地球科学进展 ›› 2009, Vol. 24 ›› Issue (11): 1195 -1201. doi: 10.11867/j.issn.1001-8166.2009.11.1195

综述与评述 上一篇    下一篇

海洋浮游生态系统中小型浮游动物的生态功能
张武昌 1,张翠霞 1,2,肖天 1   
  1. 1.中国科学院海洋研究所海洋生态和环境科学重点实验室,山东青岛266071; 2.中国科学院研究生院,北京100049
  • 收稿日期:2009-01-07 修回日期:2009-06-11 出版日期:2009-11-10
  • 通讯作者: 张武昌(1973-),男,山东济南人,副研究员,主要从事海洋浮游生态学研究. E-mail:wuchangzhang@ms.qdio.ac.cn
  • 基金资助:

    国家自然科学基金项目“小型浮游动物(microzooplankton)在我国近海浮游生态系统中的作用”(编号:40876085)和“南海北部基础生物生产过程及其对碳循环的调控研究——深化与集成”(编号:90711006);国家重点基础研究发展计划项目“我国近海生态系统食物产出的关键过程及其可持续机理”(编号:2006CB400604);国家自然科学基金创新群体项目“我国典型海域生态系统演变过程与机制”(编号:40821004)资助.

Role of Microzooplankton in Marine Planktonic Ecosystem

ZHANG Wuchang 1, ZHANG Cuixia 1,2, XIAO Tian 1   

  1. 1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology,Chinese Academy of Sciences, Qingdao 266071, China;  2.Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2009-01-07 Revised:2009-06-11 Online:2009-11-10 Published:2001-11-10

小型浮游动物在海洋生态系统中的作用,主要指有多少能量通过小型浮游动物传递到桡足类,从而比较沿“浮游植物→中型浮游动物”和“浮游植物+细菌→小型浮游动物→中型浮游动物”两条食物链到达中型浮游动物的能流大小。为达到这个目的,需要研究各个能流路径的传递效率,即能量在各个营养级(初级生产——小型浮游动物,细菌生产——小型浮游动物,小型浮游动物的生长率,小型浮游动物——中型浮游动物)的传递效率。综述了国内外对上述营养级传递效率的研究现状,以期为我国的同类研究提供参考。浮游植物初级生产力被小型浮游动物摄食的比例平均为每天60%~75%,大大高于桡足类对浮游植物初级生产力的摄食压力每天10%。海洋浮游细菌的二次生产力相当于初级生产力的30%。其中80%~180%被小型浮游动物摄食。小型浮游动物的毛生长率为30%~40%,生产力是初级生产力的21%~34%。在西班牙西北部沿海,桡足类每天摄食2%~51%小型浮游动物生产力。因此,桡足类通过微食物网摄食的能量是初级生产力的0.4%~17%,与桡足类摄食初级生产的10%处于同一量级。不考虑碎屑提供的能流,小型浮游动物对桡足类饵料的贡献为20%以上,甚至可高达50%。

Microzooplankton is heterotrophic planktons in the size range of 0~200 mm. They graze on the phytoplankton primary production and bacteria production. At the same time, they are food items of planktonic copepods. Role of microzooplankton in marine pelagic ecosystem is (1) the magnitude of energy transferred from microzooplankton to copepods and (2) the contribution of microzooplankton to the food item (microzooplankton and phytoplankton) of copepods. The energy transfer efficiencies between every trophic level (primary production-microzooplankton, bacterial secondary productionmicrozooplankton, microzooplankton growth efficiency, microzooplankton-mesozooplankton) should be studied. This paper reviewed the status of above mentioned energy transfer efficiencies in order to provide references to microzooplankton studies in China. About 60%~75% of Phyplankton primary production is grazed by microzooplankton per day. This value is significantly larger than grazing pressure by copepods (10% d-1). The secondary production of marine planktonic bacteria equals 30% of primary production. About 80%~180% of the bacteria production was grazed by microzooplankton. The gross growth efficiency (GGE) of microzooplankton is 30%~40%. Therefore, microzoopolankton production is 21%~34% of the primary production. Copepods grazing pressure on microzooplankton production is 2%~51% per day (north coastal Spain). Thus, energy flow from microbial food web to copepod should be 0.4%~17% of the primary production, which is in the same level with the contribution of primary production. If the contribution of detritus was not considered, microzooplankton contributed more than 20% (some times as high as 50%) of the copepod food ingestion. Marine planktonic food web is a complex system. More studies are needed to elucidate every details of the production and transfer efficiency of every trophic level and, in the case of microzooplankton, of every group.

中图分类号: 


[1] Pomeroy L R. The ocean′s food web, a changing paradigm
[J].BioScience,1974, 24: 499-504.

