地球科学进展 ›› 2021, Vol. 36 ›› Issue (3): 325 -334. doi: 10.11867/j.issn.1001-8166.2021.031

研究简报 上一篇    

大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展
闫雅妮 1 , 2 , 3( ), 张伟 1 , 2 , 3, 张俊文 4, 任亚雄 1 , 2 , 3, 赵志琦 1 , 2 , 3( )   
  1. 1.长安大学 地球科学与资源学院,陕西 西安 710054
    2.西部矿产资源与地质工程教育部重点实验室,陕西 西安 710054
    3.长安大学成矿作用及动力学实验室,陕西 西安 710054
    4.天津大学 地球系统科学学院,天津 300072
  • 收稿日期:2020-10-03 修回日期:2021-01-06 出版日期:2021-04-30
  • 通讯作者: 赵志琦 E-mail:2019027015@chd.edu.cn;zhaozhiqi@chd.edu.cn
  • 基金资助:
    国家自然科学基金项目“玄武岩和花岗岩风化过程的Li、Mg同位素分馏机理研究”(41930863);长安大学中央高校基本科研项目“河套平原黄土与黄河相互作用之环境影响研究”(300102278302)

Advances in Magnesium Isotope Geochemistry During Weathering of Continental Silicate Rocks

Yani YAN 1 , 2 , 3( ), Wei ZHANG 1 , 2 , 3, Junwen ZHANG 4, Yaxiong REN 1 , 2 , 3, Zhiqi ZHAO 1 , 2 , 3( )   

  1. 1.School of Earth Science and Resources,Chang'an University,Xi'an 710054,China
    2.Key Laboratory of Western Mineral Resources and Geological Engineering Ministry of Education of China,Xi'an 710054,China
    3.Laboratory of Mineralization and Dynamics,Chang'an University,Xi'an 710054,China
    4.School of Earth System Science,Tianjin University,Tianjin 300072,China
  • Received:2020-10-03 Revised:2021-01-06 Online:2021-04-30 Published:2021-04-30
  • Contact: Zhiqi ZHAO E-mail:2019027015@chd.edu.cn;zhaozhiqi@chd.edu.cn
  • About author:YAN Yani (1990-), female, Hanzhong City, Shaanxi Province, Ph.D student. Research areas include isotopic geochemical. E-mail: 2019027015@chd.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Mechanism research for the isotopic fractionation of lithium and magnesium during the weathering of basalt and granite"(41930863);The Special Fund for Basic Scientific Research of Central Colleges, Chang’ an University "Research on the environmental impact of the interaction between the loess in the Hetao Plain and the Yellow River"(300102278302)

Mg同位素体系被证明在示踪硅酸盐矿物风化方面颇具优势。通过总结近年来大陆硅酸盐风化过程中Mg同位素地球化学的研究,归纳出以下认识: 化学风化方面,原生矿物溶解使得液相的Mg同位素组成变轻,而固相残留的Mg同位素组成变重;次生矿物中含有两种形态的Mg(交换态Mg和结构态Mg),二者δ26Mg不同,次生矿物形成过程中Mg同位素分馏方向与矿物种类、结构和形成机制等因素有关;黏土矿物吸附和解吸Mg2+引起Mg同位素分馏,但方向尚不确定;土壤可交换复合物倾向于优先吸附和解吸26Mg。 物理风化方面,水流、风等造成的矿物分选会引起风化产物Mg同位素组成发生变化。 植物—土壤体系Mg同位素的分馏很小。目前,大陆硅酸盐风化中一些重要过程的Mg同位素地球化学行为还存在争议,亟待通过室内试验、模拟计算,以及与其他同位素联用等途径完善理论基础,推动Mg同位素在示踪大陆风化中的广泛应用。

The magnesium (Mg) isotope system has been proved to be quite advantageous in tracking silicate weathering. By summarizing the researches about Mg isotope geochemistry in the process of continental silicate weathering, the following cognitions are summarized: In terms of chemical weathering, dissolution of primary minerals makes the Mg isotopic composition of the liquid phase lighter and the residual solid phase heavier. The secondary minerals contain two forms of Mg (exchangeable Mg and structural Mg) with different δ26Mg. During the formation of secondary minerals, the Mg isotope fractionation direction is related to their types,structures and formation mechanisms. When Mg2+ isadsorbed and desorbed by clay minerals, the Mg isotope fractionation direction is still uncertain. However, compared to 24Mg, 26Mg preferentially tends to be adsorbed and desorbed by the soil exchange complex. In terms of physical weathering, mineral separation caused by water and wind will change the Mg isotope composition of weathering products. In plant-soil system, the degree of Mg isotope fractionation is very small. At present, in some important processes of continental silicate weathering, the Mg isotope geochemical behavior is still controversial. Therefore, laboratory tests, simulation calculations, and the combination with other isotopes are needed urgently to consummate the theoretical basis, so as to promote the widespread application of Mg isotopes in the tracking of continental weathering.

