地球科学进展 ›› 2024, Vol. 39 ›› Issue (9): 968 -986. doi: 10.11867/j.issn.1001-8166.2024.077

研究简报 上一篇    

古罗马混凝土高耐久性和高防腐性的岩石学背景
罗清洵 1( ), 张典 1, 林启航 1, 余孝乐 1, 马昌前 1 , 2, 佘振兵 1 , 3( )   
  1. 1.中国地质大学 地球科学学院,湖北 武汉 430074
    2.中国地质大学 地质过程与矿产资源国家重点实验室,湖北 武汉 430074
    3.中国地质大学 生物地质与环境地质国家重点实验室,湖北 武汉 430078
  • 收稿日期:2024-05-07 修回日期:2024-08-25 出版日期:2024-09-10
  • 通讯作者: 佘振兵 E-mail:931681949@qq.com;zbsher@cug.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(42130309)

Unraveling the Petrological Enigma of the Durability and Corrosion Resistance of Ancient Roman Concrete

Qingxun LUO 1( ), Dian ZHANG 1, Qihang LIN 1, Xiaole YU 1, Changqian MA 1 , 2, Zhenbing SHE 1 , 3( )   

  1. 1.Faculty of Earth Sciences, China University of Geosciences, Wuhan 430074, China
    2.State Key Laboratory of Geological Process and Mineral Resource, China University of Geosciences, Wuhan 430074, China
    3.State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
  • Received:2024-05-07 Revised:2024-08-25 Online:2024-09-10 Published:2024-11-22
  • Contact: Zhenbing SHE E-mail:931681949@qq.com;zbsher@cug.edu.cn
  • About author:LUO Qingxun, research areas include deep halogen behavior and effects on resources and environment. E-mail: 931681949@qq.com
  • Supported by:
    the National Natural Science Foundation of China(42130309)

我国作为世界上最大的发展中国家和基建大国,不仅有着极高的混凝土需求,同时也愈加注重延缓混凝土老化的耐久性和抵抗海水侵蚀的防腐性。古罗马混凝土凝结着古罗马人的智慧,拥有极高的耐久性和防腐性,吸引了各行业学者的广泛研究。通过搜集火山灰源区罗马火成岩省的岩石学信息,并对比古罗马混凝土与海水接触前后的岩石矿物学变化,发现高铝火山灰的使用和次生铝硅酸盐矿物的形成对古罗马混凝土的高耐久性和防腐性有着重要意义。综述了前人对古罗马混凝土的矿物组成、微观结构和高耐久高防腐机制的研究成果,发现古罗马混凝土中添加了生石灰、火山灰和陶瓷器碎片等物质,高铝火山灰与生石灰甚至骨料中的陶瓷碎片等发生反应,形成了一种由水化铝酸钙(C-A-H)、水化硅酸钙(C-S-H)和水合硅铝酸钙(C-A-S-H)组成的结构,能够牢固地胶结骨料。随着时间的推移,这些水合硅铝酸钙结晶形成托贝莫来石和钙十字沸石等矿物,这些特殊矿物不仅具有较高的力学强度,还能在与海水接触过程中吸附有害离子,从而减缓混凝土受到的海水腐蚀。此外,古罗马混凝土的物质组成还使其具有独特的自愈机制,能够自发填补裂隙。作为一种人造岩石,古罗马混凝土在耐久性和防腐性等方面体现了独特的优势,从岩石矿物学的角度对其开展系统研究,可为现代混凝土和其他地质材料的研发提供理论指导。

As the world’s largest developing country and infrastructure powerhouse, China not only has an extremely high demand for concrete but also increasingly focuses on enhancing the durability of concrete to delay aging and improving its resistance to seawater corrosion. Ancient Roman concrete, reflecting the wisdom of the Romans, possesses remarkable durability and corrosion resistance, which has attracted extensive research from scholars across various fields. By collecting petrological information from the volcanic area of the Roman volcanic province and comparing the mineralogical changes of ancient Roman concrete before and after exposure to seawater, it is found that the use of high-alumina volcanic ash and the formation of secondary aluminum silicate minerals are crucial for the high durability and corrosion resistance of ancient Roman concrete. The study discovers that ancient Roman concrete contains materials such as quicklime, volcanic ash, and ceramic fragments. The reaction between high-alumina volcanic ash and quicklime, as well as ceramic fragments in the aggregates, form a structure composed of C-A-H, C-S-H, and C-A-S-H, which effectively bond the aggregates. Over time, these C-A-S-H compounds can crystallize into minerals such as tobermorite and phillipsite. These special minerals not only exhibit high mechanical strength but also adsorb harmful ions during interaction with seawater, thereby protecting the concrete from seawater corrosion. Additionally, the material composition of ancient Roman concrete has a unique self-healing mechanism, allowing it to spontaneously fill cracks. As an artificial rock, ancient Roman concrete demonstrates unique advantages in durability and corrosion resistance. A systematic study of its petrological characteristics can provide theoretical guidance for the development of modern concrete and other geological materials.

