地球科学进展 ›› 2016, Vol. 31 ›› Issue (11): 1182 -1196. doi: 10.11867/j.issn.1001-8166.2016.11.1182

上一篇    下一篇

全球典型地区MIS 5e阶段气候特征研究进展
裴巧敏 1( ), 马玉贞 1,,A; *( ), 胡彩莉 1, 李丹丹 2, 郭超 1, 刘杰瑞 1   
  1. 1.北京师范大学地表过程与资源生态国家重点实验室/环境演变与自然灾害教育部重点实验室,北京 100875
    2.北京师范大学 资源学院, 北京 100875
  • 收稿日期:2016-07-22 修回日期:2016-10-23 出版日期:2016-11-20
  • 通讯作者: 马玉贞 E-mail:pqm@mail.bnu.edu.cn;mayzh@bnu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目“毛乌素沙漠古河流湖泊的消退和风沙地貌演化过程研究”(编号:41330748);国家自然科学基金面上项目“毛乌素沙漠晚第四纪的高分辨率孢粉记录与环境变化研究”(编号:41571186)资助

Climatic Character of Marine Isotope Stage (MIS) 5e in the Representative Regions of the World: A Review

Qiaomin Pei 1( ), Yuzhen Ma 1, *( ), Caili Hu 1, Dandan Li 2, Chao Guo 1, Jierui Liu 1   

  1. 1.State Key Laboratory of Earth Surface Process and Resource Ecology/Key Laboratory of Environmental Change and Natural Disaster,Ministry of Education,Beijing Normal University,Beijing 100875,China
    2.College of Resource Science and Technology, Beijing Normal University, Beijing 100875, China
  • Received:2016-07-22 Revised:2016-10-23 Online:2016-11-20 Published:2016-11-20
  • Contact: Yuzhen Ma E-mail:pqm@mail.bnu.edu.cn;mayzh@bnu.edu.cn
  • About author:

    First author: Pei Qiaomin(1991-), female, Tangshan City, Hebei Province, Master student. Research areas include environmental Change.E-mail:pqm@mail.bnu.edu.cn

  • Supported by:
    Project supported by the National Natural Science Foundation of China “Study on the evolvement of the Ancient River Lakes and the evolution process of aeolian sand landforms in Mu Us Desert” (No.41330748);the National Natural Science Foundation Surface Project of China “High resolution pollen records and environmental changes in the Late Quaternary of the Mu Us Desert”(No.41571186)

深海氧同位素(MIS)5e阶段的环境要素可与现代暖期对比,研究其气候特征和持续时间,有助于更好地理解现代暖期过程和未来气候发展趋势,是第四纪研究的一个重要问题。很多学者开展了相关研究,但对MIS 5e时期气候特征存在不同见解。通过对全球典型地区的35个具有可靠年代和可信代用指标古气候记录综合分析,初步认为:①MIS 5e起止时间为(128±2)~(116±2)ka,该时期全球范围内的气候存在小幅度波动,但对于是否存在冷事件及其变化幅度和起止时间,区域间的差异明显,如北大西洋区海洋气候记录指示MIS 5e阶段气候比较稳定,而挪威海区的气候记录显示MIS 5e早期气候有2个明显的变化,在中期存在一个冷事件;南极洲和格陵兰的δ18O,δD和CH4记录说明两区MIS 5e时期的气候都呈相对稳定状态;欧洲地区Eemian间冰期从南到北持续时间变短,气候波动幅度变大;中国地区MIS 5e气候特征研究分歧较大。②在亚轨道尺度上,MIS 5e时期全球气候具较好的一致性,太阳辐射可能是统一的驱动因子;在千年/百年尺度上,各个地区气候变化存在一定的差异性,可能受区域局地因子的控制。③在全球MIS 5e气候变化的研究中,还有很多方面有待提高,如关于全球性和区域性气候事件的联系、差异和机制问题、代用指标的指代意义及机理和MIS 5e阶段高分辨率的气候变化及古气候模拟研究等。

The Last Interglacial or Marine Isotope Stage (MIS) 5e, is of great interest because it serves as an analog for the Holocene. The climate change and duration during Marine isotope stage (MIS) 5e are considerably well understood for recent and future climate. Despite great interest in this subject over many years, a number of issues concerning the climate circumstances of MIS 5e are by no means resolved. We analyzed 35 published palaeoclimate records with reliable chronologies and robust proxies in typical region of the world to evaluate climate change during MIS 5e. These data indicate that: ① The duration of this warm phase is thought to range from (128±2) ka to (116±2) ka. The climate of MIS 5e was likely relatively stable with a number of abrupt, weak amplitude, cool and/or arid events. And the difference between regions is noticeable for the occurrence, amplitude, onset and duration of these events. For example, marine records from the North Atlantic indicate that the climate of MIS 5e was relatively stable, however the records from Norwegian sea show that the climate of MIS 5e had a significant changes at the beginning and cold event in the Mid-Eemian; The δ18O, δD and CH4 in the ice cores from Greenland and Antarctica imply that climate was relatively stable during the last interglacial period, while in Europe from the north to the south the duration of this phase became shorter and the intensity of climatic events became stronger. In addition, the climatic conditions of MIS 5e reconstructed by climate proxy from China are various and have the subject of some controversy. ②The global climate response to the insolation forcing would have been uniform on suborbital timescale. Nevertheless, as a result of regional sundry climatic forcing factors, global millennial-scale/century-scale climate oscillations were marked by significant local features during stage 5e. ③ Based on the better chronological controls, the estimation of climate parameters, the high-resolution climate records, and precise knowledge of the phase relationship between climate changes in global, the earlier depiction for climate circumstances and environment change during Marine Isotope Stage 5e should be refined and our understanding of the climate dynamics and mechanism and climate modelling should be improved.