[2] Murrell M C, Hollibaugh J T. Microzooplankton grazing in northern San Francisco Bay measured by the dilution method
[J].Aquatic Microbial Ecology,1998, 15(1): 53-63.

[3] Sherr E B, Sherr B F. Significance of predation by protists in aquatic microbial food webs
[J].Antonie Van Leeuwenhoek,2002, 81(1/4): 293-308.

[4] Ducklow H W. Production and fate of bacteria in the oceans
[J].BioScience,1983, 33: 494-501.

[5] Vadstein O, Stibor H, Lippert B, et al. Moderate increase in the biomass of omnivorous copepods may ease grazing control of planktonic algae
[J].Marine Ecology-Progress Series,2004, 270: 199-207.

[6] Sherr E B, Sherr B F. Heterotrophic dinoilagellates: A significant component of microzooplankton biomass and major grazers of diatoms in the sea
[J].Marine Ecology-Progress Series, 2007, 352:187-197.

[7] Fenchel T. Ecology of protozoa: The Biology of Free Living Phagotrophic Protists
[M]. Madison: Science Tech Publications, 1987.

[8] Jonnson P R. Particle size selection, feeding rates and growth dynamics of marine heterotrophic planktonic oligotrichous ciliates
[J].Marine Ecology-Progress Series,1986, 33: 568-572.

[9] Lessard E J, Swift E. Dinoflagellates from the North Atlantic classified as phototrophic or heterotrophic by epifluorescence microscopy
[J].Journal of Plankton Research,1986,8:1 209-1 215.

[10] Lessard E J, Swift E. Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique
[J].Marine Biology, 1985, 87: 289-296.

[11] Landry M R, Hassett R P. Estimating the grazing impact of marine micro-zooplankton
[J].Marine Biology,1982, 67:283-288.

[12] Bamstedt U, Gifford D J, Irigoien X, et al. Feeding
[C]Harris R P, Wiebe P H, lenz J, eds. Zooplankton Methodology Manual. San Diego: Academic Press, 2000: 314-316.

[13] Calbet A, Landry M R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems
[J]. Limnology and Oceanography, 2004, 49(1): 51-57.

[14] Liu H, Dagg M. Interactions between nutrients, phytoplankton growth, and micro- and mesozooplankton grazing in the plume of the Mississippi River
[J]. Marine Ecology-Progress Series, 2003, 258: 31-42.

[15] Palomares-Garcial R, Bustillos-Guzman J J, Lopez-Cortes D. Pigment-specific rates of phytoplankton growth and microzooplankton grazing in a subtropical lagoon
[J]. Journal of Plankton Research, 2006, 28(12): 1 217-1 232.

[16] Putland J N. Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter
[J]. Journal of Plankton Research, 2000, 22(2): 253-277.

[17] Worden A Z, Binder B J. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments
[J]. Aquatic Microbial Ecology, 2003, 30(2):159-174.

[18] Umani S F, Beran A. Seasonal variations in the dynamics of microbial plankton communities: First estimates from experiments in the Gulf of Trieste, Northern Adriatic Sea
[J]. Marine Ecology-Progress Series, 2003, 247: 1-16.

[19] Shinada A, Ban S, Ikeda T. Seasonal changes in nano/micro-zooplankton herbivory and heterotrophic nano-flagellates bacterivory off Cape Esan, southwestern Hokkaido, Japan
[J]. Journal of Oceanography, 2003, 59(5): 609-618.

[20] Xiao Tian. The study on marine bacterioplankton ecology
[J]. Advances in Earth Science, 2001, 16(1): 60-64.
[肖天. 海洋浮游细菌的生态学研究
[J]. 地球科学进展, 2001, 16(1): 60-64.]

[21] Baretta-Bekker J G, Baretta J W, Rasmussen E K. The microbial food web in the European regional seas ecosystem model
[J]. Netherlands Journal of Sea Research, 1995, 33: 363-379.

[22] Robinson C, Williams P J L. Plankton net community production and dark respiration in the Arabian Sea during September 1994
[J]. Deep-Sea Research, 1999,46(3/4): 745-765.

[23] Caron D A, Goldman J C, Fenchel T. Protozoan respiration and metabolism
[C]Capriulo G M, ed. Ecology of Marine Protozoa. Oxford: Oxford University Press, 1990: 307-322.

[24] Uye S, Nagano N, Tamaki H. Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the inland sea of Japan
[J]. Journal of Oceanography, 1996, 52: 689-703.

[25] Batten S D, Fileman E S, Halvorsen E. The contribution of microzooplankton to the diet of mesozooplankton in an upwelling filament off the north west coast of Spain
[J]. Progress in Oceanography, 2001, 51(2/4): 385-398.

[26] Straile D. Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group
[J]. Limnology and Oceanography, 1997, 42(6):1 375-1 385.