中图分类号: 

图1 现存代表性古罗马建筑
(a)和(b)古罗马斗兽场(建于公元72—82年);(c)和(d)英国伦敦塔附近的古罗马时期城墙(建于约公元200年);(b)和(d)中可见砖块之间的古罗马混凝土
Fig. 1 Representative ancient Roman architecture
(a) and (b) Colosseum (72-82 AD); (c) and (d) Walls of the ancient Roman period near the Tower of London in UK (ca. 200 AD); Ancient Roman concrete between the bricks can be seen in (b) and (d)
表1 上新世以来意大利主要火成岩省的岩石类型
Table 1 Rock types of the major igneous provinces of Italy since the Pliocene
表2 古罗马海事混凝土建筑与非海事混凝土建筑年代及矿物组合对比
Table 2 Comparison of the age and mineral constituent of maritime and non-maritime concrete buildings in ancient Rome
样品采集地 年代 样品号 碎屑矿物 自生矿物 参考文献
方解石 石英 长石 辉石 云母 黏土矿物 托贝莫来石 钙十字沸石 菱沸石 方沸石 其他
以色列 奥古斯都港防波堤 公元前1世纪 CAE_K1 �� �� �� �� �� �� �� �� 石膏,黄铁矿,岩盐,非晶相 25
奥古斯都港码头 公元前1世纪 CAE_D1 �� �� �� �� �� �� �� �� 石膏,岩盐,非晶相
奥古斯都港码头 公元前1世纪 CAE_I1,CAE_I2 �� �� �� 利蛇纹石,非晶相
奥古斯都港仓库 公元前1世纪 CAE_B1,CAE_B3 �� �� �� �� �� �� �� �� 非晶相
奥古斯都港仓库,寺庙 公元前1世纪 CAE_B2 �� �� �� 岩盐,非晶相
土耳其 埃加伊剧院,城市广场,浴池 公元前1世纪 A1 �� �� �� 无定形矿物(包括C-S-H和C-A-H) 26
尼撒寺庙,图书馆,浴池,水池,桥梁 公元前1世纪 N1 �� �� �� �� ��
意大利 科萨港码头 公元前2世纪至公元前1世纪 PCO.03.01 �� �� �� �� �� �� �� �� �� 钙矾石,水化钙铝黄长石,硅灰石 27
圣利伯拉塔鱼池 公元前1世纪 SLI.03.01 �� �� �� �� �� �� �� �� 水滑石,钙矾石
克劳狄安港防波堤 公元1世纪 POR.02.02 �� �� �� �� �� �� 水镁石,硅灰石,钙矾石,水滑石,石膏
安齐奥港防波堤 公元1世纪 ANZ.02.01 �� �� �� �� �� �� �� �� 水镁石,硅灰石,钙矾石,水滑石
罗马图拉真水池 公元1世纪 PTR.02.02 �� �� �� �� �� �� �� �� �� �� 水铝钙石,赤铁矿
阿奎莱亚剧场水泥墙面 公元前1世纪至公元1世纪 PREF_1 �� �� �� �� �� �� 钛铁矿 28
阿奎莱亚剧场乐池 公元前1世纪至公元1世纪 PREF_53 �� �� �� �� �� ��
英国 沃尔森德浴场 公元2世纪 WESH 1625 �� �� �� �� 29
沃尔森德浴场 公元3世纪 WESH 1660 �� �� �� ��
沃尔森德哈德良长城 公元3世纪 WBMT 8076,WBMT 8083 �� �� �� ��
埃及 孔阿迪卡浴池,壁画,蓄水池 公元2~6世纪 EG-1 �� �� �� 石膏,岩盐,钾石盐,钠硝石,钾硝石,C-A-S-H 30
图2 古罗马建筑混凝土采集点分布图及上新世—第四纪意大利主要岩浆活动分布图
(a)古罗马版图内建筑混凝土采集点;(b)上新世—第四纪意大利主要岩浆活动分布图(据参考文献[ 31 ]修改);(c)意大利内古罗马建筑混凝土采集点。圆形点代表港口海事建筑采集点,三角形代表非海事建筑采集点,五角星代表包含上述2种建筑采集点
Fig. 2 Map of collecting point of ancient Roman building concrete and Plio-Quaternary major magmatism in Italy
(a) Sampling localities of concrete samples from buildings within the ancient Roman territory; (b) Plio-Quaternary major magmatism in Italy (modified after reference [ 31 ]); (c) Sampling localities of concrete samples from ancient Roman buildings in Italy; Types of building material collected: filled circles, maritime; triangles: non-maritime; stars: both types
图3 石灰—火山灰反应边的扫描电镜图像(据参考文献[ 26 ]修改)
(a)和(b)不同区域下观察到的石灰与火山灰接触部位,虚线内区域为火山灰与石灰反应边;反应边主要由CaO(24.1%~54.0%)、SiO 2(32.3%~56.1%)和Al 2O 3(10.1%~16.6%)组成
Fig. 3 SEM images of the reaction rims between pozzolans and limemodified after reference 26 ])
