring cellulose. Earth Planet Sci Lett,1984, 70(1) : 129-138.
[25] White J W C, Lawrence J R, Broecker W S. Modeling and interpreting D/H ratios in tree rings: A test case of white pine in the norht western United States. Geochim Cosmochim Acta, 1994, 58(2): 851-862.
[26] Lawrence J R, White J W C. Growing season precipitation from the D/H ratios of eastern white pine. Nature, 1984, 311(5 986):558-560.

[1] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[2] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[3] 林杰, 庄广胜, 王成善, 戴紧根. 叶蜡单体氢同位素古高程计研究进展[J]. 地球科学进展, 2016, 31(9): 894-906.
[4] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
[5] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
[6] 陈中笑,赵琦. 全球碳循环研究中的δ13C方法及其进展[J]. 地球科学进展, 2011, 26(11): 1225-1233.
[7] 陈志刚,黄奕普,刘广山,蔡毅华,卢阳阳,刘润. 磷酸盐氧同位素组成的测定方法及分馏机理研究进展[J]. 地球科学进展, 2010, 25(10): 1040-1050.
[8] 汪齐连,刘丛强,赵志琦,B.Chetelat,丁虎. 长江流域河水和悬浮物的锂同位素地球化学研究[J]. 地球科学进展, 2008, 23(9): 952-958.
[9] 杨黎芳,李贵桐,李保国. 土壤发生性碳酸盐碳稳定性同位素模型及其应用[J]. 地球科学进展, 2006, 21(9): 973-981.
[10] 杨耀民,石学法,刘季花,王立群. 海洋环境Fe同位素地球化学研究进展[J]. 地球科学进展, 2006, 21(11): 1171-1179.
[11] 刘玉琳. 一种新的 K-Ar定年方法:峰值比较法[J]. 地球科学进展, 2004, 19(2): 312-315.
[12] 杨保. 青藏高原地区过去2000年来的气候变化[J]. 地球科学进展, 2003, 18(2): 285-291.
[13] 杨保,施雅风,李恒鹏. 过去 2ka气候变化研究进展[J]. 地球科学进展, 2002, 17(1): 110-117.
[14] 陈红汉. “第三届国际地质流体大会(Geofluids III)”简介[J]. 地球科学进展, 2001, 16(2): 288-289.
[15] 李相博,陈践发. 植物碳同位素分馏作用与环境变化研究进展[J]. 地球科学进展, 1998, 13(3): 285-290.