19 |
de VIVO B, ROLANDI G, GANS P B, et al. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)[J]. Mineralogy and Petrology, 2001, 73(1): 47-65.
|
20 |
de FINO M, la VOLPE L, PECCERILLO A, et al. Petrogenesis of Monte Vulture volcano (Italy): inferences from mineral chemistry, major and trace element data[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 135-145.
|
21 |
HORNIG-KJARSGAARD I, KELLER J, KOBERSKI U,et al. Geology,stratigraphy and volcanological evolution of the island of Stromboli,Aeolian Arc,Italy[J]. Acta Vulcanologica, 1993, 3: 21-68.
|
22 |
GRASSO M, LENTINI F, NAIRN A E M,et al. A geological and paleomagnetic study of the Hyblean volcanic rocks, Sicily[J]. Tectonophysics, 1983, 98: 271-295.
|
23 |
BECCALUVA L, DERIU M, MACCIOTTA G, et al. Geochronology and magmatic character of the pliocene-pleistocene volcanism in Sardinia (Italy)[J]. Bulletin Volcanologique, 1977, 40(3): 153-168.
|
24 |
SAVELLI C. Subduction-related episodes of K-alkaline magmatism (15~0.1 Ma) and geodynamic implications in the North Tyrrhenian—central Italy region: a review[J]. Journal of Geodynamics, 2000, 30(5): 575-591.
|
25 |
SECCO M, ASSCHER Y, RICCI G, et al. Cementation processes of Roman pozzolanic binders from Caesarea Maritima (Israel)[J]. Construction and Building Materials, 2022, 355. DOI:10.1016/j.conbuildmat.2022.129128 .
|
26 |
SAĞIN E U, DURAN H E, BÖKE H. Lime mortar technology in ancient eastern Roman Provinces[J]. Journal of Archaeological Science: Reports, 2021, 39. DOI:10.1016/j.jasrep.2021.103132 .
|
27 |
OLESON J P, BRANDON C, CRAMER S M, et al. The ROMACONS project: a contribution to the historical and engineering analysis of hydraulic concrete in Roman maritime structures[J]. International Journal of Nautical Archaeology, 2004, 33(2): 199-229.
|
28 |
DILARIA S, SECCO M, GHIOTTO A R,et al. Early exploitation of Neapolitan pozzolan(pulvis puteolana) in the Roman theatre of Aquileia,northern Italy[J]. Scientific Reports,2023,13(1). DOI: 10.1038/s41598-023-30692-y .
|
29 |
LAYCOCK E A, PIRRIE D, CLEGG F, et al. An investigation to establish the source of the Roman lime mortars used in Wallsend, UK[J]. Construction and Building Materials, 2019, 196: 611-625.
|
30 |
FORT R, ERGENÇ D,ALY N,et al. Implications of new mineral phases in the isotopic composition of Roman lime mortars at the Kom el-Dikka archaeological site in Egypt[J]. Construction and Building Materials,2021,268. DOI: 10.1016/j.conbuildmat.2020.121085 .
|
31 |
PECCERILLO A. Plio-quaternary volcanism in Italy[M]. New York: Springer-Verlag Berlin Heidelberg, 2005.
|
32 |
GAZDA E K, MCCANN A M. Chapter VII. Reconstruction and function: port, fishery, and villa, the roman port and fishery of Cosa[M]. Princeton, NJ, USA: Princeton University Press, 2017: 137-159.
|
33 |
GAZDA E K. Cosa’s contribution to the study of Roman hydraulic concrete:an historiographic commentary[M]// GOLDMAN N W. Classical studies in honor of Cleo Rickman Fitch. New York: Oxford University Press,2001.
|
34 |
OESTREICHER B A. Contemporary picture of Caesarea’s ancient harbor[J]. Israel Numismatic Bulletin, 1962, 2: 44-47.
|
35 |
VOTRUBA G F. Imported building materials of sebastos harbour, Israel[J]. International Journal of Nautical Archaeology, 2007, 36(2): 325-335.
|
36 |
HARRELL J A. Ancient Egyptian limestone quarries: a petrological survey[J]. Archaeometry, 1992, 34(2): 195-211.
|
37 |
DEICHMANN F W. Westliche Bautechnik im romischen und rhomäischen Osten[J]. Mitteilungen des Deutschen Archäologischen Instituts. Romische Abteilung Heidelberg,1979,86(1/2): 473-527.