中图分类号: 

表1 选取出的MIS 5e气候研究点
Table 1 Palaeoclimatic records of MIS 5e selected from global
编号 研究点 经纬度 记录指标 代用指标 MIS 5e年代
/ka BP
测年方法 是否相
对稳定
参考文献
1 NEEM 77.45°N,51.06°W 冰芯 δ18O,CH4 130~115 GICC05时间尺度 不明确 [6]
2 NGRIP 75.10°N,42.32°W 冰芯 δ18O 122~115 年积层厚度和Vostok冰芯年代模型 [7]
3 GRIP 72.58°N,37.64°W 冰芯 δ18O 133~114 年层计数和年积层厚度模型 [8]
4 GISP2 72.58°N,38.48°W 冰芯 δ18O GRIP年代模型 [9]
5 EW9302 61°N,24°W 海洋沉积物 有孔虫δ18O,SST等 GRIP年代模型 [10]
6 MD03-2664 57°26'N,48°36'W 海洋沉积物 有孔虫δ13C,δ18O等 128~116 年代模型 [11,12]
7 U1304 48°N,49°W 海洋沉积物 硅藻δ18O,δ30Si等 128~116 年代模型 [4,13]
8 MD95-2036 33°41.44'N,
57°34.55'W
海洋沉积物 有孔虫δ18O,Cd/Ca等 127~118 δ18O地层学和230Th模型 [14]
9 Site 1059A 31°40.46'N,
75°24.13'W
海洋沉积物 孢粉等 130~118 年代模型 [15]
10 ODP Site 658 20°45'N,18°35'W 海洋沉积物 有孔虫δ18O等 SPECMAP曲线 不明确 [16]
11 MD08-3179 37.8493°N,
30.294°W
海洋沉积物 δ18O、鳞鞭虫含量等 125~115 δ18O叠加曲线 [17]
12 MD95-2042 37°48'N,10°10'W 海洋沉积物 沟鞭藻、孢粉等 126~ SPECMAP曲线 [18]
13 M23414 53°32.2'N,
20°17.3'W
海洋沉积物 有孔虫δ18O、冰筏碎屑物 125~117 SPECMAP曲线 [5]
14 NA87-25 55°11'N,14°44'W 海洋沉积物 有孔虫δ18O等 128~113 SPECMAP曲线 [19]
15 M23323 67°46'N,5°55'E 海洋沉积物 冰筏碎屑物等 124~114 SPECMAP曲线 [20]
16 V27-60 72°11'N,8°35'E 海洋沉积物 有孔虫δ18O等 128~113 SPECMAP曲线 [19]
17 M23071 67°05'N,2°55'E 海洋沉积物 有孔虫组合等 124~116 SPECMAP曲线 [21]
18 Sokli 67°48'N,29°18'E 湖泊沉积物 孢粉、硅藻等 TL,IRSL和OSL [22]
19 Eifel 51°N,7°E 湖泊沉积物 孢粉 127~118 14C和U/Th 不明确 [23]
20 Gröbern 52.1°N,12.5°E 湖泊沉积物 孢粉 127~116 绝对年代插值法 [24]
21 Lago Grand di Monticchio 40°56'40″N,
15°36'30″E
湖泊沉积物 孢粉 127~109 纹层计数和沉积岩
相学
[25]
22 Ioannina 39°45'N,20°51'E 湖泊沉积物 孢粉 127.3~112 AMS放射性碳、古地磁和铀系法 [26,27]
23 甜水海古湖 35°21'N,79°30'E 湖泊沉积物 碳酸盐、化学元素 145~137,
130~
SPECMAP曲线 [28,29]
24 古里雅 35°17'N,81°29'E 冰芯 δ18O 125~ 冰川流动模型和36Cl [30]
25 西宁 36°40'N,101°50'E 黄土 粒度、磁化率 TL和OSL 不明确 [31]
26 九洲台 36°N,103°50'E 黄土 磁化率、磁性、CaCO3 133~ 放射性碳、TL和古地磁 [32,33]
27 米浪沟湾 37°46'N,108°32'E 湖泊沉积物 粒度、化学元素 135~114,135~119 TL [34~36]
28 洛川 35°45'N,109°25'E 黄土 粒度、磁化率 TL [37]
29 西安 34°17'N,108°51'E 黄土 粒度、磁化率 TL [37]
30 三宝洞 31°40'N,110°26'E 石笋 δ18O 230Th [38]
31 董哥洞 25°17'N,108°5'E 石笋 δ18O 129~119 230Th [39]
32 EDC 75°06'S,123°21'E 冰芯 δD,CH4 冰川流动模型和逆解法等 不明确 [40,41]
33 Vostok 78°28'S,106°48'E 冰芯 δD,CH4 139~117 二维冰川模型 不明确 [42,43]
34 Dome fuji 77°19'S,39°42'E 冰芯 δ18O,CH4 逆解法 不明确 [44,45]
35 EDML 75°S,00°04'E 冰芯 δ18O,CH4 冰川流动模型和永久积雪模型 不明确 [46]
图1 MIS 5e研究点分布图
Fig.1 Overview map showing the palaeoclimatic sites selected from global
图2 北大西洋δ 18O曲线图
(a)北大西洋区,(b)挪威海区;灰色实线代表海洋底栖有孔虫记录;黑色实线代表海洋浮游有孔虫记录;灰色矩形框代表MIS 5e年代 范围。图中ODP Site 658据参考文献[16];1059A据参考文献[15];MD95-2036据参考文献[14];MD08-3179据参考文献[17];MD95-2042据参考文献[18];U1304据参考文献[81];MD03-2664据参考文献[11];M23414据参考文献[5];NA87-25据参考文献[19];EW9302据参考文献[10];M23323据参考文献[20];M23071据参考文献[21];V27-60据参考文献[19]
Fig.2 Oxygen isotope records from North Atlantic
(a)δ 18O records from North Atlantic; (b)δ 18O records from Norwegian Sea; Oxygen isotope record of benthic foraminifera (Grey solid lines); Oxygen isotope record of planktonic foraminifera (Dark solid lines); Grey bars indicate the onset and duration of the MIS 5e period. Notes for the sources of references: ODP Site 658 from reference[16]; 1059A from reference[15]; MD95-2036 from reference[14]; MD08-3179 from reference[17];MD95-2042 from reference[18]; U1304 from reference[81]; MD03-2664 from reference[11]; M23414 from reference[5]; NA87-25 from reference[19]; EW9302 from reference[10]; M23323 from reference[20]; M23071 from reference[21]; V27-60 from reference[19]