[27] McManus G. Flow analysis of a planktonic microbial food web model
[J]. Marine Microbial Food Webs, 1991, 5(1): 145-160.

[28] Muren H, Berglund J, Samuelsson, et al. Potential effects of elevated sea-water temperature on pelagic food webs
[J]. Hydrobiologia, 2005, 545: 153-166.

[29] Newell R C, Linley E A S. Significance of microheterotrophs in the decomposition of phytoplankton: Estimates of carbon and nitrogen flow based on the biomass of plankton communities
[J]. Marine Ecology-Progress Series, 1984, 16: 105-119.

[30] Landry M R, Calbet A. Microzooplankton production in the oceans
[J]. ICES Journal of Marine Science, 2004, 61: 501-507.

[31] Zeng Xiangbo, Huang Bangqin, Chen Jixin, et al. Grazing impact of microzooplankton on algal bloom in the Taiwan Strait in summer
[J]. Acta Oceanologica Sinica, 2006, 28(5): 107-116.
[曾祥波,黄邦钦,陈纪新,等.台湾海峡小型浮游动物的摄食对夏季藻华的影响
[J]. 海洋学报, 2006, 28(5): 107-116.]

[32] Berk S G, Brownlee D C, Heinle D R, et al. Ciliates as a food source for marine planktonic copepods
[J]. Microbial Ecology, 1977, 4: 27-40.

[33] Suzuki K, Nakamura Y, Hiromi J. Feeding by the small calanoid copepod Paracalanus sp on heterotrophic dinoflagellates and ciliates
[J]. Aquatic Microbial Ecology, 1999, 17(1): 99-103.

[34] Calbet A, Saiz E. The ciliate-copepod link in marine ecosystems
[J]. Aquatic Microbial Ecology, 2005, 38(2): 157-167.

[35] Dolan J R, McKeon K. The reliability of grazing rate estimates from dilution experiments: Have we over-estimated rates of organic carbon consumption by microzooplankton?
[J]. Ocean Science, 2005, 1: 1-7.

[36] Reckermann M, Veldhuis M J W. Trophic interactions between picophytoplankton and micro-and nanozooplankton in the western Arabian Sea during the NE monsoon 1993
[J]. Aquatic Microbial Ecology, 1997, 12(3): 263-273.

[37] Lessard E J, Murrell M C. Microzooplankton herbivory and phytoplankton growth in the northwestern Sargasso Sea
[J]. Aquatic Microbial Ecology, 1998, 16(2): 173-188.

[38] Calbet A, Trepat I, Almeda R, et al. Impact of micro- and nanograzers on phytoplankton assessed by standard and size-fractionated dilution grazing experiments
[J]. Aquatic Microbial Ecology, 2008, 50(2): 145-156.

[39] Zhang W, Wang R. Summertime ciliate and copepod nauplii distributions and micro-zooplankton herbivorous activity in the Laizhou Bay, Bohai Sea, China
[J]. Estuarine Coastal and Shelf Science, 2000, 51(1): 103-114.

[40] Zhang Wuchang, Wang Rong. Microzooplankton and their grazing pressure on phytoplankton in Bohai Sea
[J]. Oceanologia et Limnologia Sinica, 2000, 31(3): 252-258.
[张武昌,王荣. 渤海微型浮游动物及其对浮游植物的摄食压力
[J]. 海洋与湖沼, 2000, 31(3): 252-258.]

[41] Zhang W C, Xu K D, Wan R J, et al. Spatial distribution of ciliates, copepod nauplii and eggs, Engraulis japonicus post-larvae and microzooplankton herbivorous activity in the Yellow Sea, China
[J]. Aquatic Microbial Ecology, 2002, 27(3): 249-259.

[42] Sun Jun, Dawson J, Liu Dongyan. Microzooplankton grazing on phytoplankton in summer in the Jiaozhou Bay, China
[J]. Chinese Journal of Applied Ecology, 2004, 15(7): 1 245-1 252.
[孙军, Dawson J, 刘东燕. 夏季胶州湾微型浮游动物摄食初步研究
[J]. 应用生态学报, 2004, 15(7): 1 245-1 252.]

[43] Sun Jun, Liu Dongyan, Wang Zongling, et al. Microzooplankton herbivory during red tide-frequent-occurence period in spring in the East China Sea
[J]. Chinese Journal of Applied Ecology, 2003, 14(7): 1 073-1 080.
[孙军,刘东燕,王宗灵,等.春季赤潮频发期东海微型浮游动物摄食研究
[J]. 应用生态学报, 2003, 14(7): 1  073-1 080.]

[44] Liu Zhensheng, Wang Chunsheng, Zhang Zhinan, et al. Seasonal dynamics of zooplankton and microzooplankton grazing impact in Sanmen Bay, China
[J]. Acta Ecologica Sinica, 2006, 26(12): 3 931-3 941.
[刘镇盛,王春生,张志南,等. 三门湾浮游动物的季节变动及微型浮游动物摄食研究
[J]. 生态学报, 2006, 26(12): 3 931-3 941.]

