地球科学进展 doi: 10.11867/j.issn.1001-8166.2026.008

   

美拉德反应:土壤有机碳库稳定过程中被忽视的非生物驱动机制
薛华敏1,2,张仲胜1*,赵雯雯1,2,于子成1,武海涛1,姜明1   
  1. (1. 中国科学院东北地理与农业生态研究所,吉林 长春 130102;2. 中国科学院大学,北京 100049)
  • 基金资助:
    国家自然科学基金重大项目(编号:42494825)资助.

Maillard Reaction: An Overlooked Abiotic Driver in the Formation and Stabilization of Soil Organic Carbon Pools

Xue Huamin1, 2, Zhang Zhongsheng1*, Zhao Wenwen1, 2,Yu Zicheng1, Wu Haitao1, Jiang Ming1   

  1. (1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
  • About author:Xue Huamin, research areas include carbon and nitrogen cycling and biogeochemical processes in wetland ecosystems. E-mail: xuehuamin@iga.ac.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant No. 42494825).
在全球变化背景下,岩石风化—矿物催化—非酶聚合联动的美拉德反应,可能是连接矿物与土壤有机碳封存的地球化学桥梁,成为实现碳中和重要的潜在地球化学途径。美拉德反应在土壤中被证实可诱导还原糖和氨基化合物在路易斯酸的催化下发生缩合—聚合反应,生成结构稳定、难降解的类黑精等聚合物,成为重要的碳固存补充机制。美拉德反应依赖于高温、高pH和适度水分,并显著受Fe/Mn 氧化物和层状硅铝酸盐等矿物催化增强,进而在深层土壤和厌氧沉积物中有效提升土壤有机碳稳定性。美拉德反应产物(以类黑精结构为代表的一大类化合物)不仅自身具有生物惰性,更能通过与矿物形成物理限域、官能团络合及金属桥联的有机—无机复合体,显著提升碳持久封存能力。同时,美拉德反应作为连接植物来源有机碳、微生物转化产物与矿物稳定化过程的关键非酶促转化环节,丰富和发展了土壤腐殖质的形成机制。然而,天然土壤环境中美拉德反应研究尚处于起步阶段,研究多依赖模拟实验,缺乏原位观测数据与机制模型,尚未解析 土壤中美拉德反应的特异性分子标志物,无法量化其在稳定性土壤有机碳形成中的定量贡献,多因子调控美拉德反应的交互效应与协同机制尚不清晰。提出美拉德反应通过“矿物界面催化—类黑精生成—有机矿物复合体形成”三步稳定化路径,为土壤惰性碳库的形成提供了超越传统微生物主导理论的新机制,填补了该领域对非生物化学过程认知的空白。未来应重点解析美拉德反应在“气候变化—岩石风化—碳稳定性”链条中的枢纽作用,将美拉德反应介导的非生物固碳模块纳 入陆地碳汇模型中,为地质碳封存与生态碳汇协同增效技术研发提供机理支持。