图3 格陵兰与南极洲冰芯δ 18O,δD和CH 4曲线图
灰色区域为划分出的MIS 5e起止时间,(a)为南极洲各冰芯的CH 4值,(b)为南极洲各冰芯δ 18O和δD值,(c)为格陵兰各冰芯δ 18O值;图中Vostok的δD和CH 4记录据参考文献[61];EDC的δD和CH 4记录据参考文献[41,73];Dome Fuji的δ 18O和CH 4记录据参考文献[44,45];EDML的δ 18O和CH 4记录据参考文献[46];GRIP的δ 18O记录据参考文献[8];GISP2的δ 18O记录据参考文献[9];NGRIP的δ 18O记录据参考文献[7];NEEM的δ 18O记录据参考文献[6]
Fig.3 Record of δ 18O, δD and CH 4 values from Greenland and Antarctica ice core
Grey bars indicate the onset and duration of the MIS 5e period. (a) CH 4 record from Antarctica, (b)δ 18O and δD records from Antarctica, (c)δ 18O record from Greenland; Vostok δD and CH 4 records from reference[61]; EDC δD and CH 4 records from references[41,73]; Dome Fuji δD and CH 4 records from references[44,45]; EDML δ 18O and CH 4 records from reference[46]; GRIP δ 18O record from reference[8],GISP2 δ 18O record from reference[9];NGRIP δ 18O record from reference[7];NEEM δ 18O record from reference[6]
图4 欧洲孢粉及气候指标曲线图
灰色区域表示MIS 5e时间范围;图中Ioannina据参考文献[27];Lago Grand di Monticchio据参考文献[25];Grobern 据参考文献[24];Eifel据参考文献[23];Sokli据参考文献[22]
Fig.4 Pollen records and climate indicators from European
Grey bars indicate the onset and duration of the MIS 5e period. Notes for the sources of references: Ioannina from reference[27]; Lago Grand di Monticchio from reference[25]; Grobern from reference[24]; Eifel from reference[23]; Sokli from reference[22]
图5 中国地区的气候指标曲线图
灰色区域表示MIS 5e时间范围;图中董哥洞石笋据参考文献[39];三宝洞石笋据参考文献[38];甜水海湖岩芯据参考文献[29];古里雅冰芯据参考文献[30];西宁黄土剖面据参考文献[31];九洲台黄土剖面据参考文献[32,33];洛川黄土剖面据参考文献[37];西安黄土剖面据参考文献[37];米浪沟湾湖泊沉积剖面据参考文献[34]
Fig.5 Climate indicators from China
Grey bars indicate the onset and duration of the MIS 5e period. Notes for the sources of references: Stalagmites of Dongge Cave from reference[39];Stalagmites of Sanbao Cave from reference[38]; Tianshuihai Lake core from reference[29]; Ice core of Guliya from reference[30]; Xiningloess section from reference[31]; Jiuzhoutai loess section from references[32,33]; Luochuan loess section from reference[37];Xi’an loess section from reference[37]; Milanggouwan lacustrine section from reference[34]
图6 全球记录对比图
灰色区域表示MIS 5e时间范围;图中EDML的δ 18O记录据参考文献[46];NGRIP的δ 18O记录据参考文献[7];NEEM δ 18O记录据参考文献[6];M23323据参考文献[20];Ioannina据参考文献[27];MD95-2036据参考文献[14];三宝洞石笋据参考文献[38];古里雅冰芯据参考文献[30];西宁黄土剖面据参考文献[31];赤道热量曲线据参考文献[107]
Fig.6 Palaeoclimatic records of MIS 5e from global
Grey bars indicate the onset and duration of the MIS 5e period. Notes for the sources of references: EDML δ 18O and CH 4 records from reference[46];NGRIP δ 18O record from reference[7]; NEEM δ 18O record from reference[6];M23323 from reference[20]; Ioannina from reference[27];MD95-2036 from reference[14];Stalagmites of Sanbao Cave from reference[38]; Ice core of Guliya from reference[30];Xining loess section from reference[31]; The caloric equator from reference[107]
[1] Shen Ji.Reconstructing Quaternary Environments[M]. Beijing:Science Press, 2010.
[沈吉. 第四纪环境演变[M]. 北京: 科学出版社, 2010.]
