地球科学进展 ›› 2009, Vol. 24 ›› Issue (11): 1202 -1209. doi: 10.11867/j.issn.1001-8166.2009.11.1202

综述与评述 上一篇    下一篇

长江口—杭州湾及其邻近海域不同粒级沉积有机碳分布特征
章伟艳 1,2,金海燕 1,3,张富元 1,2,赵国军 4,杨克红 1,2,李宏亮 1,3,白有成 1,3,高为利 1   
  1. 1.国家海洋局第二海洋研究所,浙江 杭州 310012; 2.国家海洋局海底科学重点实验室,浙江杭州310012; 3.国家海洋局海洋生物地球化学与生态系统重点实验室,浙江杭州310012;4.浙江省水利水电设计研究院,浙江杭州310002
  • 收稿日期:2009-06-12 修回日期:2009-08-28 出版日期:2009-11-10
  • 通讯作者: 章伟艳(1972-),女,浙江诸暨人,副研究员,主要从事海洋沉积学和海洋矿产资源评价研究. E-mail:zwy885@163.com
  • 基金资助:

    -浙江省自然科学基金项目“浙江海域有机碳在不同粒径沉积物中的来源、分布和迁移规律”(编号:Y506145);国家自然科学基金项目“沉积色素对近百年来东海生态环境变化指示研究”(编号:40403013);国家海洋局第二海洋研究所基本科研业务费专项资金项目“长江口—东海营养物质变动对底栖生态和沉积碳埋藏的影响”(编号:JT0707);“浙江省重要海洋资源及其承载力综合评价”(编号:ZJ908-02-01)共同资助.

Organic Carbon Distribution in the Yangtze River Estuary-Hangzhou Bay and Its Adjacent Sea Area

ZHANG Weiyan 1,2, JIN Haiyan 1,3, ZHANG Fuyuan 1,2, ZHAO Guojun 4,YANG Kehong 1,2, LI Hongliang 1,3,BAI Youcheng 1,3,GAO Weili 1   

  1. 1.Second Institute of Oceangraphy of SOA, Hangzhou310012, China;2.Laboratory of Submarine Geosciences, SOA, Hangzhou310012, China;3.Laboratory of Marine Ecosystem and Biogeochemistry of SOA, Hangzhou310012,China;4.Water Conservancy and Hydropower Survey and Design Institute of Zhejiang Province, Hangzhou310002,China
  • Received:2009-06-12 Revised:2009-08-28 Online:2009-11-10 Published:2009-11-10

通过对长江口、杭州湾、舟山海域及东海陆架4个海区表层沉积物样品的粒度敏感组分分析,发现东海陆架与长江口具有相似的三级组分物质组成,杭州湾与舟山海域具有相似的两级组分物质组成。综合4个区域粒级组分分布特征,采用湿分法将4个海域表层沉积物样品分成6个粒级:<0.004 mm,0.004~0.025 mm,0.025~0.063 mm,0.063~0.125 mm,0.125~0.250 mm和>0.250 mm,分别提取各级组分和全样进行有机碳及同位素测试。定量分析各级组分有机碳含量、来源及物质组分,除杭州湾海域粗粒级外,基本上<0.004 mm的粘土组分有机碳含量最高;富集在杭州湾海域粗颗粒中的有机质主要来源于陆源植物碎屑。沉积物颗粒大小、物质组成类型是不同粒级有机质富集的主要控制因素。

A study of environmentally sensitive grain-size population was used by the grain size class vs standard deviation values of the surface sediment samples in the Yangtze River Estuary, Hangzhou Bay, Zhoushan archipelago sea area and the East China Sea shelf. Results indicated that there were three similar grain size populations between the East China Sea shelf and the Yangtze River estuary and two similar populations between the Hangzhou Bay and the Zhoushan archipelago sea area. According to the environmentally sensitive grain-size population, wet sieving was performed to separate the four area sediments into six size fractions (>0.250 mm, 0.125~0.250 mm, 0.063~0.125 mm, 0.025~0.063 mm, 0.004~0.025 mm, and <0.004 mm). Each of these size fractions and the bulk samples were analyzed for the total organic carbon(TOC) and stable organic carbon isotopic ratios(δ13C org). The further quantitative analysis of TOC and δ13C org for each fraction indicated that there was the highest TOC content in the <0.004 mm fraction except the coarse size fractions of the Hangzhou bay where they were rich in the organic matter from the terrestrial source plant debris, and the particle size and type of the sediment component played important role in the organic matter distribution.

中图分类号: 


[1] Lu Longfei, Cai Jingong, Bao Yujin,et al. Summary of processes and significance of clay minerals in marine sedimentary organic matter preservation and in global carbon cycle
[J].Advances in Earth Science,2006,21(9):931-937.
[卢龙飞,蔡进功,包于进,等.粘土矿物保存海洋沉积有机质研究进展及其碳循环意义
[J].地球科学进展,2006,21(9):931-937.]

[2] Lin S W, Hsieh I-Jy, Huang K M,et al. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments
[J].Chemical Geology,2002, 182:377-394.

[3] Milliman J D,Xie Q C,Yang Z S.Transfer of particulate organic carbon and nitrogen from the Yangtze River to ocean
[J].American Journal of Science,1984,284:824-834.

[4] Edmond J M,Spivack A,Grant B C, et al. Chemical dynamics of the Changjiang Estuary
[J].Continental Shelf Research,1985,4:17-36.

[5] Tan F C,Cai D L,Edmond J M.Carbon isotope geochemistry of the Changjiang Estuary
[J].Estuary Coastal and Shelf Science,1991,32:395-403.

[6] Cai D L,Han Y B.Carbon isotopic composition and flux of particulate organic matter in the Changjiang
[J].Acta Oceanology Sinica,1998,17:337-342.

