地球科学进展 ›› 1998, Vol. 13 ›› Issue (4): 369 -375. doi: 10.11867/j.issn.1001-8166.1998.04.0369

干旱气候变化与可持续发展 上一篇    下一篇

河流碳通量与陆地侵蚀研究
高全洲,沈承德   
  1. 中国科学院广州地球化学研究所 广州 510640
  • 收稿日期:1997-07-02 修回日期:1997-11-03 出版日期:1998-08-01
  • 通讯作者: 高全洲
  • 基金资助:

    本研究获得中国科学院重点项目“珠江流域陆地侵蚀与碳通量变化研究”的部分资助。

RIVERINE CARBON FLUX AND CONTINENTAL EROSION

Gao Quanzhou,Shen Chengde   

  1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640
  • Received:1997-07-02 Revised:1997-11-03 Online:1998-08-01 Published:1998-08-01

河流碳通量系陆地侵蚀产物,它构成全球碳循环的一个重要环节。河流碳通量在数量上远小于全球碳循环的其他环节,但由于与陆地生态系统联系密切,故对它的研究尤为重要。全球每年河流碳通量约为1GtC(109t碳),其中约60%为无机碳、40%为有机碳。溶解态有机碳和颗粒状有机碳主要来源于土壤侵蚀,另有一部分有机碳来源于河湖中的浮游植物;溶解态无机碳主要源于大气中CO2和碳酸盐;颗粒无机碳主要指未溶解的碳酸盐。亚洲季风区河流对全球河流碳通量具有较大贡献,而对其研究程度较低。河流碳通量研究既可为流域治理提供基础资料,也是进一步了解人为CO2“未知汇”的途径之一。

Riverine carbon, which stems from continental erosions, represents an important link in the global carbon cycle. It is small in quantity compare with other links of the global carbon cycle, however, it deserves especial investigation for its close connection with land ecosystem. The total carbon transported to ocean by rivers is about 1 Gt every year, 60% of which is inorganic carbon, and 40% of which is organic one. Dissolved and particulate organic carbon (DOC and POC, respectively) come from the chemical and mechanical erosion of the soil. On the other hand, the phytoplankton is another source of a small part of organic carbon. Dissolved inorganic carbon (DIC) is the result of the dissolution of at mospheric carbon dioxide and carbonate. Undissolved carbonate composes of particulate inorganic carbon (PIC). The rivers in monsoonal Asia make the greatest contribution to the global riverine carbon flux for the most intense erosion in those areas. How ever, the investigation of the riverine carbon flux in monsoonal Asia is not being penetrated enough. The research of riverine carbon flux would provided scientific basis for the soil and water conservation, and it is also a new way to probe the ant hropogenic carbon dioxide missing sink.

中图分类号: 