(a) and (b) contact zones between lime and pozzolan, the area within the dotted line is the reaction rim between pozzolan and lime. The reaction rims are mainly composed of CaO (24.1%~54.0%), SiO 2 (32.3%~56.06%) and Al 2O 3 (10.1%~16.6%)
图4 方解石晶体和火山灰相互粘附的扫描电镜图像(据参考文献[ 26 ]修改)
(a)方解石与火山灰粘附的整体特征; (b)局部放大图像,其中纤维状颗粒是火山灰,长柱状晶体是方解石
Fig. 4 SEM images showing adhesion between calcite crystal and volcanic ashmodified after reference 26 ])
(a) General characteristic of the adhesion of calcite to pozzolan; (b) Close-up image showing pozzolan (fibrous particles) and calcite (prismatic crystals)
图5 罗马混凝土混合过程和石灰碎屑的组成与形态特征(据参考文献[ 5 ]修改)
(a)古罗马混凝土基本原料和混合过程;(b)意大利普里维尔诺地区古罗马混凝土手标本图片,虚线框表示(c)能谱扫描区域;(c) SEM-EDS获得的Ca、Si和Al元素分布叠加图(蓝色星号所示为生石灰块,在形态上与黄色星号所示的其他钙质聚合体不同);(d)为(c)中虚线框所示部分放大,可见表面粗糙多孔,与周围钙质体光滑表面不同;(e)石灰碎屑表面扫描电镜微观结构,可见细小颗粒和孔隙
Fig. 5 Composition and morphological characteristics of lime debris in ancient Roman concretemodified after reference 5 ])
(a) Raw materials and mixing processes of ancient Roman concrete; (b) Photo of an Roman concrete sample from Priverno, Italy, with dotted box indicating EDS scanning areas (c); (c) Overlay of Ca, Si and Al map obtained by SEM-EDS (quicklime blocks shown by the blue asterisk, morphologically distinct from other calcareous aggregates shown by the yellow asterisk); (d) Close-up of the area marked in (c) showing rough boundaries of the quicklime, in contrast to smooth edges of the surrounding calcareous aggregates; (e) SEM microstructure on the surface of lime debris with fine particles and pores
图6 古罗马混凝土内部自愈机制示意图 (据参考文献[ 5 ]修改)
通过高温热混合过程,生石灰碎屑被胶凝基质包裹并吸水膨胀(a),同时,水和生石灰反应生成熟石灰[Ca(OH) 2],钙离子进入水中形成含钙的流体[(a),蓝色箭头],边缘逐渐水化形成水化边[(b),蓝色边缘],随后与CO 2发生碳化反应,形成坚固的碳酸钙[(c),红色边缘],中心仍然是生石灰。由这样碳化的石灰碎屑和骨料及基质构成了混凝土的基本结构(d)。骨料与周围基质之间的界面处发生火山灰反应,形成C-A-S-H[(h),黄色边缘],至此为自愈过程1。混凝土开裂后(e),含钙的流体进入裂隙(f),发生和(a)~(c)相同的反应以愈合损伤(g),至此为自愈过程2
Fig. 6 Schematic diagram showing internal self-healing mechanism of ancient Roman concretemodified after reference 5 ])
Through hot-mixing process, the quicklime blocks are encapsulated in a cementitious matrix and absorb water to expand (a). At the same time, water reacts with quicklime to form hydrated lime [Ca(OH) 2], and calcium ions enter the water to form a calcium-containing fluid [(a), blue arrow]. The edges are gradually hydrated to form a hydration rim [(b), blue edge], and then reacted with CO 2 to form a strong calcite[(c), red edge], with the center of the block still being quicklime. The basic structure of concrete (d) is composed of carbonized lime fragments, aggregates, and matrix. The volcanic ash reaction occurs at the interface between the aggregate and the surrounding matrix, forming C-A-S-H [(h), yellow edge], which is the self-healing process 1. After the concrete splits (e), calcium-containing fluid enters the fissure (f) and undergoes the same reaction as (a)~(c) to heal the damage (g), which is the self-healing process 2