|
38 |
ASTM. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete[Z]. ASTM International: West Conshohocken, PA, USA, 2019: 12 959-19 428.
|
39 |
SECCO M, DILARIA S, BONETTO J, et al. Technological transfers in the Mediterranean on the verge of Romanization: insights from the waterproofing renders of Nora (Sardinia, Italy)[J]. Journal of Cultural Heritage, 2020, 44: 63-82.
|
40 |
MIRIELLO D, BLOISE A, CRISCI G M, et al. New compositional data on ancient mortars and plasters from Pompeii (Campania-southern Italy): archaeometric results and considerations about their time evolution[J]. Materials Characterization, 2018, 146: 189-203.
|
41 |
IZZO F, GRIFA C, GERMINARIO C, et al. Production technology of mortar-based building materials from the Arch of Trajan and the Roman Theatre in Benevento, Italy[J]. The European Physical Journal Plus, 2018, 133(9). DOI: 10.1140/epjp/i2018-12229-1 .
|
42 |
BORSOI G, SANTOS S A, MENEZES P, et al. Analytical characterization of ancient mortars from the archaeological Roman site of Pisões (Beja, Portugal)[J]. Construction and Building Materials, 2019, 204: 597-608.
|
43 |
ERGENÇ D, FORT R. Multi-technical characterization of Roman mortars from Complutum, Spain[J]. Measurement, 2019, 147. DOI: 10.1016/j.measurement.2019.106876 .
|
44 |
MEDEGHINI L, CALZOLARI L, BOTTICELLI M, et al. The secret of ancient Roman hydraulic mortar: the lesson learnt from the past for future cements[J]. Cement and Concrete Composites, 2024, 148. DOI: 10.1016/j.cemconcomp.2024.105484 .
|
45 |
MOROPOULOU A, BAKOLAS A, BISBIKOU K. Investigation of the technology of historic mortars[J]. Journal of Cultural Heritage, 2000, 1(1): 45-58.
|
46 |
SEYMOUR L M, TAMURA N, JACKSON M D, et al. Reactive binder and aggregate interfacial zones in the mortar of Tomb of Caecilia Metella concrete, 1C BCE, Rome[J]. Journal of the American Ceramic Society, 2022, 105(2): 1 503-1 518.
|
47 |
MASSAZZA F, PEZZUOLI M. Some teachings of a Roman concrete,in mortars,cements and grouts used in the conservation of historic buildings[Z]. International Centre for the Study of the Preservation and Restoration of Cultural Property, 1981.
|
48 |
JACKSON M, DEOCAMPO D, MARRA F, et al. Mid-Pleistocene pozzolanic volcanic ash in ancient Roman concretes[J]. Geoarchaeology, 2010, 25(1): 36-74.
|
49 |
JACKSON M D, LANDIS E N, BRUNE P F, et al. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(52): 18 484-18 489.
|
50 |
ARTIOLI G, SECCO M, ADDIS A. The Vitruvian legacy:mortars and binders before and after the Roman world[J]. Mineralogical Society of Great Britain and Ireland, 2019, 20(4): 151-202.
|
51 |
COMMANDRÉ J M, SALVADOR S, NZIHOU A. Reactivity of laboratory and industrial limes[J]. Chemical Engineering Research and Design, 2007, 85(4): 473-480.
|
52 |
FORSTER A. Hot-lime mortars: a current perspective[J]. Journal of Architectural Conservation, 2004, 10(3): 7-27.
|
53 |
PESCE C, GODINA M C, HENRY A, et al. Towards a better understanding of hot-mixed mortars for the conservation of historic buildings: the role of water temperature and steam during lime slaking[J]. Heritage Science, 2021, 9(1). DOI: 10.1186/s40494-021-00546-9 .
|
54 |
FENG T T, YU H F, TAN Y S, et al. Service life design for concrete engineering in marine environments of Northern China based on a modified theoretical model of chloride diffusion and large datasets of ocean parameters[J]. Engineering, 2022, 17: 123-139.
|
55 |
GLASSER F P, MARCHAND J, SAMSON E. Durability of concrete—degradation phenomena involving detrimental chemical reactions[J]. Cement and Concrete Research, 2008, 38(2): 226-246.
|
56 |
CHEN Jiankang, YANG Min. Advances of environment damage mechanics in marine engineering concrete[J]. Mechanics in Engineering, 2023, 45(3): 499-512.