中图分类号: 

图1 天然储库的δ26Mg[ 27 , 28 ]
Fig.1 δ26Mg values of natural reservoirs[ 27 , 28 ]
图1 天然储库的δ26Mg[ 27 , 28 ]
Fig.1 δ26Mg values of natural reservoirs[ 27 , 28 ]
图2 不同岩性原岩风化产物的δ26Mg值(纵坐标参考文献代表数据来源)
Fig.2 Weathering products δ26Mg values of the different lithologies rocks (The ordinate references represent data sources)
图2 不同岩性原岩风化产物的δ26Mg值(纵坐标参考文献代表数据来源)
Fig.2 Weathering products δ26Mg values of the different lithologies rocks (The ordinate references represent data sources)
图3 主要富Mg硅酸盐原生矿物的δ26Mg[ 28 , 58 ]
Fig.3 The δ26Mg of primary Mg-rich silicate minerals[ 28 , 58 ]
图3 主要富Mg硅酸盐原生矿物的δ26Mg[ 28 , 58 ]
Fig.3 The δ26Mg of primary Mg-rich silicate minerals[ 28 , 58 ]
图4 四面体—八面体—四面体(TOT)层状结构中Mg的分布及δ26Mg的特征[ 28 ]
Fig.4 The distribution and the characteristic of Mg and δ26Mg in Tetrahedra-Octahedra-Tetrahedra (TOT) layered structure[ 28 ]
图4 四面体—八面体—四面体(TOT)层状结构中Mg的分布及δ26Mg的特征[ 28 ]
Fig.4 The distribution and the characteristic of Mg and δ26Mg in Tetrahedra-Octahedra-Tetrahedra (TOT) layered structure[ 28 ]
1 MEIJA J, COPLEN T B, BERGLUND M, et al. Isotopic compositions of the elements 2013(IUPAC technical Report)[J]. Pure and Applied Chemistry, 2016, 88(3): 293-306.
MEIJA J, COPLEN T B, BERGLUND M, et al. Isotopic compositions of the elements 2013(IUPAC technical Report)[J]. Pure and Applied Chemistry, 2016, 88(3): 293-306.
2 GALY A, YOUNG E D, ASH R D, et al. The formation of chondrules at high gas pressures in the solar nebula[J]. Science, 2000, 290(5 497): 1 751-1 753.
GALY A, YOUNG E D, ASH R D, et al. The formation of chondrules at high gas pressures in the solar nebula[J]. Science, 2000, 290(5 497): 1 751-1 753.
3 GALY A, BELSHAW N S, HALICZ L, et al.High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry[J]. International Journal of Mass Spectrometry, 2001, 208(1): 89-98.
GALY A, BELSHAW N S, HALICZ L, et al.High-precision measurement of magnesium isotopes by multiple-collector inductively coupled plasma mass spectrometry[J]. International Journal of Mass Spectrometry, 2001, 208(1): 89-98.
4 DE VILLIERS S, DICKSON J A D, ELLAM R M. The composition of the continental river weathering flux deduced from seawater Mg isotopes[J]. Chemical Geology, 2005, 216(1/2): 133-142.
DE VILLIERS S, DICKSON J A D, ELLAM R M. The composition of the continental river weathering flux deduced from seawater Mg isotopes[J]. Chemical Geology, 2005, 216(1/2): 133-142.
5 SHEN B, JACOBSEN B, LEE C T A, et al. The Mg isotopic systematic of granitoids in continental arcs and implications for the role of chemical weathering in crust formation[J]. Proceedings of the National Academy of Sciences, 2009, 106(49):20 652-20 657.
SHEN B, JACOBSEN B, LEE C T A, et al. The Mg isotopic systematic of granitoids in continental arcs and implications for the role of chemical weathering in crust formation[J]. Proceedings of the National Academy of Sciences, 2009, 106(49):20 652-20 657.
6 SUN Jian, FANG Nan, LI Shizhen, et al. Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit[J].Acta Petrologica Sinica, 2012,28(9): 2 890-2 902.
SUN Jian, FANG Nan, LI Shizhen, et al. Magnesium isotopic constraints on the genesis of Bayan Obo ore deposit[J].Acta Petrologica Sinica, 2012,28(9): 2 890-2 902.
孙剑, 房楠, 李世珍, 等. 白云鄂博矿床成因的Mg同位素制约[J]. 岩石学报, 2011, 28(9):2 890-2 902.
孙剑, 房楠, 李世珍, 等. 白云鄂博矿床成因的Mg同位素制约[J]. 岩石学报, 2011, 28(9):2 890-2 902.
7 HUANG K J, TENG F Z, ELSENOUY A, et al. Magnesium isotopic variations in loess: Origins and implications[J]. Earth and Planetary Science Letters, 2013, 374: 60-70.
HUANG K J, TENG F Z, ELSENOUY A, et al. Magnesium isotopic variations in loess: Origins and implications[J]. Earth and Planetary Science Letters, 2013, 374: 60-70.
8 WANG S J, TENG F Z, LI S G, et al. Magnesium isotopic systematics of mafic rocks during continental subduction[J]. Geochimica et Cosmochimica Acta, 2014, 143: 34-48.
WANG S J, TENG F Z, LI S G, et al. Magnesium isotopic systematics of mafic rocks during continental subduction[J]. Geochimica et Cosmochimica Acta, 2014, 143: 34-48.
9 HU Y, TENG F Z, ZHANG H F, et al. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites[J]. Geochimica et Cosmochimica Acta, 2016, 185: 88-111.
HU Y, TENG F Z, ZHANG H F, et al. Metasomatism-induced mantle magnesium isotopic heterogeneity: Evidence from pyroxenites[J]. Geochimica et Cosmochimica Acta, 2016, 185: 88-111.