[1] Desjardins R L, Rochette P, Pattey E, et al. Quantifying the greenhouse gas fluxes in the terrestrial biosphere using micrometeorological techniques. In: Proceeding of the Tsukuba Global Carbon Cycle Workshop. Center for Global Environmental Research. Tsukuba, 1995. 139-145.
[2] Rotty R. Distribution of and changes in industrial carbon dioxide production. J Geophys Res, 1983, 88(C2): 1 301-1 308.
[3] Bolin B, Degens E T, Duvigneaud P, et al. The global biogeochemical carbon cycle. In:Bolin B, Degens E T, K empe S,et al, eds. The Global Carbon Cycle. SCOPE Rep 13. New York: John Wiley, 1979. 1-56.
[4] Degens E T, Kempe S, Spitey A. CO2: A biogeochemical portrait. In: Hutzinger, C O, ed. The Handbook of Environmental Chemical, Vol 1. Berlin: Spinger-Verlag, 1984. 127-251.
[5] Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeo-chemistry Cycle, 1996, 10(1): 23-41.
[6] Siegenthaler U, Sarmiento J L. At mospheric carbon dioxide and the ocean. Nature, 1993, 365: 119-125.
[7] Sarmiento J L, Sundquist E T. Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature, 1992, 356:589-593.
[8] Detwiler R P, Hall C A S. Tropical forests and the global carbon cycle. Science, 1988, 239: 42-47.
[9] Kempe S. Sinks of the anthropogenically enhanced carbon cycle in surface fresh waters. J Geophys Res, 1984, 89(D3): 4 657-4 676.
[10] Degens E T, ed. Transport of Carbon and Minerals in Major World Rivers, Vol 1. Mitt Geol-Palaont Inst Univ Hamburg, SCOPE/ UNEP Sonderbd, 52. Universitat Hamburg, 1982. 766.
[11] Degens E T, Kempe S, Soliman S, eds. Transport of Carbon and Minerals in Major World Rivers Vol 2. Mitt Geol-Palaont Inst Univ Hamburg, SCOPE/UNEP Sonderbd, 55. Universitat Hamburg, 1983. 645.
[12] Degens E T, Kempe S, Herrera R, eds. Transport of Carbon and Minerals in Major World Rivers Vol 3. Mitt Geol-Palaont Inst Univ Hamburg, SCOPE/UNEP Sonderbd, 58. Universitat Hamburg, 1985.
[13] Degens E T, Kempe S, Gan W, eds. Transport of Carbon and Minerals in Major World Rivers Vol 4. Mitt Geol-Palaont Inst Univ Hamburg, SCOPE/UNEP Sonderbd, 64. Universitat Hamburg, 1987.
[14] Degens E T, Kempe, S, Naidu A S, eds. Transport of Carbon and Minerals in Major World Rivers Vol 5. Mitt Geol-Palaont Inst Univ Hamburg, SCOPE/UNEP Sonderbd, 66. Un iversitat Hamburg, 1988. 422.
[15] Kempe S, Eismad D, Degens E T, eds. Transport of Carbon and Minerals in Major World Rivers Vol 6. Mitt Geol-Palaont Inst Univ Hamburg, SCOPE/UNEP Sonderbd, 74. Universitat Hamburg, 1993. 319.
[16] Suchet P A, Probst J L. A global model for present-day at mospheric/soil CO2 consumption by chemical erosion of continental rocks(GEM-CO2). Tellus, 1995, 47B(1/2): 273-280.
[17] Probst J L, Mortatti J, Tardy Y. Carbon river fluxes and weathering CO2 consumption in Congo and Amazon river basins.Applied Geochemistry,1994,3:1-13.
[18] Probst J L,Suchet P A. Fluvial suspended sediment transport and mechanical erosion in the Maghreb(North Africa). Hydrol Sci J, 1992, 37: 621- 637.
[19] Cauwet G, Mackenzie F T. Carbon inputs and distribution in estuaries of turbid rivers: the Yang Tze and Yellow Rivers (China). Marine Chemistry, 1993, 43: 235-246.