[7] Wu Y, Zhang J, Liu S M, et al. Sources and distribution of carbon within the Yangtze River system
[J].Estuarine Coastal and Shelf Science,2007,71:13-25.

[8] Wu Y, Dittmar T, Ludwichowski K U, et al. Tracing suspended organic nitrogen from the Yangtze River catchments into the East China Sea
[J].Marine Chemistry,2007,107:367-377.

[9] Zhang J,Wu Y,Jennerjahn,T C, et al. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics
[J].Marine Chemistry, 2007, 106:111-126.

[10] Gao Jianhua,Wang Yaping,Pan Shaoming,et al. Source and Distribution of organic matter in seabed sediments of the Changjiang River estuary and its adjacent sea area
[J].Acta Geographica Sinica,2007,62(9):981-991.
[高建华,汪亚平,潘少明,等.长江口外海域沉积物中有机物的来源及分布
[J].地理学报,2007,62(9): 981-991.]

[11] Lü Xiaoxia,Zhai Shikui,Niu Lifeng.Study on the C/N ratios of orgaic matters in the core sediments of the Yangtze River Estuary
[J].Environmental Chemistry,2005,24(3):255-259.
[吕晓霞,翟世奎,牛丽凤.长江口柱状沉积物中有机质C/N比的研究
[J].环境化学,2005,24(3):255-259.]

[12] Chen Qingqiang, Meng Yi, Zhou Juzhen,et al. Constraints for distribution of soil organic carbon with depth due to evolution of the salt marsh in the Yangtze River Estuary
[J].Advances in Earth Science,2007,22(1):26-32.
[陈庆强,孟翊,周菊珍,等.长江口盐沼滩面发育对有机碳深度分布的制约
[J].地球科学进展,2007,22(1):26-32.]

[13] Zhao Yiyang,Yan Mingcai. Geochemistry of Sediments of the China Shelf Sea
[M].Beijing:Science Press,1994:203.
[赵一阳,鄢明才.中国浅海沉积物地球化学
[M].北京:科学出版社,1994:203.]

[14] Fan Dejiang,Yang Zuosheng,Sun Xiaogong,et al. Quantitative evaluation of sediment provenance on the north area of the East China Sea Shelf
[J].Journal of Ocean University of Qingdao,2002:748-756.
[范德江,杨作升,孙效功,等.东海陆架北部长江、黄河沉积物影响范围的定量估算
[J].青岛海洋大学学报,2002:748-756.]

[15] Wu Ying, Zhang Jing, Zhang Zaifeng, et al. Seasonal variability of stable carbon and nitrogen isotope of suspended particulate matter in the Changjiang River
[J].Oceanologia et Limnologia Sinica,2002,33(5):546-552.
[吴莹,张经,张再峰,等.长江悬浮颗粒物中稳定碳、氮同位素的季节分布
[J].海洋与湖沼,2002,33(5):546-552.]

[16] Cai Deling, Tan F C, Edmond J M. Organic carbon isotope geochemistry of the Changjiang (Yangtze River) estuary
[J].Geochimica,1992,(3):305-312.
[蔡德陵,Tan F C,Edmond J M.长江口区有机碳同位素地球化学
[J].地球化学,1992,(3):305-312.]

[17] Minoura K, Hoshino K, Nakamura T, et al. Late Pleistocene—Holocene paleoproductivity circulation in the Japan Sea: Sea-level control on δ13C and δ15N records of sediment organic material
[J].Palaeogeography, Palaeoclimatology Palaeoecology,1997,135:41-50.

[1] 吴晓川,欧阳黎明,郭晓中,黄焱羚,黄振华,李伟. 海域沉积物蠕动地貌的研究现状与展望[J]. 地球科学进展, 2021, 36(7): 763-772.
[2] 范成新, 刘敏, 王圣瑞, 方红卫, 夏星辉, 曹文志, 丁士明, 侯立军, 王沛芳, 陈敬安, 游静, 王菊英, 盛彦清, 朱伟. 20年来我国沉积物环境与污染控制研究进展与展望[J]. 地球科学进展, 2021, 36(4): 346-374.
[3] 董治宝,吕萍,李超,胡光印. 火星风条痕特征及其形成机制[J]. 地球科学进展, 2020, 35(9): 902-911.
[4] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[5] 赵仁杰,鄢全树,张海桃,关义立,葛振敏,袁龙,闫施帅. 全球俯冲沉积物组分及其地质意义[J]. 地球科学进展, 2020, 35(8): 789-803.
[6] 马骏,宋金明,李学刚,袁华茂,李宁,段丽琴,王启栋. 2018年春季西太平洋 Kocebu海山区海水中颗粒态有机碳的地球化学特征[J]. 地球科学进展, 2020, 35(7): 731-741.
[7] 傅焓埔, 刘群, 胡修棉. 水下沉积物重力流与海底扇相模式研究进展[J]. 地球科学进展, 2020, 35(2): 124-136.
[8] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[9] 刘柏妤, 张虎才, 常凤琴, 张扬, 张晓楠, 冯仡哲, 李华勇. 茈碧湖现代沉积特征及其环境指示意义[J]. 地球科学进展, 2020, 35(2): 198-208.
[10] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[11] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[12] 黄小平,江志坚. 海草床食物链有机碳传递过程的研究进展[J]. 地球科学进展, 2019, 34(5): 480-487.
[13] 张咏华,吴自军. 陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响[J]. 地球科学进展, 2019, 34(2): 202-209.
[14] 顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516.
[15] 田壮才, 郭秀军, 余乐, 贾永刚, 张少同, 乔路正. 内孤立波悬浮海底沉积物研究进展[J]. 地球科学进展, 2018, 33(2): 166-178.
阅读次数
全文


摘要