10 DONG Aiguo, HAN Guilin. A review of magnesium isotope system in rivers[J]. Advances in Earth Science, 2017, 32(8): 800-809.
DONG Aiguo, HAN Guilin. A review of magnesium isotope system in rivers[J]. Advances in Earth Science, 2017, 32(8): 800-809.
董爱国, 韩贵琳.镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
董爱国, 韩贵琳.镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
11 TIAN H C, YANG W, LI S G, et al. Low δ26Mg volcanic rocks of Tengchong in Southwestern China: A deep carbon cycle induced by supercritical liquids[J]. Geochimica et Cosmochimica Acta, 2018, 240: 191-219.
TIAN H C, YANG W, LI S G, et al. Low δ26Mg volcanic rocks of Tengchong in Southwestern China: A deep carbon cycle induced by supercritical liquids[J]. Geochimica et Cosmochimica Acta, 2018, 240: 191-219.
12 SU B X, HU Y, TENG F Z, et al. Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism[J]. Earth and Planetary Science Letters, 2019, 522: 79-86.
SU B X, HU Y, TENG F Z, et al. Light Mg isotopes in mantle-derived lavas caused by chromite crystallization, instead of carbonatite metasomatism[J]. Earth and Planetary Science Letters, 2019, 522: 79-86.
13 CHEN Y X, DEMÉNY A, SCHERTL H P, et al. Tracing subduction zone fluids with distinct Mg isotope compositions: Insights from high-pressure metasomatic rocks (leucophyllites) from the Eastern Alps[J]. Geochimica et Cosmochimica Acta, 2020, 271: 154-178.
CHEN Y X, DEMéNY A, SCHERTL H P, et al. Tracing subduction zone fluids with distinct Mg isotope compositions: Insights from high-pressure metasomatic rocks (leucophyllites) from the Eastern Alps[J]. Geochimica et Cosmochimica Acta, 2020, 271: 154-178.
14 LI L B, ZHANG F, JIN Z D, et al. Riverine Mg isotopes response to glacial weathering within the Muztag catchment of the eastern Pamir Plateau[J]. Applied Geochemistry, 2020, 118:1-13.
LI L B, ZHANG F, JIN Z D, et al. Riverine Mg isotopes response to glacial weathering within the Muztag catchment of the eastern Pamir Plateau[J]. Applied Geochemistry, 2020, 118:1-13.
15 BERG R D, SOLOMON E A, TENG F Z. The role of marine sediment diagenesis in the modern oceanic magnesium cycle[J]. Nature Communications, 2019, 10(1):1-10.
BERG R D, SOLOMON E A, TENG F Z. The role of marine sediment diagenesis in the modern oceanic magnesium cycle[J]. Nature Communications, 2019, 10(1):1-10.
16 CHEN X Y, TENG F Z, HUANG K J, et al. Intensified chemical weathering during Early Triassic revealed by magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2020, 287. DOI: 10.1016/j.gca.2020.02.035.
CHEN X Y, TENG F Z, HUANG K J, et al. Intensified chemical weathering during Early Triassic revealed by magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2020, 287. DOI: 10.1016/j.gca.2020.02.035.
doi: 10.1016/j.gca.2020.02.035    
17 LI J, HAO C, WANG Z, et al. Continental weathering intensity during the termination of the Marinoan Snowball Earth: Mg isotope evidence from the basal Doushantuo cap carbonate in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 552. DOI: 10.1016/j.palaeo.2020.109774.
LI J, HAO C, WANG Z, et al. Continental weathering intensity during the termination of the Marinoan Snowball Earth: Mg isotope evidence from the basal Doushantuo cap carbonate in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 552. DOI: 10.1016/j.palaeo.2020.109774.
doi: 10.1016/j.palaeo.2020.109774    
18 CHEN Jun, YANG Jiedong, LI Chunlei. The continental weathering and the global climatic change[J]. Advances in Earth Science, 2001, 16(3): 399-405.
CHEN Jun, YANG Jiedong, LI Chunlei. The continental weathering and the global climatic change[J]. Advances in Earth Science, 2001, 16(3): 399-405.
陈骏,杨杰东,李春雷.大陆风化与全球气候变化[J].地球科学进展,2001, 16(3): 399-405.
陈骏,杨杰东,李春雷.大陆风化与全球气候变化[J].地球科学进展,2001, 16(3): 399-405.
19 RIEBE C S, KIRCHNER J W, FINKEL R C. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance[J]. Geochimica et Cosmochimica Acta, 2003, 67(22):4 411-4 427.
RIEBE C S, KIRCHNER J W, FINKEL R C. Long-term rates of chemical weathering and physical erosion from cosmogenic nuclides and geochemical mass balance[J]. Geochimica et Cosmochimica Acta, 2003, 67(22):4 411-4 427.
20 DESSERT C, DUPRÉ B, GAILLARDET J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle [J]. Chemical Geology, 2003, 202(3/4): 257-273.
DESSERT C, DUPRé B, GAILLARDET J, et al. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle [J]. Chemical Geology, 2003, 202(3/4): 257-273.
21 RUBIN A E, COOPER K M, TILL C B, et al. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals [J]. Science, 2017, 356(6 343): 1 154-1 156.
RUBIN A E, COOPER K M, TILL C B, et al. Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals [J]. Science, 2017, 356(6 343): 1 154-1 156.