|
|
陈建康, 杨敏. 海工混凝土环境损伤力学研究进展[J]. 力学与实践, 2023, 45(3): 499-512.
|
57 |
QIAO X, CHEN J K. Correlation of propagation rate of corrosive crack in concrete under sulfate attack and growth rate of delayed ettringite[J]. Engineering Fracture Mechanics, 2019, 209: 333-343.
|
58 |
ZENDRI E. Interaction between clay and lime in “cocciopesto” mortars: a study by 29Si MAS spectroscopy[J]. Applied Clay Science, 2004, 25(1/2): 1-7.
|
1 |
NEWELL P. An ancient battle between environment and concrete[J]. Nature Reviews Chemistry, 2021, 5: 513-514.
|
2 |
XIAO Jianzhuang, ZHANG Hanghua, TANG Yuxiang, et al. Principles for waste concrete recycling and basic problems of recycled concrete[J]. China Science Bulletin, 2023, 68(5): 510-523.
|
|
肖建庄,张航华,唐宇翔,等.废弃混凝土再生原理与再生混凝土基本问题[J].科学通报,2023, 68(5): 510-523.
|
3 |
JACKSON M D, CHAE S R, MULCAHY S R, et al. Unlocking the secrets of Al-tobermorite in Roman seawater concrete[J]. American Mineralogist, 2013, 98(10): 1 669-1 687.
|
4 |
JACKSON M D, MULCAHY S R, CHEN H, et al. Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete[J]. American Mineralogist, 2017, 102(7): 1 435-1 450.
|
5 |
SEYMOUR L M, MARAGH J, SABATINI P, et al. Hot mixing: mechanistic insights into the durability of ancient Roman concrete[J]. Science Advances, 2023, 9(1). DOI: 10.1126/sciadv.add1602 .
|
6 |
JACKSON M D, VOLA G, VŠIANSKÝ D, et al. Cement microstructures and durability in ancient Roman seawater concretes[C]// Historic mortars. Dordrecht: Springer, 2012: 49-76.
|
7 |
JACKSON M D. Roman seawater concretes and their material characteristics[M]// Building for eternity:the history and technology of roman concrete engineering in the sea. Oxford: Oxbow Books, 2014: 141-187.
|
8 |
SU Z, YAN Z, NAKASHIMA K,et al. Naturally derived cements learned from the wisdom of ancestors:a literature review based on the experiences of ancient China,India and Rome[J]. Materials, 2023, 16(2). DOI: 10.3390/ma16020603 .
|
9 |
ZHANG K, SUI Y, WANG L Q, et al. Effects of sticky rice addition on the properties of lime-tile dust mortars[J]. Heritage Science, 2021, 9(1). DOI:10.1186/s40494-020-00475-z .
|
59 |
JACKSON M D, OLESON J, MOON J,et al. Extreme durability in ancient roman concretes[J]. American Ceramic Society Bulletin, 2018, 97: 22-28.
|
60 |
RISPOLI C, MONTESANO G, VERDE M, et al. The key to ancient Roman mortars hydraulicity: ceramic fragments or volcanic materials? A lesson from the Phlegrean archaeological area (southern Italy)[J]. Construction and Building Materials, 2024, 411. DOI: 10.1016/j.conbuildmat.2023.134408 .
|
61 |
KUPWADE-PATIL K, de WOLF C, CHIN S, et al. Impact of Embodied Energy on materials/buildings with partial replacement of Ordinary Portland Cement (OPC) by natural Pozzolanic Volcanic Ash[J]. Journal of Cleaner Production, 2018, 177: 547-554.
|
62 |
BARBERON F, BAROGHEL-BOUNY V, ZANNI H, et al. Interactions between chloride and cement-paste materials[J]. Magnetic Resonance Imaging, 2005, 23(2): 267-272.
|
63 |
SURYAVANSHI A K, SCANTLEBURY J D, LYON S B. Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate[J]. Cement and Concrete Research, 1996, 26(5): 717-727.
|
64 |
GIANFROTTA P A. Harbor structures of the Augustan age in Italy[M]. New York: BRILL, 1996: 65-76.
|
65 |
GIANFROTTA P. Archeologia subacquea e testimonianze di pesca[J]. Mélanges de L’École Française de Rome Antiquité, 1999, 111(1): 9-36.
|
66 |
JACKSON M D, MOON J, GOTTI E, et al. Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete[J]. Journal of the American Ceramic Society, 2013, 96(8): 2 598-2 606.