[45] Liu Zhensheng, Wang Chunsheng, Zhang Zhinan, et al. Seasonal dynamics and grazing rate of zooplankton in the Yueqing Bay
[J]. Acta Ecologica Sinica, 2005, 25(8): 1 853-1 862.
[刘镇盛,王春生,张志南,等. 乐清湾浮游动物的季节变动及摄食研究率
[J]. 生态学报, 2005, 25(8): 1 853-1 862.]

[46] Zhang W C, Li H B, Xiao T, et al. Impact of microzooplankton and copepods on the growth of phytoplankton in the Yellow Sea and East China Sea
[J]. Hydrobiologia, 2006, 553: 357-366.

[47] Chiang K, Lin C, Lee C, et al. The coupling of oligotrich ciliate populations and hydrography in the East China Sea: Spatial and temporal variations
[J]. Deep-Sea Research II, 2003, 50:1 279-1 293.

[48] Ota T, Taniguchi A. Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration
[J]. Deep-Sea Research II, 2003, 50: 423-442.

[49] Zeng Xiangbo, Huang Bangqin. The role of microzooplankton in the carbon cycle in the Xiamen Harbor in winter
[J].Journal of Jimei University(Natural Science), 2005, 10(4): 289-296.
[曾祥波,黄邦钦. 厦门港西海域冬季微型浮游动物在碳循环中的作用
[J]. 集美大学学报, 2005, 10(4): 289-296.]

[50] Zeng Xiangbo, Huang Bangqin. Grazing pressure and production of microzooplankton in Southern Taiwan Strait in summer
[J].Journal of Oceanography in Taiwan Strait, 2006, 25(1): 1-9.
[曾祥波,黄邦钦. 台湾海峡南部夏季微型浮游动物对浮游植物的摄食压力及其生产力
[J]. 台湾海峡, 2006, 25(1): 1-9.]

[51] Liu Yuan, Huang Bangqin, Cao Zhenrui, et al. Grazing pressure of microzooplankton on phytoplankton in Xiamen Waters
[J].Marine Environmental Science, 2005, 24(1): 9-12.
[刘媛,黄邦钦,曹振锐,等.厦门海域春夏季微型浮游动物对浮游植物的摄食压力初探
[J]. 海洋环境科学, 2005, 24(1): 9-12.]

[52] Shen Jinlan, Lin Yuanshao, Yang Shengyun, et al. Studies on grazing pressure of microzooplankton on phytoplankton in Xinglin shrimp pond in summer and winter
[J].Journal of Oceanography in Taiwan Strait, 2002, 21(1): 31-36.
[沈锦兰,林元烧,杨圣云,等.厦门杏林虾池夏冬季微型浮游动物对浮游植物的摄食压力
[J]. 台湾海峡, 2002, 21(1): 31-36.]

[53] Hwang J,Lo W T. The coupling of tintinnid ciliate community and hydrography in the coastal waters southwest of Taiwan
[J]. Journal of the Fisheries Society of Taiwan, 2002, 29(4): 334-342.

[54] Su Q, Huang L M, Tan Y H, et al. Preliminary study of microzooplankton grazing and community composition in the North of South China Sea in autumn
[J]. Marine Science Bulletin, 2007, 9(2): 43-53.

[55] Sun Jun, Song Xiuxian, Yin Kedong, et al. Preliminnary study of microzooplankton herbivory in Hong Kong in summer
[J]. Acta Ecologica Sinica, 2003, 23(4): 712-724.
[孙军,宋秀贤,殷克东,等.香港水域夏季微型浮游动物摄食研究
[J].生态学报, 2003, 23(4): 712-724.]

[56] Wang Xuefeng, Li Chunhou, Jia Xiaoping, et al. Study on the microzooplankton herbivory in winter and spring in the Daya Bay
[J].Marine Environmental Science,2006,25(suppl.1): 44-47.
[王学锋,李纯厚,贾晓平,等.大亚湾冬春季微型浮游动物摄食研究
[J]. 海洋环境科学, 2006, 25(增刊1): 44-47.]

[57] Sun Jun, Song Shuqun, Wang Dan, et al. The selective grazing of calanus sinicus during a karenia mikimotol bloom in the East China Sea
[J].Acta Ecologica Sinica,2007, 27(8): 3 302-3 315.
[孙军,宋书群,王丹,等.中华哲水蚤(Calanus Sinicus)对浮游植物和微型浮游动物的摄食速率估算
[J]. 生态学报, 2007, 27(8): 3 302-3 315.]

[1] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.
阅读次数
全文


摘要