22 LIU X M, TENG F Z, RUDNICK R L, et al. Massive magnesium depletion and isotope fractionation in weathered basalts[J]. Geochimica et Cosmochimica Acta, 2014, 135: 336-349.
LIU X M, TENG F Z, RUDNICK R L, et al. Massive magnesium depletion and isotope fractionation in weathered basalts[J]. Geochimica et Cosmochimica Acta, 2014, 135: 336-349.
23 YOUNG E D, GALY A. The isotope geochemistry and cosmochemistry of magnesium[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 197-230.
YOUNG E D, GALY A. The isotope geochemistry and cosmochemistry of magnesium[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 197-230.
24 TENG F Z. Magnesium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1):219-287.
TENG F Z. Magnesium isotope geochemistry[J]. Reviews in Mineralogy and Geochemistry, 2017, 82(1):219-287.
25 TENG F Z, WANG S, MOYNIER F. Tracing the formation and differentiation of the Earth by non-traditional stable isotopes[J]. Science China Earth Sciences, 2019, 62(11): 1 702-1 715.
TENG F Z, WANG S, MOYNIER F. Tracing the formation and differentiation of the Earth by non-traditional stable isotopes[J]. Science China Earth Sciences, 2019, 62(11): 1 702-1 715.
26 GALY A, YOFFE O, JANNEY P E, et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J]. Journal of Analytical Atomic Spectrometry,2003,18(11): 1 352-1 356.
GALY A, YOFFE O, JANNEY P E, et al. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements[J]. Journal of Analytical Atomic Spectrometry,2003,18(11): 1 352-1 356.
27 GUO B, ZHU X, DONG A, et al. Mg isotopic systematic and geochemical applications: A critical review[J]. Journal of Asian Earth Sciences, 2019, 176: 368-385.
GUO B, ZHU X, DONG A, et al. Mg isotopic systematic and geochemical applications: A critical review[J]. Journal of Asian Earth Sciences, 2019, 176: 368-385.
28 TIPPER E T, GALY A, BICKLE M J. Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle [J]. Earth and Planetary Science Letters, 2006, 247(3/4): 267-279.
TIPPER E T, GALY A, BICKLE M J. Riverine evidence for a fractionated reservoir of Ca and Mg on the continents: Implications for the oceanic Ca cycle [J]. Earth and Planetary Science Letters, 2006, 247(3/4): 267-279.
29 LI W Y, TENG F Z, KE S, et al. Heterogeneous magnesium isotopic composition of the upper continental crust [J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 867-6 884.
LI W Y, TENG F Z, KE S, et al. Heterogeneous magnesium isotopic composition of the upper continental crust [J]. Geochimica et Cosmochimica Acta, 2010, 74(23): 6 867-6 884.
30 WIMPENNY J, YIN Q Z, TOLLSTRUP D, et al. Using Mg isotope ratios to trace Cenozoic weathering changes: A case study from the Chinese Loess Plateau[J]. Chemical Geology, 2014, 376: 31-43.
WIMPENNY J, YIN Q Z, TOLLSTRUP D, et al. Using Mg isotope ratios to trace Cenozoic weathering changes: A case study from the Chinese Loess Plateau[J]. Chemical Geology, 2014, 376: 31-43.
31 SCHAUBLE E A. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium (2+) crystals [J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 844-869.
SCHAUBLE E A. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium (2+) crystals [J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 844-869.
32 HUANG Kangjun. The behavior of Mg isotopes during low-temperature water-rock interactions processes[D]. Wuhan: China University of Geoscience(Wuhan),2013.
HUANG Kangjun. The behavior of Mg isotopes during low-temperature water-rock interactions processes[D]. Wuhan: China University of Geoscience(Wuhan),2013.
黄康俊. 低温水—岩相互作用过程中镁同位素的行为研究[D]. 武汉: 中国地质大学(武汉),2013.
黄康俊. 低温水—岩相互作用过程中镁同位素的行为研究[D]. 武汉: 中国地质大学(武汉),2013.
33 HIGGINS J A, SCHRAG D P. Constraining magnesium cycling in marine sediments using magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5 039-5 053.
HIGGINS J A, SCHRAG D P. Constraining magnesium cycling in marine sediments using magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2010, 74(17): 5 039-5 053.
34 IMMENHAUSER A, BUHL D, RICHTER D, et al. Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave—Field study and experiments[J]. Geochimica et Cosmochimica Acta, 2010, 74(15): 4 346-4 364.
IMMENHAUSER A, BUHL D, RICHTER D, et al. Magnesium-isotope fractionation during low-Mg calcite precipitation in a limestone cave—Field study and experiments[J]. Geochimica et Cosmochimica Acta, 2010, 74(15): 4 346-4 364.
35 POKROVSKY B G, MAVROMATIS V, POKROVSKY O S. Co-variation of Mg and C isotopes in late Precambrian carbonates of the Siberian Platform: A new tool for tracing the change in weathering regime?[J]. Chemical Geology, 2011, 290(1/2): 67-74.
POKROVSKY B G, MAVROMATIS V, POKROVSKY O S. Co-variation of Mg and C isotopes in late Precambrian carbonates of the Siberian Platform: A new tool for tracing the change in weathering regime?[J]. Chemical Geology, 2011, 290(1/2): 67-74.