[2] Mangerud J, Sønstegaard E, Sejrup H P.Correlation of the Eemian (interglacial) stage and the deep-sea oxygen-isotope stratigraphy[J].Nature, 1979, 277(5 693): 189-192.
[3] Kopp R E, Simons F J, Mitrovica J X,et al.Probabilistic assessment of sea level during the last interglacial stage[J]. Nature, 2009, 462(7 275): 863-867.
[4] Romero O E, Swann G E A, Hodell D A,et al. A highly productive Subarctic Atlantic during the Last Interglacial and the role of diatoms[J]. Geology, 2011, 39(11): 1 015-1 018.
[5] Bauch H A, Kandiano E S.Evidence for early warming and cooling in North Atlantic surface waters during the last interglacial[J].Paleoceanography, 2007, 22(1): 1-11.
[6] NEEM Community Members.Eemian interglacial reconstructed from a Greenland folded ice core[J]. Nature, 2013, 493(7 433): 489-494.
[7] NGICP members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J]. Nature, 2004, 43(7 005): 147-151.
[8] Dansgaard W S, Johnsen S J, Clausen H B, et al.Evidence for general instability of past climate from a 250-kyr ice-core record[J]. Nature, 1993, 364(6 434): 218-220.
[9] Grootes P M, Stulver M, White J W C, et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland Ice cores[J]. Nature, 1993, 366(6 455): 552-554.
[10] Oppo D W, Horowitz M, Lehman S J.Marine core evidence for reduced deep water production during Termination Ⅱ followed by a relatively stable substage 5e (Eemian)[J]. Paleoceanography, 1997, 12(1): 51-63.
[11] Galaasen E V, Ninnemann U S, Irvali N, et al.Rapid reductions in North Atlantic deep water during the peak of the last interglacial period[J]. Science, 2014, 343(6 175): 1 129-1 132.
[12] Irvali N, Ninnemann U S, Galaasen E V, et al.Rapid switches in subpolar North Atlantic hydrography and climate during the last interglacial (MIS 5e)[J]. Paleoceanography, 2012, 27(2): 1-16.
[13] Rasmussen T L, Balbon E, Thomsen E, et al.Climate records and changes in deep outflow from the Norwegian Sea~150-55 ka[J]. Terra Nova, 1999, 11(2/3): 61-66.
[14] Adkins J F, Boyle E A, Keigwin L, et al.Variability of the North Atlantic thermohaline circulation during the last interglacial period[J]. Nature,1997,390(6 656): 154-156.
[15] Heusser L, Oppo D.Millennial- and orbital-scale climate variability in southeastern United States and in the subtropical Atlantic during Marine Isotope Stage 5: Evidence from pollen and isotopes in ODP site 1059[J]. Earth and Planetary Science Letters, 2003, 214(3/4): 483-490.
[16] Maslin M A, Sarnthein M, Knaack J J.Subtropical Eastern Atlantic climate during the Eemian[J]. Science of Nature, 1996, 83(3): 122-126.
[17] Schwab C, Kinkel H, Weinelt M, et al.A coccolithophore based view on paleoenviromental changes in the open ocean mid-latitude North Atlantic between 130 and 48 ka BP with special emphasis on MIS 5e[J]. Quaternary Science Reviews, 2013, 81: 35-47,doi:10.1016/j.quascirev.2013.09.021.
[18] Goñi M F S, Eynaud F, Turon J L, et al. High resolution palynological record off the Iberian margin: Direct land-sea correlation for the last interglacial complex[J]. Earth and Planetary Science Letters, 1999, 171(1): 123-137.
[19] Cortijo E, Duplessy J C, Labeyrie L, et al.Eemian cooling in the Norwegian Sea and North Atlantic ocean preceding continental ice-sheet growth[J]. Nature, 1994, 372(6 505): 446-449.
[20] Bauch H A, Kandiano E S, Helmke J, et al.Climatic bisection of the last interglacial warm period in the Polar North Atlantic[J]. Quaternary Science Reviews, 2011, 30(15/16): 1 813-1 818.
[21] Bauch H A, Erlenkeuser H.A “critical” climatic evaluation of last interglacial (MIS 5e) records from the Norwegian Sea[J]. Polar Research, 2008, 27(2): 135-151.
[22] Helmens K F, Salonen J S, Plikk A, et al.Major cooling intersecting peak Eemian Interglacial warmth in northern Europe[J]. Quaternary Science Review, 2015, 122: 293-299,doi:10.1016/j.quascirev.2015.05.018.
[23] Sirocko F, Seelos K, Schaber K, et al.A late Eemian aridity pulse in central Europe during the last glacial inception[J]. Nature, 2005, 436(7 052): 833-836.
[24] Kühl N, Litt T, Schölzel C, et al.Eemian and Early Weichselian temperature and precipitation variability in northern Germany[J]. Quaternary Science Review, 2007, 26(25/28): 3 311-3 317.
[25] Allen J R M, Huntely B. Last Interglacial palaeovegetation, palaeoenvironments and chronology: A new record from Lago Grande di Monticchio, southern Italy[J]. Quaternary Science Reviews, 2009, 28(15/16): 1 521-1 538.
[26] Tzedakis P C, Frogley M R, Heaton T H E. Duration of last interglacial conditions in Northwestern Greece[J]. Quaternary Research, 2002, 58(1): 53-55.
[27] Tzedakis C.Timing and duration of last interglacial conditions in Europe: A chronicle of a changing chronology[J]. Quaternary Science Review, 2003, 22(8/9): 763-768.