|
67 |
KOMARNENI S, ROY D M. Tobermorites: a new family of cation exchangers[J]. Science, 1983, 221(4 611): 647-648.
|
68 |
KOMARNENI S, BREVAL E, MIYAKE M, et al. Cation-exchange properties of (Al+Na)-substituted synthetic tobermorites[J]. Clays and Clay Minerals, 1987, 35(5): 385-390.
|
69 |
SHIBUE Y. Cation-exchange properties of phillipsite (a zeolite mineral): the differences between Si-rich and Si-poor phillipsites[J]. Separation Science and Technology, 1998, 33(3): 333-355.
|
10 |
YANG F W, ZHANG B J, MA Q L. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction[J]. Accounts of Chemical Research, 2010, 43(6): 936-944.
|
11 |
ZENG Y Y, ZHANG B J, LIANG X L. A case study and mechanism investigation of typical mortars used on ancient architecture in China[J]. Thermochimica Acta, 2008, 473(1/2): 1-6.
|
12 |
ZHANG Q, LI B B, ZENG Q, et al. Erosion of aerial lime and sticky rice mortars by cyclic wetting-drying and dilute sulfate acid actions[J]. Advances in Cement Research, 2020, 32(8): 343-357.
|
13 |
THIRUMALINI P. Study on the performance enhancement of lime mortar used in ancient temples and monuments in India[J]. Indian Journal of Science and Technology, 2011, 4(11): 1 484-1 487.
|
14 |
SANTHANAM K, SHANMUGAVEL D, RAMADOSS R, et al. Characterisation on ancient mortar of Chettinadu house at Kanadukathan, Karaikudi, Tamil Nadu, India[J]. Materials Today: Proceedings, 2021, 43: 1 147-1 153.
|
15 |
BRUNET C, MONIÉ P, JOLIVET L, et al. Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany[J]. Tectonophysics, 2000, 321(1): 127-155.
|
16 |
PINARELLI L, POLI G, SANTO A. Geochemical characterization of recent Vol Canism from the Tuscan magmatic province(Central Italy): the Roccastrada and San Vincenzo centers[J]. Periodico di Mineralogial, 1989, 58: 67-96.
|
17 |
LAVECCHIA G, STOPPA F. The tectonic significance of Italian magmatism: an alternative view to the popular interpretation[J]. Terra Nova, 1996, 8(5): 435-446.
|
18 |
CIVETTA L, INNOCENTI F, MANETTI P, et al. Geochemical characteristics of potassic volcanics from Mts. Ernici (Southern Latium, Italy)[J]. Contributions to Mineralogy and Petrology, 1981, 78(1): 37-47.
|
70 |
PETZING J, CHESTER B. Authigenic marine zeolites and their relationship to global volcanism[J]. Marine Geology, 1979, 29(1/2/3/4): 253-271.
|
71 |
HU Chuanlin, LI Zongjin, WANG Fazhou. Progress and application prospect of fundamental research on concrete micromechanics[J]. Engineering Mechanics, 2021, 38(4): 1-7, 92.
|
|
胡传林, 李宗津, 王发洲. 混凝土微观力学基础研究进展及应用展望[J]. 工程力学, 2021, 38(4): 1-7, 92.
|
72 |
COLELLA A, di BENEDETTO C, CALCATERRA D, et al. The Neapolitan Yellow Tuff: an outstanding example of heterogeneity[J]. Construction and Building Materials, 2017, 136: 361-373.
|
73 |
DE’GENNARO M, CAPPELLETTI P, LANGELLA A, et al. Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidence[J]. Contributions to Mineralogy and Petrology, 2000, 139(1): 17-35.
|
74 |
WANG Xiaogang, SHI Caijun, HE Fuqiang, et al. Chloride binding and its effects on microstructure of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 187-198.
|
|
王小刚, 史才军, 何富强, 等. 氯离子结合及其对水泥基材料微观结构的影响[J]. 硅酸盐学报, 2013, 41(2): 187-198.
|
75 |
ELAKNESWARAN Y, NAWA T, KURUMISAWA K. Electrokinetic potential of hydrated cement in relation to adsorption of chlorides[J]. Cement and Concrete Research, 2009, 39(4): 340-344.
|
76 |
LEI Yongsheng, HAN Tao, WANG Huiqi, et al. Preparation and characterization of Calcium Silicate Hydrate(C-S-H) synthesized by the hydrothermal method[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3): 465-469.