36 OPFERGELT S, GEORG R, DELVAUX B, et al. Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences,Guadeloupe[J]. Earth and Planetary Science Letters,2012,341:176-185.
OPFERGELT S, GEORG R, DELVAUX B, et al. Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences,Guadeloupe[J]. Earth and Planetary Science Letters,2012,341:176-185.
37 BRENOT A, CLOQUET C, VIGIER N, et al. Magnesium isotope systematics of the lithologically varied Moselle river basin, France[J]. Geochimica et Cosmochimica Acta, 2008, 72(20): 5 070-5 089.
BRENOT A, CLOQUET C, VIGIER N, et al. Magnesium isotope systematics of the lithologically varied Moselle river basin, France[J]. Geochimica et Cosmochimica Acta, 2008, 72(20): 5 070-5 089.
38 TIPPER E T, GALY A, GAILLARDET J, et al. The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 241-253.
TIPPER E T, GALY A, GAILLARDET J, et al. The magnesium isotope budget of the modern ocean: Constraints from riverine magnesium isotope ratios[J]. Earth and Planetary Science Letters, 2006, 250(1/2): 241-253.
39 TIPPER E T, GALY A, BICKLE M J. Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionation control?[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1 057-1 075.
TIPPER E T, GALY A, BICKLE M J. Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionation control?[J]. Geochimica et Cosmochimica Acta, 2008, 72(4): 1 057-1 075.
40 TIPPER E T, CALMELS D, GAILLARDET J, et al. Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering[J]. Earth and Planetary Science Letters, 2012, 333: 35-45.
TIPPER E T, CALMELS D, GAILLARDET J, et al. Positive correlation between Li and Mg isotope ratios in the river waters of the Mackenzie Basin challenges the interpretation of apparent isotopic fractionation during weathering[J]. Earth and Planetary Science Letters, 2012, 333: 35-45.
41 TIPPER E T, LEMARCHAND E, HINDSHAW R S, et al. Seasonal sensitivity of weathering processes: Hints from magnesium isotopes in a glacial stream[J]. Chemical Geology, 2012, 312: 80-92.
TIPPER E T, LEMARCHAND E, HINDSHAW R S, et al. Seasonal sensitivity of weathering processes: Hints from magnesium isotopes in a glacial stream[J]. Chemical Geology, 2012, 312: 80-92.
42 FOSTER G L, POGGE VON STRANDMANN P A E, RAE J W B. Boron and magnesium isotopic composition of seawater[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8) : 253-274.
FOSTER G L, POGGE VON STRANDMANN P A E, RAE J W B. Boron and magnesium isotopic composition of seawater[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8) : 253-274.
43 LING M X, SEDAGHATPOUR F, TENG F Z, et al. Homogeneous Magnesium isotopic composition of seawater: An excellent geostandard for Mg isotope analysis[J]. Rapid Communications in Mass Spectrometry,2011,25(19): 2 828-2 836.
LING M X, SEDAGHATPOUR F, TENG F Z, et al. Homogeneous Magnesium isotopic composition of seawater: An excellent geostandard for Mg isotope analysis[J]. Rapid Communications in Mass Spectrometry,2011,25(19): 2 828-2 836.
44 HUANG K J, TENG F Z, WEI G J, et al. Adsorption-and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China[J]. Earth and Planetary Science Letters, 2012, 359: 73-83.
HUANG K J, TENG F Z, WEI G J, et al. Adsorption-and desorption-controlled magnesium isotope fractionation during extreme weathering of basalt in Hainan Island, China[J]. Earth and Planetary Science Letters, 2012, 359: 73-83.
45 POGGE VON STRANDMAN P A E, OPFERGELT S, LAI Y J, et al. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland[J]. Earth and Planetary Science Letters, 2012, 339: 11-23.
POGGE VON STRANDMAN P A E, OPFERGELT S, LAI Y J, et al. Lithium, magnesium and silicon isotope behaviour accompanying weathering in a basaltic soil and pore water profile in Iceland[J]. Earth and Planetary Science Letters, 2012, 339: 11-23.
46 OPFERGELT S, BURTON K W, GEORG R B, et al. Magnesium retention on the soil exchange complex controlling Mg isotope variations in soils, soil solutions and vegetation in volcanic soils, Iceland[J]. Geochimica et Cosmochimica Acta, 2014, 125: 110-130.
OPFERGELT S, BURTON K W, GEORG R B, et al. Magnesium retention on the soil exchange complex controlling Mg isotope variations in soils, soil solutions and vegetation in volcanic soils, Iceland[J]. Geochimica et Cosmochimica Acta, 2014, 125: 110-130.
47 GAO Ting. High-precision measurement of Mg isotopes and their geochemical behaviors during continental weathering[D]. Beijing: China University of Geoscience (Beijing), 2016.
GAO Ting. High-precision measurement of Mg isotopes and their geochemical behaviors during continental weathering[D]. Beijing: China University of Geoscience (Beijing), 2016.
高庭. Mg同位素的高精度测定及其在大陆风化过程中的地球化学行为[D].北京:中国地质大学(北京), 2016.
高庭. Mg同位素的高精度测定及其在大陆风化过程中的地球化学行为[D].北京:中国地质大学(北京), 2016.
48 BREWER A, TENG F Z, DETHIER D. Magnesium isotope fractionation during granite weathering[J]. Chemical Geology, 2018, 501: 95-103.