[20] Schlesinger W H, Melack J M. Transport of organic carbon in the world's rivers. Tellus, 1981, 33: 172-187.
[21] Mantoura R F, Woodward E M. Conservative behavior of riverine dissolved organic carbon in the Severn Estuary: Chemical and geochemical implications. Geochim Cosmochim Acta, 1983, 47: 1 293-1 309.
[22] Gibbs R J. Report on the Workshop Held on River Interaction with the Ocean (RIO) held at Essington, Pennsylvania, USA , June 4-5, 1979. Sponsored by NSF, 1979. 99.
[23] Ittekkot V. Global trends in the nature of organic matter in river suspensions. Nature, 1988, 332: 436-438.
[24] Sharp J H. Size classes of organic carbon in seawater. Limnol Oceanorg, 1973, 18(3): 441- 447.
[25] Cauwet G. 无生命的颗粒物质. 见: Duursma E K, Dawson R 主编. 海洋有机化学. 纪明侯, 钱佐国等译. 北京: 海洋出版社, 1992. 89-114.
[26] Fisher S G. Organic matter processing by a stream-segment ecosystem: Fort River, Massachusetts, USA. Int Revue Ges Hydrobiol, 1977, 62: 701-727.
[27] Meybeck M. Carbon, nitrogen and phosphorus transport by world rivers. Am J Sci, 1982, 282: 401-450.
[28] Deptris P J, Kempe S. The impact of the EL Nino 1982 event on the Parana River, it's discharge and carbon transport. Palaeogeogr Palaeoclimatol Palaeocol,1992, 89:239-244.
[29] Wetzel R G, Rich P H. Carbon in freshwater systems. Brookhaben Symposium in Biology, 1973, 24: 241-263.
[30] Malcom R L, Durum W H. Organic carbon and nitrogen concentrations and annual organic carbon load of six selected rivers of the US. US Geological Survey Water-Supply Paper, 1976, 1817F: 1-21.
[31] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans. J Geol, 1983, 99: 1-21.
[32] Gan W B, Chen H M, Han Y F. Carbon transport by the Yangtse(at Nanjing) and Huanghe(at Jinan) rivers, China. In: Degens E T, Kempe S, Soliman S, eds. Transport of Carbon and Minerals in Major World Rivers, Vol 2. Mitt Geol-Palaont Inst Univ Hamburg, SCOPE/UNEP Sonderbd, 55. Universitat Hamburg, 1983. 459-470.
[33] Zhang S, Gan W B, Ittekkot V. Organic matter in large turbid rivers: Huanghe and its estuary. Marine Chemistry, 1992,38:53-68.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[3] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[4] 唐文魁,高全洲. 河口二氧化碳水—气交换研究进展[J]. 地球科学进展, 2013, 28(9): 1007-1014.
[5] 薛亮,于卫东,宁春林,王辉武. 海表层二氧化碳分压之时间序列研究进展[J]. 地球科学进展, 2013, 28(8): 859-865.
[6] 曲宝晓, 宋金明, 袁华茂, 李学刚, 李 宁, 段丽琴,马清霞, 陈 鑫. 东海海—气界面二氧化碳通量的季节变化与控制因素研究进展[J]. 地球科学进展, 2013, 28(7): 783-793.
[7] 李琦,刘桂臻,张建,贾莉,刘海丽. 二氧化碳地质封存环境监测现状及建议[J]. 地球科学进展, 2013, 28(6): 718-727.
[8] 段利江,唐书恒,夏朝辉,张铭. 煤吸附气体诱导的基质膨胀研究进展[J]. 地球科学进展, 2012, 27(3): 262-267.
[9] 魏小芳,罗一菁,刘可禹,帅燕华. 油气藏埋存二氧化碳生物转化甲烷的机理和应用研究进展[J]. 地球科学进展, 2011, 26(5): 499-506.
[10] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
[11] 尹飞虎,李晓兰,董云社,谢宗铭,高志建,何帅,刘长勇. 干旱半干旱区CO 2浓度升高对生态系统的影响及碳氮耦合研究进展[J]. 地球科学进展, 2011, 26(2): 235-244.
[12] 胡永云,丁 峰,夏 炎. 全球变化条件下的平流层大气长期变化趋势[J]. 地球科学进展, 2009, 24(3): 242-251.
[13] 高众勇,陈立奇,CAI Wei-jun,WANG Yong-chen. 全球变化中的北极碳汇:现状与未来[J]. 地球科学进展, 2007, 22(8): 857-865.
[14] 许志刚,陈代钊,曾荣树. CO 2的地质埋存与资源化利用进展[J]. 地球科学进展, 2007, 22(7): 698-707.
[15] 刘羿,彭子成,刘卫国,肖应凯,孙若愚,贺剑峰,刘桂建. 古海水pH值代用指标——海洋碳酸盐硼同位素研究进展[J]. 地球科学进展, 2007, 22(12): 1240-1250.
阅读次数
全文


摘要