|
|
雷永胜, 韩涛, 王慧奇, 等. 水热合成水化硅酸钙(C-S-H)的制备与表征[J]. 硅酸盐通报, 2014, 33(3): 465-469.
|
77 |
ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 61-164.
|
78 |
ZHANG Mingbo, QIU Shengtao, LI Jianxin, et al. Effect of cooling methods on the mineralogical composition and microstructure of low titanium-containing blast furnace slag[J]. Chinese Journal of Engineering, 2016, 38(5): 658-667.
|
|
张明博, 仇圣桃, 李建新, 等. 冷却方式对低钛高炉渣矿物组成和矿相结构的影响[J]. 工程科学学报, 2016, 38(5): 658-667.
|
79 |
LI Zhangang, BAI Pinbo, TIAN Yuming, et al. Preparation and properties of gehlenite with magnesium slag as a raw material[J]. Journal of Taiyuan University of Science and Technology, 2013, 34(6): 435-439.
|
|
李占刚, 白频波, 田玉明, 等. 镁渣为原料制备钙铝黄长石材料及其性能研究[J]. 太原科技大学学报, 2013, 34(6): 435-439.
|
80 |
HOU Xiaowei, YIN Jianhao, KONG Xiangming. Interaction between chemical admixtures and calcium silicate hydrate and chemical admixtures impacts on calcium silicate hydrate properties by molecular: a short review dynamics studies[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2 959-2 970.
|
|
侯晓伟, 尹健昊, 孔祥明. 化学外加剂与水化硅酸钙相互作用的分子动力学研究进展[J]. 硅酸盐学报, 2022, 50(11): 2 959-2 970.
|
81 |
AITCIN P. Cements of yesterday and today Concrete of tomorrow[J]. Cement and Concrete Research, 2000, 30: 1 349-1 359.
|
82 |
ZHANG Siyu, HUANG Shaowen. Evaluation methods and influence factors of pozzolanic activity[J]. Materials Reports, 2011, 25(15): 104-106, 113.
|
|
张思宇, 黄少文. 火山灰活性评价方法及其影响因素[J]. 材料导报, 2011, 25(15): 104-106, 113.
|
83 |
SUN Zhenping, YAN Zhuhua, ZHANG Ting, et al. Review of pozzolanic activity detection methods for pozzolanic materials[J]. Materials Reports, 2024, 38(1): 113-118.
|
|
孙振平, 闫珠华, 张挺, 等. 火山灰质材料的火山灰活性检测方法综述[J]. 材料导报, 2024, 38(1): 113-118.
|
84 |
JUENGER M C G, SNELLINGS R, BERNAL S A. Supplementary cementitious materials: new sources, characterization, and performance insights[J]. Cement and Concrete Research, 2019, 122: 257-273.
|
85 |
Morris A M A. English engineer John Smeaton's experimental method (s): optimisation, hypothesis testing and exploratory experimentation[J]. Studies in History and Philosophy of Science Part A, 2021, 89: 283-294.
|
86 |
GARCIA-TRONCOSO N, XU B, PROBST-PESANTEZ W. Development of concrete incorporating recycled aggregates,hydrated lime and natural volcanic pozzolan[J]. Infrastructures, 2021, 6(11). DOI: 10.3390/infrastructures6110155 .
|
87 |
PU Xincheng, LIU Fang, WANG Chong, et al. Pozzolanic reaction and enhancement effect of active mineral admixtures in high strength and high performance concrete[C]// Concrete Quality Professional Committee of the Concrete and Prestressed Concrete Branch of the Chinese Society of Civil Engineering. Proceedings of the national conference on advanced concrete technology and mineral admixtures research and engineering applications. 2006: 4.
|
|
蒲心诚,刘芳,王冲,等. 高强高性能混凝土中活性矿物掺料的火山灰反应及增强效应[C]// 中国土木工程学会混凝土及预应力混凝土分会混凝土质量专业委员会 . 全国高性能混凝土和矿物掺合料的研究与工程应用技术交流会论文集. 2006: 4.
|
88 |
LI Ni, WEI Haiquan, ZHANG Liuyi, et al. Discovery of Daliuchong volcanic edifice in Tengchong, Yunnan Province and its significance[J]. Acta Petrologica Sinica, 2014, 30(12): 3 627-3 634.
|
|
李霓, 魏海泉, 张柳毅, 等. 云南腾冲大六冲火山机构的发现及意义[J]. 岩石学报, 2014, 30(12): 3 627-3 634.