BREWER A, TENG F Z, DETHIER D. Magnesium isotope fractionation during granite weathering[J]. Chemical Geology, 2018, 501: 95-103.
49 LI M Y H, TENG F Z, ZHOU M F. Phyllosilicate controls on magnesium isotopic fractionation during weathering of granites: Implications for continental weathering and riverine system[J]. Earth and Planetary Science Letters, 2021, 553. DOI: 10.1016/j.epsl.2020.116613.
LI M Y H, TENG F Z, ZHOU M F. Phyllosilicate controls on magnesium isotopic fractionation during weathering of granites: Implications for continental weathering and riverine system[J]. Earth and Planetary Science Letters, 2021, 553. DOI: 10.1016/j.epsl.2020.116613.
doi: 10.1016/j.epsl.2020.116613    
50 MA L, TENG F Z, JIN L, et al. Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation[J]. Chemical Geology, 2015, 397: 37-50.
MA L, TENG F Z, JIN L, et al. Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: Accumulation of light Mg isotopes in soils by clay mineral transformation[J]. Chemical Geology, 2015, 397: 37-50.
51 TENG F Z, LI W Y, RUDNICK R L, et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters, 2010, 300 (1/2): 63-71.
TENG F Z, LI W Y, RUDNICK R L, et al. Contrasting lithium and magnesium isotope fractionation during continental weathering[J]. Earth and Planetary Science Letters, 2010, 300 (1/2): 63-71.
52 LARA M C, BUSS H L, POGGE VON STRANDMANN P A E, et al. The influence of critical zone processes on the Mg isotope budget in a tropical, highly weathered andesitic catchment[J]. Geochimica et Cosmochimica Acta, 2017, 202: 77-100.
LARA M C, BUSS H L, POGGE VON STRANDMANN P A E, et al. The influence of critical zone processes on the Mg isotope budget in a tropical, highly weathered andesitic catchment[J]. Geochimica et Cosmochimica Acta, 2017, 202: 77-100.
53 WIMPENNY J, GÍSLASON S R, JAMES R H, et al. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt[J]. Geochimica et Cosmochimica Acta, 2010, 74(18): 5 259-5 279.
WIMPENNY J, GíSLASON S R, JAMES R H, et al. The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt[J]. Geochimica et Cosmochimica Acta, 2010, 74(18): 5 259-5 279.
54 RYU J S, VIGIER N, DECARREAU A, et al. Experimental investigation of Mg isotope fractionation during mineral dissolution and clay formation[J]. Chemical Geology, 2016, 445:135-145.
RYU J S, VIGIER N, DECARREAU A, et al. Experimental investigation of Mg isotope fractionation during mineral dissolution and clay formation[J]. Chemical Geology, 2016, 445:135-145.
55 LAI Zheng, SU Ni, WU Zhouyang, et al. Stable strontium isotopic fractionation during chemical weathering in drainage basins:Mechanisms and applications[J]. Advances in Earth Science,2020,35(7):691-703.
LAI Zheng, SU Ni, WU Zhouyang, et al. Stable strontium isotopic fractionation during chemical weathering in drainage basins:Mechanisms and applications[J]. Advances in Earth Science,2020,35(7):691-703.
赖正,苏妮,吴舟扬,等. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展,2020,35(7):691-703.
赖正,苏妮,吴舟扬,等. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展,2020,35(7):691-703.
56 CUOZZO N, SLETTEN R S, HU Y, et al. Silicate weathering in Antarctic Ice-rich Permafrost: Insights using Magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2020, 278: 244-260.
CUOZZO N, SLETTEN R S, HU Y, et al. Silicate weathering in Antarctic Ice-rich Permafrost: Insights using Magnesium isotopes[J]. Geochimica et Cosmochimica Acta, 2020, 278: 244-260.
57 CHACKO T, COLE D R, HORITA J. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 1-81.
CHACKO T, COLE D R, HORITA J. Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems[J]. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 1-81.
58 LIU S A, TENG F Z, HE Y, et al. Investigation of magnesium isotope fractionation during granite differentiation: Implication for Mg isotopic composition of the continental crust[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 646-654.
LIU S A, TENG F Z, HE Y, et al. Investigation of magnesium isotope fractionation during granite differentiation: Implication for Mg isotopic composition of the continental crust[J]. Earth and Planetary Science Letters, 2010, 297(3/4): 646-654.
59 FAN Bailing, TAO Faxiang, ZHAO Zhiqi. Advance of geochemical applications of magnesium isotope in marine and earth surface environments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013 (1): 114-120.
FAN Bailing, TAO Faxiang, ZHAO Zhiqi. Advance of geochemical applications of magnesium isotope in marine and earth surface environments[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2013 (1): 114-120.
范百龄, 陶发祥, 赵志琦. 地表及海洋环境的镁同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2013 (1): 114-120.
范百龄, 陶发祥, 赵志琦. 地表及海洋环境的镁同位素地球化学研究进展[J]. 矿物岩石地球化学通报, 2013 (1): 114-120.
60 HANDLER M R, BAKER J A, SCHILLER M, et al. Magnesium stable isotope composition of Earth's upper mantle[J]. Earth and Planetary Science Letters, 2009, 282(1/4): 306-313.
HANDLER M R, BAKER J A, SCHILLER M, et al. Magnesium stable isotope composition of Earth's upper mantle[J]. Earth and Planetary Science Letters, 2009, 282(1/4): 306-313.