表3 古罗马海事混凝土建筑与非海事混凝土建筑的自生矿物组合对比
Table 3 Comparison of authigenic mineral assemblages between ancient Roman maritime concrete buildings and non-maritime concrete buildings
是否与海水接触 是否含有火山灰 火山灰来源 样品采集地 样品名称 自生矿物 参考文献
托贝莫来石 钙十字沸石 菱沸石 方沸石 其他
直接接触海水 含火山灰 意大利那不勒斯地区 意大利 科萨港码头 PCO.03.01 �� �� �� 钙矾石,水化钙铝黄长石,硅灰石 27
圣利伯拉塔鱼池 SLI.03.01 �� �� �� 水滑石,钙矾石
以色列 奥古斯都港防波堤 CAE_K1 �� �� �� 石膏,黄铁矿,岩盐,非晶相 25
奥古斯都港码头 CAE_D1 �� �� �� 石膏,岩盐,非晶相
奥古斯都港码头 CAE_I1和CAE_I2 利蛇纹石,非晶相
意大利 劳狄安港防波堤 POR.02.02 �� �� �� 水镁石,硅灰石,钙矾石,水滑石,石膏 27
安齐奥港防波堤 ANZ.02.01 �� �� �� �� 水镁石,硅灰石,钙矾石,水滑石
罗马图拉真水池 PTR.02.02 �� �� �� �� 水铝钙石,赤铁矿
未接触海水 含火山灰 土耳其安纳托利亚高原西部 土耳其 埃加伊剧院,城市广场,浴池 A1 无定形矿物(包括C-S-H和C-A-H) 26
尼撒寺庙,图书馆 N1,N2 ��
尼撒图书馆,浴池,水池,桥梁 N3
意大利那不勒斯地区 以色列 奥古斯都港仓库 CAE_B1和CAE_B3 �� �� �� 非晶相 25 28
奥古斯都港仓库,寺庙 CAE_B2 岩盐,非晶相
意大利 阿奎莱亚剧场乐池 PREF_53 �� �� 钛铁矿
不含火山灰 意大利 阿奎莱亚剧场水泥墙面 PREF_1 28
英国 沃尔森德浴场 WESH 1625 29
沃尔森德浴场 WESH 1660
沃尔森德哈德良长城 WBMT 8076和WBMT 8083
埃及 孔阿迪卡浴池,壁画,蓄水池 EG-1 石膏,岩盐,钾石盐 30
孔阿迪卡蓄水池 EG-5和EG-6 �� 石膏,岩盐,钠硝石,钾硝石,C-A-S-H
图7 天然凝灰岩和罗马港口混凝土中的次生矿物结构的二次电子[(a),(b),(g),(h)]和背散射电子[(c),(d),(e)和(f)]图像
(a)那不勒斯黄色凝灰岩(Neapolitan Yellow Tuff, NYT)中的柱状钙十字沸石 72 ;(b)NYT中的菱沸石 72 ;(c)冰岛Surtsey凝灰岩1979号岩芯中的钙十字沸石(柱状)和伴生的铝代托贝莫来石(不规则状) 4 ;(d)NYT中正在溶解的碱性长石和四周生长的钙十字沸石、菱沸石和托贝莫来石,可见次生矿物链接了长石和基质界面 73 ;(e)内罗尼斯港混凝土浮石碎屑,其中可见部分溶解的碱性长石以及囊泡中残余的钙十字沸石和铝代托贝莫来石 4 ;(f)科萨港码头混凝土,正在溶解的钙十字沸石①、反应产生的C-A-S-H②和铝代托贝莫来石③,以及后期极细粒铝代托贝莫来石晶簇④ 4 ;(g)波佐利港混凝土中的细粒的钙十字沸石晶簇和伴生的板片状铝代托贝莫来石 42 ;(h)图拉真市场基底混凝土中的C-A-S-H和水化钙铝黄长石,由二者产状关系可推测后者由前者脱水结晶形成 66
Fig. 7 Secondary electronabghand backscattered electroncdefimages showing microstructures of secondary minerals in natural tuff and ancient Roman concrete
(a) Columnar phillipsite in Neapolitan Yellow Tuff (NYT) 72 ; (b) Chabazite in NYT 72 ; (c) Phillipsite (columnar) and associated tobermorite (irregular) in core No.1979 of the Surtsey tuff, Iceland 4 ; (d) The dissolving alkaline feldspar and the surrounding phillipsite, chabazite, and tobemollite growing in NYT show that secondary minerals link the feldspar-matrix interface 73 ; (e) Concrete pumice debris in Port Naronis, where partially dissolved alkaline feldspar and residual phillipsite and al-tobermorite 4 ; (f) Concrete of Port Cossa, dissolving phillipsite ①, the C-A-S-H ② and Al-tobermorite ③, and the later very fine-grained Al-tobermorite crystal clusters ④ 4 ; (g)Fine-grained clusters of phillipsite crystals and associated tabular Al-tobermorite in the concrete of Port Pozzolan 42 ; (h) C-A-S-H and Str?tlingite in the base concrete of Trajan’s market, and it can be inferred that the latter is formed by the dehydration and crystallization of the former 66