[28] Yu Suhua, Zhu Zhaoyu, Li Bingyuan, et al.Paleoclimate since 230ka records by iron in the core of Tianshuihai Lake, Tibetan Plateau[J]. Marine Geology and Quaternary Geology, 1998, 18(3): 63-68.
[余素华, 朱照宇, 李炳元,等.23万年以来青藏高原甜水海湖岩心铁元素的气候记录刍议[J]. 海洋地质与第四纪地质, 1998, 18(3): 63-68.]
[29] Zhou H Y, Zhu Z Y.Oxygen isotopic composition of lacustrine carbonates since 130 ka BP from a Tianshuihai Lake core, Tibet: An overall increasing δ18O trend and its implications[J]. Journal of Asian Earth Sciences, 2002, 20(3): 225-229.
[30] Yao Tandong, Thompson L G, Shi Yafeng, et al.Research about climate change since the last interglacial from record in ice core of Guliya[J]. Science in China (Series D), 1997, 27(5): 447-452.
[姚檀栋, Thompson L G, 施雅风,等.古里雅冰芯中末次间冰期以来气候变化记录研究[J]. 中国科学:D辑, 1997, 27(5): 447-452.]
[31] Lu H Y, Vandenberghe J, Miao X D, et al. Evidence for an abrupt climatic reversal during the Last Interglacial on the northeast Qinghai-Tibetan Plateau[J]. Quaternary International, 2006, 154/155(5): 136-140.
[32] Fang X M, Li J J, Banerjee S K, et al.Millennial-scale climatic change during the last interglacial period: Superparamagnetic sediment proxy from paleosol S1, western Chinese Loess Plateau[J]. Geophysical Research Letters, 1999, 26(16): 2 485-2 488.
[33] Fang Xiaomin, Dai Xuerong, Li Jijun, et al.Abruptness and instability of Asian monsoon: An example from soil genesis during the last interglacial[J]. Science in China (Series D), 1996, 26(2): 154-160.
[方小敏, 戴雪荣, 李吉均,等. 亚洲季风演化的突发性与不稳定性——以末次间冰期土壤发生为例[J]. 中国科学:D辑, 1996, 26(2): 154-160.]
[34] Du S H, Li B S, Niu D F, et al.Age of the MGS5 segment of the Milanggouwan stratigraphical section and evolution of the desert environment on a kiloyear scale during the last interglacial in China’s Salawusu River Valley: Evidence from Rb and Sr contents and ratios[J]. Chenie der Erde-Geochemistry, 2011, 71(1): 87-95.
[35] Du S H, Li B S, Chen M H, et al.Kiloyear-scale climate events and evolution during the last interglacial, Mu Us Desert, China[J]. Quaternary International, 2012, 263(10): 63-70.
[36] Li B S, Zhang D D, Wen X H, et al.A Multi-cycle climatic fluctuation record of the Last Interglacial Period: Typical stratigraphic section in the Salawusu River Valley on the Ordos Plateau, China[J]. Acta Geologica Sinica, 2005, 79(3): 398-404.
[37] An Z S, Porter S C.Millennial-scale climatic oscillations during the last interglaciation in central China[J]. Geology, 1997, 25(7): 603-606.
[38] Wang Y J, Cheng H, Edwards R L, et al.Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature, 2008, 451(7 182): 1 090-1 093.
[39] Yuan D X, Cheng H, Edwards R L, et al.Timing, duration, and transitions of the last interglacial Asian Monsoon[J]. Science, 2004, 304(5 670): 575-578.
[40] Orombelli G, Maggi V, Delmonte B, et al.Quaternary stratigraphy and ice core[J]. Quaternary International, 2010, 219(1/2): 55-65.
[41] EPICA Community Members.Eight glacial cycles from an Antarctic ice core[J]. Nature, 2004, 429(6 992): 623-628.
[42] Jouzel J, Lorius C, Petit J R, et al.Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years)[J]. Nature, 1987, 329(6 138): 403-408.
[43] Lorius C, Jouzel J, Ritz C, et al.A 150,000-year climatic record from Antarctic ice[J]. Nature, 1985, 316(6 029): 591-596.
[44] Kawamura K, Parrenin F, Lisiecki L, et al.Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years[J].Nature, 2007, 448(7 156): 912-917.
[45] Watanabe O, Jouzel J, Johnsen S, et al.Homogeneous climate variability across East Antarctica over the past three glacial cycles[J]. Nature, 2003, 422(6 931): 509-512.
[46] EPICA Community Members.One-to-one coupling of glacial climate variability in Greenland and Antarctica[J]. Nature, 2006, 444(7 116): 195-198.
[47] Imbrie J, McIntyre A, Mix A. Oceanic response to orbital forcing in the late Quaternary: Observational and experimental strategies[M]∥Berger A, et al, eds. Climate and Geo-sciences. Boston: Kluwer Academic Publishers, 1989: 121-164.
[48] Keigwin L D, Curry W B, Lehman S J, et al.The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago[J].Nature, 1994, 371(6 495): 323-326.
[49] Field M H, Huntley B, Müller H.Eemian climate fluctuations observed in a European pollen record[J]. Nature, 1994, 371(6 500): 779-783,doi:10.1038/371779a0.
[50] Nieuwenhove N V, Bauch H A, Eynaud F, et al.Evidence for delayed poleward expansion of North Atlantic surface waters during the last interglacial (MIS 5e)[J]. Quaternary Science Reviews, 2011, 30(7/8): 934-946.