61 YOUNG E D, TONUI E, MANNING C E, et al. Spinel-olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth[J]. Earth and Planetary Science Letters, 2009, 288(3/4): 524-533.
YOUNG E D, TONUI E, MANNING C E, et al. Spinel-olivine magnesium isotope thermometry in the mantle and implications for the Mg isotopic composition of Earth[J]. Earth and Planetary Science Letters, 2009, 288(3/4): 524-533.
62 KE Shan, LIU Shengao, LI Wangye, et al. Advances and application in magnesium isotope geochemistry[J]. Acta Petrologica Sinica, 2011, 27(2): 383-397.
KE Shan, LIU Shengao, LI Wangye, et al. Advances and application in magnesium isotope geochemistry[J]. Acta Petrologica Sinica, 2011, 27(2): 383-397.
柯珊, 刘盛遨, 李王晔, 等. 镁同位素地球化学研究新进展及其应用[J]. 岩石学报, 2011, 27(2): 383-397.
柯珊, 刘盛遨, 李王晔, 等. 镁同位素地球化学研究新进展及其应用[J]. 岩石学报, 2011, 27(2): 383-397.
63 RYU J S, JACOBSON A D, HOLMDEN C, et al. The major ion, δ44/40Ca, δ44/42Ca, and δ26/24Mg geochemistry of granite weathering at pH=1 and T=25 °C: Power-law processes and the relative reactivity of minerals [J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 6 004-6 026.
RYU J S, JACOBSON A D, HOLMDEN C, et al. The major ion, δ44/40Ca, δ44/42Ca, and δ26/24Mg geochemistry of granite weathering at pH=1 and T=25 °C: Power-law processes and the relative reactivity of minerals [J]. Geochimica et Cosmochimica Acta, 2011, 75(20): 6 004-6 026.
64 CHEN Jun, WANG Henian. Geochemistry[M]. Beijing: Science Press, 2016: 273-280.
CHEN Jun, WANG Henian. Geochemistry[M]. Beijing: Science Press, 2016: 273-280.
陈骏,王鹤年. 地球化学[M]. 北京: 科学出版社, 2016: 273-280.
陈骏,王鹤年. 地球化学[M]. 北京: 科学出版社, 2016: 273-280.
65 WIMPENNY J, COLLA C A, YIN Q Z, et al. Investigating the behaviour of Mg isotopes during the formation of clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 128:178-194.
WIMPENNY J, COLLA C A, YIN Q Z, et al. Investigating the behaviour of Mg isotopes during the formation of clay minerals[J]. Geochimica et Cosmochimica Acta, 2014, 128:178-194.
66 GAO T, KE S, WANG S J, et al. Contrasting Mg isotopic compositions between Fe-Mn nodules and surrounding soils: Accumulation of light Mg isotopes by Mg-depleted clay minerals and Fe oxides [J]. Geochimica et Cosmochimica Acta, 2018, 237: 205-222.
GAO T, KE S, WANG S J, et al. Contrasting Mg isotopic compositions between Fe-Mn nodules and surrounding soils: Accumulation of light Mg isotopes by Mg-depleted clay minerals and Fe oxides [J]. Geochimica et Cosmochimica Acta, 2018, 237: 205-222.
67 DONG Aiguo, ZHU Xiangkun.Mg isotope geochemical cycle in supergene environment [J].Advances in Earth Science, 2016, 31(1): 43-58.
DONG Aiguo, ZHU Xiangkun.Mg isotope geochemical cycle in supergene environment [J].Advances in Earth Science, 2016, 31(1): 43-58.
董爱国,朱祥坤.表生环境中镁同位素的地球化学循环[J].地球科学进展, 2016, 31(1): 43-58.
董爱国,朱祥坤.表生环境中镁同位素的地球化学循环[J].地球科学进展, 2016, 31(1): 43-58.
68 POGGE VON STRANDMAN P A E, BURTON K W, JAMES R H, et al. The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain [J]. Earth and Planetary Science Letters, 2008, 276(1/2): 187-197.
POGGE VON STRANDMAN P A E, BURTON K W, JAMES R H, et al. The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain [J]. Earth and Planetary Science Letters, 2008, 276(1/2): 187-197.
69 HINDSHAWA R S, TOSCAB R, TOSCA N J, et al. Experimental constraints on Mg isotope fractionation during clay formation: Implications for the global biogeochemical cycle of Mg[J]. Earth and Planetary Science Letters, 2020. DOI: 10.1016/j.epsl.2019.115980.
HINDSHAWA R S, TOSCAB R, TOSCA N J, et al. Experimental constraints on Mg isotope fractionation during clay formation: Implications for the global biogeochemical cycle of Mg[J]. Earth and Planetary Science Letters, 2020. DOI: 10.1016/j.epsl.2019.115980.
doi: 10.1016/j.epsl.2019.115980    
70 LI W Q, BEARD B L, LI C, et al. Magnesium isotope fractionation between brucite [Mg(OH)2] and Mg aqueous species: Implications for silicate weathering and biogeochemical processes[J]. Earth and Planetary Science Letters, 2014, 394: 82-93.
LI W Q, BEARD B L, LI C, et al. Magnesium isotope fractionation between brucite [Mg(OH)2] and Mg aqueous species: Implications for silicate weathering and biogeochemical processes[J]. Earth and Planetary Science Letters, 2014, 394: 82-93.