19 de VIVO B, ROLANDI G, GANS P B, et al. New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy)[J]. Mineralogy and Petrology, 2001, 73(1): 47-65.
20 de FINO M, la VOLPE L, PECCERILLO A, et al. Petrogenesis of Monte Vulture volcano (Italy): inferences from mineral chemistry, major and trace element data[J]. Contributions to Mineralogy and Petrology, 1986, 92(2): 135-145.
21 HORNIG-KJARSGAARD I, KELLER J, KOBERSKI U,et al. Geology,stratigraphy and volcanological evolution of the island of Stromboli,Aeolian Arc,Italy[J]. Acta Vulcanologica, 1993, 3: 21-68.
22 GRASSO M, LENTINI F, NAIRN A E M,et al. A geological and paleomagnetic study of the Hyblean volcanic rocks, Sicily[J]. Tectonophysics, 1983, 98: 271-295.
23 BECCALUVA L, DERIU M, MACCIOTTA G, et al. Geochronology and magmatic character of the pliocene-pleistocene volcanism in Sardinia (Italy)[J]. Bulletin Volcanologique, 1977, 40(3): 153-168.
24 SAVELLI C. Subduction-related episodes of K-alkaline magmatism (15~0.1 Ma) and geodynamic implications in the North Tyrrhenian—central Italy region: a review[J]. Journal of Geodynamics, 2000, 30(5): 575-591.
25 SECCO M, ASSCHER Y, RICCI G, et al. Cementation processes of Roman pozzolanic binders from Caesarea Maritima (Israel)[J]. Construction and Building Materials, 2022, 355. DOI:10.1016/j.conbuildmat.2022.129128 .
26 SAĞIN E U, DURAN H E, BÖKE H. Lime mortar technology in ancient eastern Roman Provinces[J]. Journal of Archaeological Science: Reports, 2021, 39. DOI:10.1016/j.jasrep.2021.103132 .
27 OLESON J P, BRANDON C, CRAMER S M, et al. The ROMACONS project: a contribution to the historical and engineering analysis of hydraulic concrete in Roman maritime structures[J]. International Journal of Nautical Archaeology, 2004, 33(2): 199-229.
28 DILARIA S, SECCO M, GHIOTTO A R,et al. Early exploitation of Neapolitan pozzolan(pulvis puteolana) in the Roman theatre of Aquileia,northern Italy[J]. Scientific Reports,2023,13(1). DOI: 10.1038/s41598-023-30692-y .
29 LAYCOCK E A, PIRRIE D, CLEGG F, et al. An investigation to establish the source of the Roman lime mortars used in Wallsend, UK[J]. Construction and Building Materials, 2019, 196: 611-625.