Abstract The sequestration of Soil Organic Carbon (SOC) constitutes a pivotal component of global climate change mitigation strategies. While the microbial carbon pump and biotic anabolism have traditionally dominated conceptual paradigms of humification, emerging evidence suggests that this biocentric view may underestimate the contribution of abiotic geochemical pathways. This review systematically delineates the role of the non-enzymatic Maillard reaction as a critical geochemical bridge linking mineral weathering processes to long-term SOC persistence.We propose a mechanistic framework of mineral interfacial catalysis-melanoidin formation-organo-mineral complexation to elucidate this abiotic stabilization trajectory. Specifically, soil minerals, particularly Fe/Mn oxides and phyllosilicates, act as natural catalysts by providing Lewis acid sites that lower the apparent activation energy for the condensation and polymerization of reducing sugars and amino compounds. This process transforms labile precursors into chemically recalcitrant, aromatic-rich polymers commonly referred to as melanoidin-like substances. These reactions are thermodynamically and kinetically favored under conditions of elevated temperature, alkaline to neutral pH, and intermediate to fluctuating moisture regimes, potentially representing a dominant stabilization pathway in subsurface horizons or anaerobic environments where microbial activity is energetically or kinetically constrained.The resulting melanoidin-type products exhibit a pronounced dual-protection capacity, beyond their inherent structural heterogeneity and low biological accessibility, they form robust associations with mineral matrices through physical confinement, ligand exchange, and polyvalent cation bridging. By acting as a non-enzymatic hub that integrates plant-derived carbon inputs and microbial metabolites into persistent organo-mineral complexes, the Maillard reaction challenges conventional theories of humic substance formation and provides a mechanistic framework for an underexplored abiotic pathway of carbon stabilization. Despite growing recognition of its potential importance, current understanding remains constrained by a reliance on simplified laboratory proxies, a scarcity of in situ field evidence, and the absence of diagnostic molecular biomarkers capable of distinguishing abiotic melanoidins from microbially derived necromass. Consequently, the quantitative contribution of this abiotic module to long-term SOC persistence remains poorly constrained. Future research should prioritize resolving environmental controls, multi-factor interactions, and identifying the molecular fingerprints of soil Maillard products in natural ecosystems. Incorporating mineral-mediated, non-enzymatic stabilization processes into terrestrial carbon cycle models will be essential for accurately capturing the coupled climate change-rock weathering-carbon stabilitycontinuum and for informing strategies that integrate geological and ecological carbon sequestration.

中图分类号: 

[1] 刘焱, 周跃飞, 杜蒙蒙, 徐子涛, 谢巧勤, 李全忠, 陈天虎. 蓝藻对纳米矿物中稀土元素的分馏作用[J]. 地球科学进展, 2025, 40(6): 647-660.
[2] 罗清洵, 张典, 林启航, 余孝乐, 马昌前, 佘振兵. 古罗马混凝土高耐久性和高防腐性的岩石学背景[J]. 地球科学进展, 2024, 39(9): 968-986.
[3] 陈玉柳, 丁汝鑫, 孙转, 卢胜城. 新矿物(U-Th/He年代学的研究进展[J]. 地球科学进展, 2024, 39(4): 357-373.
[4] 王淑婷, 曹淑云, 占乐凡, 刘建华, 程雪梅. 矿物变形行为与滑移系的限定:EBSD取向差与迹线法[J]. 地球科学进展, 2024, 39(12): 1227-1242.
[5] 李姜辉, 余凤玲, 牛雄伟, 周天, 张运修, 李雯菱. 海底碳封存监测技术体系研究及未来发展[J]. 地球科学进展, 2023, 38(11): 1121-1144.
[6] 段美铃, 宋昊, 胡伟, 廖昕. 川北韩家店组页岩风化过程的矿物学与元素地球化学研究[J]. 地球科学进展, 2022, 37(6): 641-659.
[7] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[8] 许苗苗, 魏晓椿, 杨蓉, 王平, 程晓敢. 重矿物分析物源示踪方法研究进展[J]. 地球科学进展, 2021, 36(2): 154-171.
[9] 胡棉舒, 李阔, 曹海月, 王兆国, 刘钦甫. 湘中寒婆坳矿区测水组无烟煤—煤系石墨变质温度研究[J]. 地球科学进展, 2021, 36(10): 1015-1025.
[10] 邹银洪, 张润宇, 陈敬安, 王立英, 陆顶盘. 黏土矿物在富营养化水体和底泥磷污染控制中的应用研究进展[J]. 地球科学进展, 2018, 33(6): 578-589.
[11] 佟小雪, 王长乐, 彭自栋, 南景博, 黄华, 张连昌. 早前寒武纪BIF原生矿物组成及演化、沉积相模式研究进展[J]. 地球科学进展, 2018, 33(2): 152-165.
[12] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[13] 王莹, 刘同旭, 李芳柏. 微生物—矿物间半导体介导电子传递机制研究进展[J]. 地球科学进展, 2016, 31(4): 347-356.
[14] 刘华华, 蒋富清, 周烨, 李安春. 晚更新世以来奄美三角盆地黏土矿物的来源及其对古气候的指示[J]. 地球科学进展, 2016, 31(3): 286-297.
[15] 赵欣, 施光海, 张骥. 岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J]. 地球科学进展, 2015, 30(3): 310-322.
阅读次数
全文


摘要