[51] Kandiano E S, Bauch H A, Fahl K.Last interglacial surface water structure in the western Mediterranean (Balearic) Sea: Climatic variability and link between low and high latitudes[J]. Global and Planetary Change, 2014, 123:67-76,doi:10.106/j.gloplacha.2014.10.004.
[52] Winograd I J, Landwehr J M, Ludwig K R, et al.Duration and structure of the past four interglaciations[J]. Quaternary Research, 1997, 48(2): 141-154.
[53] Rohling E J, Grant K, Hemleben C, et al.High rates of sea-level rise during the last interglacial period[J]. Nature Geoscience, 2008, 1: 38-42,doi:10.1038/ngeo.2007.28.
[54] Oppo D W, Keigwin L D, McManus J F, et al. Persistent suborbital climate variability in marine isotope stage 5 and Termination Ⅱ[J]. Paleoceanography, 2001, 16(3): 280-292.
[55] McManus J F, Oppo D W, Keigwin L D, et al. Thermohaline circulation and prolonged Interglacial warmth in the North Atlantic[J]. Quaternary Research, 2002, 58(1): 17-21.
[56] Thouveny N, Beaulieu J L D, Bonifay E, et al. Climate variations in Europe over the past 140 kyr deduced from rock magnetism[J]. Nature, 1994, 371(6 497): 503-506.
[57] Aalbersberg G, Litt T.Multiproxy climate reconstructions for the Eemian and Early Weichselian[J]. Journal of Quaternary Science, 1998, 13(5): 367-390.
[58] Shumilovskikh L S, Arz H W, Wegwerth A, et al.Vegetation and environmental changes in Northern Anatolia between 134 and 119 ka recorded in Black Sea sediments[J]. Quaternary Research, 2013, 80(3): 349-360.
[59] Litt T, Junge F W, Böttger T.Climate during the Eemian in north-central Europe—A critical review of the palaeobotanical and stable isotope data from central Germany[J]. Vegetation History and Archaeobotany, 1996, 5(3): 247-256.
[60] GRIP Members.Climate instability during the last interglacial period recorded in the GRIP ice core[J]. Nature, 1993, 364(6 434): 203-207.
[61] Petit J R, Jouzel J, Raynaud D, et al.Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6 735): 429-436.
[62] Kelly M J, Edwards R L, Cheng H, et al.High resolution characterization of the Asian Monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination Ⅱ[J]. Palaeogeography, Palaeoclimatology, Palaeoeocology, 2006, 236(1): 20-38.
[63] Fréchette B, Vernal A D.Evidence for large-amplitude biome and climate changes in Atlantic Canada during the last interglacial and mid-Wisconsinan periods[J]. Quaternary Research, 2013, 79(2): 242-255.
[64] Jensen B J L, Reyes A V, Froese D G, et al. The Palisades is a key reference site for the middle Pleistocene of eastern Beringia: New evidence from paleomagnetics and regional tephrostratigraphy[J]. Quaternary Science Reviews, 2013, 63(3): 91-108.
[65] Burdette K E, Rink W J, López G I, et al.Geological investigation and optical dating of Quaternary siliciclastic sediments near Apalachicola, North-west Florida, USA[J]. Sedimentology, 2012, 59(6): 1 836-1 849.
[66] Otvos E G.Numerical chronology of Pleistocene coastal plain and valley development; extensive aggradation during glacial low sea-levels[J]. Quaternary International, 2005, 135(1): 91-113.
[67] Pierce K L, Muhs D R, Fosberg M A, et al.A loess-paleosol record of climate and glacial history over the past two glacial-interglacial cycles (~150 ka), southern Jackson Hole, Wyoming[J]. Quaternary Research, 2011, 76(1): 119-141.
[68] Miller L M, Pigati J S, Anderson R S, et al.Summary of the Snowmastodon Project Special Volume: A high-elevation, multi-proxy biotic and environmental record of MIS 6-4 from the Ziegler Reservoir fossil site, Snowmass Village, Colorado, USA[J]. Quaternary Research, 2014, 82(3): 618-634.
[69] Elias S A.Environmental interpretation of fossil insect assemblages from MIS 5 at Ziegler Reservoir, Snowmass Village, Colorado[J]. Quaternary Research, 2014, 82(3): 592-603.
[70] Willians D F, Thumell R C, Tappa E, et al.Chronology of the Pleistocene oxygen isotope record:0-1.88 million years before present[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1988, 64(3/4): 221-240.
[71] Rasmussen T L, Thomsen E, Kuijpers A, et al.Late warming and early cooling of the sea surface in the Nordic seas during MIS 5e (Eemian Interglacial)[J]. Quaternary Science Review, 2003, 22(8/9): 809-821.
[72] Johnsen S J, Clausen H B, Dansgaard W, et al.Irregular glacial interstadials recorded in a new Greenland ice core[J]. Nature, 1992, 359(6 393): 311-313.
[73] Loulergue L, Schilt A, Spahni R, et al.Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years[J]. Nature, 2008, 453(7 193): 383-386.
[74] Song Changqing, Sun Xiangjun.Advances in studies of Quaternary palynology in China[J]. Advances in Earth Science, 1999, 4(14): 401-406.
[宋长青, 孙湘君. 中国第四纪孢粉学研究进展[J]. 地球科学进展, 1999, 4(14): 401-406.]
[75] Xiao J L, Porter S C, An Z S, et al.Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of Central China during the Last 130,000 yr[J]. Quaternary Research, 1995, 43(1): 22-29.
[76] Porter S C, An Z S.Correlation between climate events in the North Atlantic and China during the last glaciation[J]. Nature, 1995, 375(6 529): 305-308.