30 FORT R, ERGENÇ D,ALY N,et al. Implications of new mineral phases in the isotopic composition of Roman lime mortars at the Kom el-Dikka archaeological site in Egypt[J]. Construction and Building Materials,2021,268. DOI: 10.1016/j.conbuildmat.2020.121085 .
31 PECCERILLO A. Plio-quaternary volcanism in Italy[M]. New York: Springer-Verlag Berlin Heidelberg, 2005.
32 GAZDA E K, MCCANN A M. Chapter VII. Reconstruction and function: port, fishery, and villa, the roman port and fishery of Cosa[M]. Princeton, NJ, USA: Princeton University Press, 2017: 137-159.
33 GAZDA E K. Cosa’s contribution to the study of Roman hydraulic concrete:an historiographic commentary[M]// GOLDMAN N W. Classical studies in honor of Cleo Rickman Fitch. New York: Oxford University Press,2001.
34 OESTREICHER B A. Contemporary picture of Caesarea’s ancient harbor[J]. Israel Numismatic Bulletin, 1962, 2: 44-47.
35 VOTRUBA G F. Imported building materials of sebastos harbour, Israel[J]. International Journal of Nautical Archaeology, 2007, 36(2): 325-335.
36 HARRELL J A. Ancient Egyptian limestone quarries: a petrological survey[J]. Archaeometry, 1992, 34(2): 195-211.
37 DEICHMANN F W. Westliche Bautechnik im romischen und rhomäischen Osten[J]. Mitteilungen des Deutschen Archäologischen Instituts. Romische Abteilung Heidelberg,1979,86(1/2): 473-527.
38 ASTM. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete[Z]. ASTM International: West Conshohocken, PA, USA, 2019: 12 959-19 428.
39 SECCO M, DILARIA S, BONETTO J, et al. Technological transfers in the Mediterranean on the verge of Romanization: insights from the waterproofing renders of Nora (Sardinia, Italy)[J]. Journal of Cultural Heritage, 2020, 44: 63-82.
40 MIRIELLO D, BLOISE A, CRISCI G M, et al. New compositional data on ancient mortars and plasters from Pompeii (Campania-southern Italy): archaeometric results and considerations about their time evolution[J]. Materials Characterization, 2018, 146: 189-203.
41 IZZO F, GRIFA C, GERMINARIO C, et al. Production technology of mortar-based building materials from the Arch of Trajan and the Roman Theatre in Benevento, Italy[J]. The European Physical Journal Plus, 2018, 133(9). DOI: 10.1140/epjp/i2018-12229-1 .
42 BORSOI G, SANTOS S A, MENEZES P, et al. Analytical characterization of ancient mortars from the archaeological Roman site of Pisões (Beja, Portugal)[J]. Construction and Building Materials, 2019, 204: 597-608.
43 ERGENÇ D, FORT R. Multi-technical characterization of Roman mortars from Complutum, Spain[J]. Measurement, 2019, 147. DOI: 10.1016/j.measurement.2019.106876 .
44 MEDEGHINI L, CALZOLARI L, BOTTICELLI M, et al. The secret of ancient Roman hydraulic mortar: the lesson learnt from the past for future cements[J]. Cement and Concrete Composites, 2024, 148. DOI: 10.1016/j.cemconcomp.2024.105484 .
45 MOROPOULOU A, BAKOLAS A, BISBIKOU K. Investigation of the technology of historic mortars[J]. Journal of Cultural Heritage, 2000, 1(1): 45-58.
46 SEYMOUR L M, TAMURA N, JACKSON M D, et al. Reactive binder and aggregate interfacial zones in the mortar of Tomb of Caecilia Metella concrete, 1C BCE, Rome[J]. Journal of the American Ceramic Society, 2022, 105(2): 1 503-1 518.
47 MASSAZZA F, PEZZUOLI M. Some teachings of a Roman concrete,in mortars,cements and grouts used in the conservation of historic buildings[Z]. International Centre for the Study of the Preservation and Restoration of Cultural Property, 1981.
48 JACKSON M, DEOCAMPO D, MARRA F, et al. Mid-Pleistocene pozzolanic volcanic ash in ancient Roman concretes[J]. Geoarchaeology, 2010, 25(1): 36-74.
49 JACKSON M D, LANDIS E N, BRUNE P F, et al. Mechanical resilience and cementitious processes in Imperial Roman architectural mortar[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(52): 18 484-18 489.
50 ARTIOLI G, SECCO M, ADDIS A. The Vitruvian legacy:mortars and binders before and after the Roman world[J]. Mineralogical Society of Great Britain and Ireland, 2019, 20(4): 151-202.