|
89 |
HU Zhenqi, XIE Maxian, XIE Ming. Research and application of volcanic ash in mass concrete engineering [J]. Transpo World (Engineering Technology), 2015(3): 78-79.
|
|
胡振奇,谢马贤,谢明.火山灰在大体积混凝土工程中的研究和应用[J].交通世界(工程技术), 2015(3): 78-79.
|
90 |
SHI Zhengyou, Gangfei LÜ, FU Rong. Research on the application of volcanic ash in concrete[C]// New technology of concrete construction in hydropower project. Beijing: China Environment Press, 2015: 5.
|
|
施正友,吕刚裴,芙蓉.火山灰在混凝土中的应用研究[C]// 水电工程混凝土施工新技术.北京:中国环境出版社,2015:5.
|
91 |
ZHANG Zhong, LI Chunhong. Use of natural pozzuolanic admixture in construction of hydropower projects[J]. Yunnan Water Power, 2009, 25(1): 67-71.
|
|
张众, 李春洪. 天然火山灰掺合料在水电工程中的应用[J]. 云南水力发电, 2009, 25(1): 67-71.
|
92 |
DAI Qingan, GUO Kangsheng. Application of volcanic ash in cement concrete pavement[J]. Transpo World, 2020(24): 151-152, 157.
|
|
戴庆安,郭康生.火山灰在水泥混凝土路面中的应用[J].交通世界,2020(24): 151-152, 157.
|
93 |
MERLINO S, BONACCORSI E, ARMBRUSTER T. The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications[J]. European Journal of Mineralogy, 2001, 13(3): 577-590.
|
94 |
GMIRA A, ZABAT M, PELLENQ R J M, et al. Microscopic physical basis of the poromechanical behavior of cement-based materials[J]. Materials and Structures, 2004, 37(1): 3-14.
|
95 |
MANZANO H, DOLADO J S, GUERRERO A, et al. Mechanical properties of crystalline calcium-silicate-hydrates: comparison with cementitious C-S-H gels[J]. Physica Status Solidi, 2007, 204(6): 1 775-1 780.
|
96 |
SHAHSAVARI R, BUEHLER M J, PELLENQ R J M, et al. First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of tobermorite and jennite[J]. Journal of the American Ceramic Society, 2009, 92(10): 2 323-2 330.
|
97 |
OH J E, CLARK S M, MONTEIRO P J M. Does the Al substitution in C-S-H(I) change its mechanical property?[J]. Cement and Concrete Research, 2011, 41(1): 102-106.
|
98 |
KOMARNENI S. Phillipsite in Cs decontamination and immobilization[J]. Clays and Clay Minerals, 1985, 33(2): 145-151.
|
99 |
TSUJI M, KOMARNENI S, MALLA P. Substituted tobermorites: 27Al and 29Si MASNMR, cation exchange, and water sorption studies[J]. Journal of the American Ceramic Society, 1991, 74(2): 274-279.
|
100 |
TSUTSUMI T, NISHIMOTO S, KAMESHIMA Y, et al. Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption[J]. Journal of Hazardous Materials, 2014, 266: 174-181.
|
101 |
KOMARNENI S, TSUJI M. Selective cation exchange in substituted tobermorites[J]. Journal of the American Ceramic Society, 1989, 72(9): 1 668-1 674.
|
102 |
TROTIGNON L, DEVALLOIS V, PEYCELON H, et al. Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste[J]. Physics And Chemistry Earth, Parts A/B/C, 2007, 32(1/2/3/4/5/6/7): 259-274.
|
103 |
MARUYAMA I, RYMEŠ J, AILI A, et al. Long-term use of modern Portland cement concrete: the impact of Al-tobermorite formation[J]. Materials & Design, 2021, 198. DOI: 10.1016/j.matdes.2020.109297 .
|
104 |
HOUSTON J R, MAXWELL R S, CARROLL S A. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy[J]. Geochemical Transactions, 2009, 10. DOI: 10.1186/1467-4866-10-1 .
|
105 |
SHAW S, CLARK S M, HENDERSON C M B. Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2·4H2O) and xonotlite (Ca6Si6O17(OH)2): an in situ synchrotron study[J]. Chemical Geology, 2000, 167(1/2): 129-140.
|
106 |
KOMARNENI S, ROY R, ROY D M, et al. 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites[J]. Journal of Materials Science, 1985, 20(11): 4 209-4 214.
|