[77] Chen F H, Qiang M R, Feng Z D, et al.Stable East Asian monsoon climate during the last interglacial (Eemian) indicated by paleosol S1 in the western part of the Chinese Loess Plateau[J]. Global and Planetary Change, 2003, 36(3): 171-179.
[78] An Zhisheng, Porter S, Kukla G, et al.Magnetic susceptibility evidence of monsoon variations on the loess Plateau of Central China during the last 130 000 years[J]. Chinese Science Bulletin, 1990, 35(7): 529-532.
[安芷生, Porter S, Kukla G,等. 最近13万年黄土高原季风变迁的磁化率证据[J]. 科学通报, 1990, 35(7): 529-532.]
[79] An Z S, Kukla G J, Porter S C, et al.Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years[J]. Quaternary Research, 1991, 36(1): 29-36.
[80] Pang Jiangli, Huang Chunchang, Zhang Zhanping.Rb、Sr elements and high resolution climatic records in the Loess-Paleosol profile at Qishan, Shannxi[J]. Acta Sedimentologica Sinica, 2001, 19(4): 637-641.
[庞奖励, 黄春长, 张占平.陕西岐山黄土剖面Rb、Sr组成与高分辨率气候变化[J]. 沉积学报, 2001, 19(4): 637-641.
[81] Hodell D A, Minth E K, Curtis J H, et al.Surface and deep-water hydrography on Gardar Drift (Iceland Basin) during the last interglacial period[J]. Earth and Planetary Science Letters, 2009, 288(1): 10-19.
[82] Hodgson D A, Verleyen E, Squier A H, et al.Interglacial environments of coastal east Antarctica: Comparison of MIS 1(Holocene) and MIS 5e (last interglacial) lake-sediment records[J]. Quaternary Science Review, 2006, 25(1/2): 179-197.
[83] Johnsen S J, Dahl-Jensen D, Gundestrup N, et al.Oxygen isotope and palaeotemperature records from six Greenland ice-core stations: Camp century, Dye-3, GRIP, GISP2, Renland and NorthGRIP[J]. Journal of Quaternary Science, 2001, 16(4): 299-307.
[84] Chappellaz J, Brook E, Blunier T, et al.CH4 and δ18O of O2 records from Antarctic and Greenland ice: A clue for stratigraphic disturbance in the bottom part of the Greenland Ice Core Project and the Greenland Ice Sheet Project 2 ice cores[J]. Journal of Geophysical Research, 1997, 102(C12): 26 547-26 557.
[85] Landais A, Chappellaz J, Delmotte M F, et al.A tentative reconstruction of the last interglacial and glacial inception in Greenland based on new gas measurements in the Greenland Ice Core Project (GRIP) ice core[J]. Journal of Geophysical Research, 2003, 108(18): 1 399-1 407.
[86] Johnsen S J, Clausen H B, Dansgaard W, et al.The Eem stable isotope record along the GRIP ice core and its interpretation[J]. Quaternary Research, 1995, 43(2): 117-124.
[87] Johnsen S J, Clausen H B, Dansgaard W, et al.The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability[J]. Journal of Geophysical Research, 1997, 102(C12): 26 397-26 410.
[88] Zagwijn W H.An analysis of Eemian climate in western and central Europe[J]. Quaternary Science Review, 1996, 15(5/6): 451-469.
[89] Klotz S, Guiot J, Mosbrugger V.Continental European Eemian and early Würmian climate evolution: Comparing signals using different quantitative reconstruction approaches based on pollen[J]. Global and Planetary Change, 2003, 36(4): 277-294.
[90] Li Shijie, Qu Rongkang, Zhu Zhaoyu, et al.A carbonate content record of late Quaternary climate and environment changes from Lacustrine Core TS95 in Tianshuihai Lake Basin,Northwestern Qinghai-Xizang (Tibet) Plateau[J]. Journal of Lake Sciences, 1998, 10(2): 58-65.
[李世杰, 区荣康, 朱照宇,等. 24万年来西昆仑山甜水海湖岩芯碳酸盐含量变化与气候环境演化[J]. 湖泊科学, 1998, 10(2): 58-65.]
[91] Pan Baotian, Wang Jianmin.Loess record of Qinghai-Xizang Plateau monsoon variations in the eastern part of the plateau since the last interglacial[J]. Quaternary Sciences, 1999,19(4): 330-335.
[潘保田,王建民. 末次间冰期以来青藏高原东部季风演化的黄土沉积记录[J]. 第四纪研究, 1999,19(4): 330-335.]
[92] Wu Jinglu, Wang Sumin, Pan Hongxi, et al.Climatic variations in the past 140 ka recorded in core RM, east Qinghai-Xizang Plateau[J]. Science in China (Series D), 1997, 27(3): 255-259.
[吴敬禄, 王苏民, 潘红玺,等. 青藏高原东部RM 孔140 ka 以来湖泊碳酸盐同位素记录的古气候特征[J]. 中国科学:D辑, 1997, 27(3): 255-259.]
[93] Yuan Linwang, Chen Ye, Zhou Chunlin, et al.Correlation of environmental and climate change between Qaidam Basin Gamma Ray Logging Curve and Guliya Ice Core δ18O record since the last interglacial cycle[J]. Journal of Glaciology and Geocryology, 2000, 22(4): 327-332.
[袁林旺, 陈晔, 周春林,等. 柴达木盆地自然伽玛曲线与古里雅冰芯记录的末次间冰期以来气候环境变化过程的对比[J]. 冰川冻土, 2000, 22(4): 327-332.]