51 COMMANDRÉ J M, SALVADOR S, NZIHOU A. Reactivity of laboratory and industrial limes[J]. Chemical Engineering Research and Design, 2007, 85(4): 473-480.
52 FORSTER A. Hot-lime mortars: a current perspective[J]. Journal of Architectural Conservation, 2004, 10(3): 7-27.
53 PESCE C, GODINA M C, HENRY A, et al. Towards a better understanding of hot-mixed mortars for the conservation of historic buildings: the role of water temperature and steam during lime slaking[J]. Heritage Science, 2021, 9(1). DOI: 10.1186/s40494-021-00546-9 .
54 FENG T T, YU H F, TAN Y S, et al. Service life design for concrete engineering in marine environments of Northern China based on a modified theoretical model of chloride diffusion and large datasets of ocean parameters[J]. Engineering, 2022, 17: 123-139.
55 GLASSER F P, MARCHAND J, SAMSON E. Durability of concrete—degradation phenomena involving detrimental chemical reactions[J]. Cement and Concrete Research, 2008, 38(2): 226-246.
56 CHEN Jiankang, YANG Min. Advances of environment damage mechanics in marine engineering concrete[J]. Mechanics in Engineering, 2023, 45(3): 499-512.
陈建康, 杨敏. 海工混凝土环境损伤力学研究进展[J]. 力学与实践, 2023, 45(3): 499-512.
57 QIAO X, CHEN J K. Correlation of propagation rate of corrosive crack in concrete under sulfate attack and growth rate of delayed ettringite[J]. Engineering Fracture Mechanics, 2019, 209: 333-343.
58 ZENDRI E. Interaction between clay and lime in “cocciopesto” mortars: a study by 29Si MAS spectroscopy[J]. Applied Clay Science, 2004, 25(1/2): 1-7.
1 NEWELL P. An ancient battle between environment and concrete[J]. Nature Reviews Chemistry, 2021, 5: 513-514.
2 XIAO Jianzhuang, ZHANG Hanghua, TANG Yuxiang, et al. Principles for waste concrete recycling and basic problems of recycled concrete[J]. China Science Bulletin, 2023, 68(5): 510-523.
肖建庄,张航华,唐宇翔,等.废弃混凝土再生原理与再生混凝土基本问题[J].科学通报,2023, 68(5): 510-523.
3 JACKSON M D, CHAE S R, MULCAHY S R, et al. Unlocking the secrets of Al-tobermorite in Roman seawater concrete[J]. American Mineralogist, 2013, 98(10): 1 669-1 687.
4 JACKSON M D, MULCAHY S R, CHEN H, et al. Phillipsite and Al-tobermorite mineral cements produced through low-temperature water-rock reactions in Roman marine concrete[J]. American Mineralogist, 2017, 102(7): 1 435-1 450.
5 SEYMOUR L M, MARAGH J, SABATINI P, et al. Hot mixing: mechanistic insights into the durability of ancient Roman concrete[J]. Science Advances, 2023, 9(1). DOI: 10.1126/sciadv.add1602 .
6 JACKSON M D, VOLA G, VŠIANSKÝ D, et al. Cement microstructures and durability in ancient Roman seawater concretes[C]// Historic mortars. Dordrecht: Springer, 2012: 49-76.
7 JACKSON M D. Roman seawater concretes and their material characteristics[M]// Building for eternity:the history and technology of roman concrete engineering in the sea. Oxford: Oxbow Books, 2014: 141-187.
8 SU Z, YAN Z, NAKASHIMA K,et al. Naturally derived cements learned from the wisdom of ancestors:a literature review based on the experiences of ancient China,India and Rome[J]. Materials, 2023, 16(2). DOI: 10.3390/ma16020603 .
9 ZHANG K, SUI Y, WANG L Q, et al. Effects of sticky rice addition on the properties of lime-tile dust mortars[J]. Heritage Science, 2021, 9(1). DOI:10.1186/s40494-020-00475-z .
59 JACKSON M D, OLESON J, MOON J,et al. Extreme durability in ancient roman concretes[J]. American Ceramic Society Bulletin, 2018, 97: 22-28.
60 RISPOLI C, MONTESANO G, VERDE M, et al. The key to ancient Roman mortars hydraulicity: ceramic fragments or volcanic materials? A lesson from the Phlegrean archaeological area (southern Italy)[J]. Construction and Building Materials, 2024, 411. DOI: 10.1016/j.conbuildmat.2023.134408 .