71 LI Chen. Study of vermiculite adsorption to Ca and Mg metal ions[D]. Beijing: China University of Geoscience (Beijing), 2009.
LI Chen. Study of vermiculite adsorption to Ca and Mg metal ions[D]. Beijing: China University of Geoscience (Beijing), 2009.
李陈. 蛭石对钙镁阳离子的吸附性能探讨[D]. 北京:中国地质大学(北京), 2009.
李陈. 蛭石对钙镁阳离子的吸附性能探讨[D]. 北京:中国地质大学(北京), 2009.
72 FRIES D M, JAMES R H, DESSERT C, et al. The response of Li and Mg isotopes to rain events in a highly-weathered catchment[J]. Chemical Geology, 2019, 519: 68-82.
FRIES D M, JAMES R H, DESSERT C, et al. The response of Li and Mg isotopes to rain events in a highly-weathered catchment[J]. Chemical Geology, 2019, 519: 68-82.
73 MOULTON K L, WEST J, BERNER R A. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering[J]. American Journal of Science, 2000, 300(7): 539-570.
MOULTON K L, WEST J, BERNER R A. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering[J]. American Journal of Science, 2000, 300(7): 539-570.
74 BOLOU-BI E B, POSZWA A, LEYVAL C, et al. Experimental determination of magnesium isotope fractionation during higher plant growth[J]. Geochimica et Cosmochimica Acta, 2010, 74(9): 2 523-2 537.
BOLOU-BI E B, POSZWA A, LEYVAL C, et al. Experimental determination of magnesium isotope fractionation during higher plant growth[J]. Geochimica et Cosmochimica Acta, 2010, 74(9): 2 523-2 537.
75 BOLOU-BI E B, VIGIER N, POSZWA A, et al. Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France)[J]. Geochimica et Cosmochimica Acta, 2012, 87: 341-355.
BOLOU-BI E B, VIGIER N, POSZWA A, et al. Effects of biogeochemical processes on magnesium isotope variations in a forested catchment in the Vosges Mountains (France)[J]. Geochimica et Cosmochimica Acta, 2012, 87: 341-355.
76 GRIFFITHS R P, BAHAM J E, CALDWELL B A. Soil solution chemistry of ectomycorrhizal mats in forest soil [J]. Soil Biology and Biochemistry, 1994, 26(3):331-337.
GRIFFITHS R P, BAHAM J E, CALDWELL B A. Soil solution chemistry of ectomycorrhizal mats in forest soil [J]. Soil Biology and Biochemistry, 1994, 26(3):331-337.
77 BLACK J R, EPSTEIN E, RAINS W D, et al. Magnesium-isotope fractionation during plant growth[J]. Environmental Science and Technology, 2008, 42(21): 7 831-7 836.
BLACK J R, EPSTEIN E, RAINS W D, et al. Magnesium-isotope fractionation during plant growth[J]. Environmental Science and Technology, 2008, 42(21): 7 831-7 836.
78 TIPPER E T, GAILLARDET J, LOUVAT P, et al. Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3 883-3 896.
TIPPER E T, GAILLARDET J, LOUVAT P, et al. Mg isotope constraints on soil pore-fluid chemistry: Evidence from Santa Cruz, California[J]. Geochimica et Cosmochimica Acta, 2010, 74(14): 3 883-3 896.
79 RYU J S, VIGIER N, DERRY L, et al. Variations of Mg isotope geochemistry in soils over a Hawaiian 4 Myr chronosequence[J]. Geochimica et Cosmochimica Acta, 2021, 292: 94-114.
RYU J S, VIGIER N, DERRY L, et al. Variations of Mg isotope geochemistry in soils over a Hawaiian 4 Myr chronosequence[J]. Geochimica et Cosmochimica Acta, 2021, 292: 94-114.
[1] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[2] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[3] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[4] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[5] 安艳玲, 吕婕梅, 罗进, 吴起鑫, 秦立. 赤水河流域岩石化学风化及其对大气CO 2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
[6] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[7] 董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
[8] 黄奇波, 覃小群, 刘朋雨, 张连凯, 苏春田. 非岩溶水和硫酸参与溶蚀对湘南地区地下河流域岩溶碳汇通量的影响[J]. 地球科学进展, 2017, 32(3): 307-318.
[9] 林杰, 庄广胜, 王成善, 戴紧根. 叶蜡单体氢同位素古高程计研究进展[J]. 地球科学进展, 2016, 31(9): 894-906.
[10] 黄来明, 邵明安, 贾小旭, 张甘霖. 土壤风化速率测定方法及其影响因素研究进展[J]. 地球科学进展, 2016, 31(10): 1021-1031.
[11] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[12] 吴能友, 张必东, 邬黛黛. 海洋钙同位素分馏机制及其古海洋学应用[J]. 地球科学进展, 2015, 30(4): 433-444.
[13] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[14] 张乾柱, 陶贞, 高全洲, 马赞文. 河流溶解硅的生物地球化学循环研究综述[J]. 地球科学进展, 2015, 30(1): 50-59.
[15] 洪义国. 硝酸盐氮氧稳定同位素分馏过程记录的海洋氮循环研究进展[J]. 地球科学进展, 2013, 28(7): 751-764.
阅读次数
全文


摘要