[94] Guang Donghong, Xi Xiaoxia, Hao Yongping, et al.Climate instability revealed in the Beiyuan CaCO3 record during the last interglacial age[J]. Journal of Glaciology and Geocryology, 1996, 18(2): 119-124.
[管东红, 奚晓霞, 郝永萍,等. 北塬剖面碳酸钙记录的末次间冰期气候不稳定性[J]. 冰川冻土, 1996, 18(2): 119-124.]
[95] Zhang Hucai, Shi Zhengtao, Dai Xuerong.The climate records of deep sea oxygen isotope stage 5: A detailed correlation between Wudu Loess Ice Cores from Polar Glacier and Deep Sea[J]. Journal of Lanzhou University (Natural Sciences), 1997, 33(4): 107-115.
[张虎才, 史正涛, 戴雪荣. 深海氧同位素第5阶段的气候记录: 武都黄土剖面与极地冰心、深海沉积同位素记录的对比[J]. 兰州大学学报:自然科学版, 1997, 33(4): 107-115.]
[96] Wu G J, Pan B T, Guang Q Y, et al. Loess record of climatic changes during MIS 5 in the Hexi Corridor, northwest China[J]. Quaternary International, 2002, 97/98(3): 167-172.
[97] Cao Jixiu, Zhang Yutian, Wang Jianmin, et al.Temporal and spatial characteristics of loess magnetic susceptibility in the Yuanbao Loess Section and the climatic change over the past 150 000 years[J]. Journal of Lanzhou University (Natural Sciences), 1997, 33(1): 124-132.
[曹继秀, 张宇田, 王建民,等. 塬堡黄土剖面15万年以来磁化率气候记录及黄土磁化率时空特征[J]. 兰州大学学报:自然科学版, 1997, 33(1): 124-132.]
[98] Ding Z L, Ren J Z, Yang S L, et al.Climate instability during the penultimate glaciation: Evidence from two high-resolution loess records, China[J]. Journal of Geophysical Research, 1999, 104(B9): 20 123-20 132.
[99] Cai M T, Wei M J, Xu D N, et al.Vegetation and climate changes during three interglacial periods represented in the Luochuan loess-paleosol section, on the Chinese Loess Plateau[J]. Quaternary International, 2013, 296(439): 131-140.
[100] Feng Z D, Wang H B, Olson C, et al.Chronological discord between the last interglacial paleosol (S1) and its parent material in the Chinese Loess Plateau[J]. Quaternary International, 2004, 117(1): 17-26.
[101] Yang Jinsong.Records on Paleoenvironment in the Downstream of Salawusu River Valley since 150 ka BP[D]. Beijing: Chinese Academy of Geological, 2013.
[杨劲松. 萨拉乌苏河流域下游150ka BP 以来的古环境记录[D]. 北京: 中国地质科学院, 2013.]
[102] Jin Heling, Li Mingqi, Su Zhizhu, et al.Climatic change reflected by stratigraphical magnetic susceptibility in Salawusu River Basin, North China since 220 ka BP[J]. Journal of Desert Research, 2006, 26(5): 681-687.
[靳鹤龄, 李明启, 苏志珠,等. 220ka以来萨拉乌苏河流域地层磁化率与气候变化[J]. 中国沙漠, 2006, 26(5): 681-687.]
[103] Jin Heling, Li Mingqi, Su Zhizhu, et al.Geochemical features of a profile in Salawusu River Valley and their response to global climate changes since 220ka BP[J]. Journal of Glaciology and Geocryology, 2005, 27(6): 861-868.
[靳鹤龄, 李明启, 苏志珠,等. 220ka BP来萨拉乌苏河流域地质剖面地球化学特征及其对全球气候变化的响应[J]. 冰川冻土, 2005, 27(6): 861-868.]
[104] Sun Jimin, Liu Dongsheng, Yuan Baoyin, et al.Stratigraphic division of the Sala US formation and the inferred sedimentary environment[J]. Marine Geology and Quaternary Geology, 1996,(1): 23-31.
[孙继敏, 丁仲礼, 袁宝印,等. 再论萨拉乌苏组的地层划分及其沉积环境[J]. 海洋地质与第四纪地质, 1996,(1): 23-31.]
[105] Sun Jimin, Liu Dongsheng, Ding Zhongli, et al.The MU US desert evolution in the last 0.5 Ma[J]. Quaternary Sciences, 1996,(4): 359-367.
[孙继敏, 刘东生, 丁仲礼,等. 五十万年来毛乌素沙漠的变迁[J]. 第四纪研究, 1996,(4): 359-367.]
[106] Sun J M, Ding Z L.Deposits and soils of the past 130,000 years at the desert-loess transition in Northern China[J]. Quaternary Research, 1998, 50(2): 148-156.
[107] Berger André L.Long-term variations of caloric insolation resulting from the earth’s orbital elements[J]. Quaternary Research, 1978, 9(2): 139-167.
[108] Jiang D B, Yu G, Zhao P, et al.Paleoclimate modeling in China: A review[J]. Advances in Atmospheric Sciences, 2015, 32(2): 250-275.
[109] Jin Liyan, Chen Fahu.Progress in rapid climate changes and their modeling study in millennial-and Centennial scales[J]. Advances in Earth Science, 2007, 22(10): 1 054-1 065.
[靳立亚, 陈发虎. 千百年尺度气候快速变化及其数值模拟研究进展[J]. 地球科学进展, 2007, 22(10): 1 054-1 065.]
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要