61 KUPWADE-PATIL K, de WOLF C, CHIN S, et al. Impact of Embodied Energy on materials/buildings with partial replacement of Ordinary Portland Cement (OPC) by natural Pozzolanic Volcanic Ash[J]. Journal of Cleaner Production, 2018, 177: 547-554.
62 BARBERON F, BAROGHEL-BOUNY V, ZANNI H, et al. Interactions between chloride and cement-paste materials[J]. Magnetic Resonance Imaging, 2005, 23(2): 267-272.
63 SURYAVANSHI A K, SCANTLEBURY J D, LYON S B. Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate[J]. Cement and Concrete Research, 1996, 26(5): 717-727.
64 GIANFROTTA P A. Harbor structures of the Augustan age in Italy[M]. New York: BRILL, 1996: 65-76.
65 GIANFROTTA P. Archeologia subacquea e testimonianze di pesca[J]. Mélanges de L’École Française de Rome Antiquité, 1999, 111(1): 9-36.
66 JACKSON M D, MOON J, GOTTI E, et al. Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete[J]. Journal of the American Ceramic Society, 2013, 96(8): 2 598-2 606.
67 KOMARNENI S, ROY D M. Tobermorites: a new family of cation exchangers[J]. Science, 1983, 221(4 611): 647-648.
68 KOMARNENI S, BREVAL E, MIYAKE M, et al. Cation-exchange properties of (Al+Na)-substituted synthetic tobermorites[J]. Clays and Clay Minerals, 1987, 35(5): 385-390.
69 SHIBUE Y. Cation-exchange properties of phillipsite (a zeolite mineral): the differences between Si-rich and Si-poor phillipsites[J]. Separation Science and Technology, 1998, 33(3): 333-355.
10 YANG F W, ZHANG B J, MA Q L. Study of sticky rice-lime mortar technology for the restoration of historical masonry construction[J]. Accounts of Chemical Research, 2010, 43(6): 936-944.
11 ZENG Y Y, ZHANG B J, LIANG X L. A case study and mechanism investigation of typical mortars used on ancient architecture in China[J]. Thermochimica Acta, 2008, 473(1/2): 1-6.
12 ZHANG Q, LI B B, ZENG Q, et al. Erosion of aerial lime and sticky rice mortars by cyclic wetting-drying and dilute sulfate acid actions[J]. Advances in Cement Research, 2020, 32(8): 343-357.
13 THIRUMALINI P. Study on the performance enhancement of lime mortar used in ancient temples and monuments in India[J]. Indian Journal of Science and Technology, 2011, 4(11): 1 484-1 487.
14 SANTHANAM K, SHANMUGAVEL D, RAMADOSS R, et al. Characterisation on ancient mortar of Chettinadu house at Kanadukathan, Karaikudi, Tamil Nadu, India[J]. Materials Today: Proceedings, 2021, 43: 1 147-1 153.
15 BRUNET C, MONIÉ P, JOLIVET L, et al. Migration of compression and extension in the Tyrrhenian Sea, insights from 40Ar/39Ar ages on micas along a transect from Corsica to Tuscany[J]. Tectonophysics, 2000, 321(1): 127-155.
16 PINARELLI L, POLI G, SANTO A. Geochemical characterization of recent Vol Canism from the Tuscan magmatic province(Central Italy): the Roccastrada and San Vincenzo centers[J]. Periodico di Mineralogial, 1989, 58: 67-96.
17 LAVECCHIA G, STOPPA F. The tectonic significance of Italian magmatism: an alternative view to the popular interpretation[J]. Terra Nova, 1996, 8(5): 435-446.
18 CIVETTA L, INNOCENTI F, MANETTI P, et al. Geochemical characteristics of potassic volcanics from Mts. Ernici (Southern Latium, Italy)[J]. Contributions to Mineralogy and Petrology, 1981, 78(1): 37-47.
70 PETZING J, CHESTER B. Authigenic marine zeolites and their relationship to global volcanism[J]. Marine Geology, 1979, 29(1/2/3/4): 253-271.
71 HU Chuanlin, LI Zongjin, WANG Fazhou. Progress and application prospect of fundamental research on concrete micromechanics[J]. Engineering Mechanics, 2021, 38(4): 1-7, 92.
胡传林, 李宗津, 王发洲. 混凝土微观力学基础研究进展及应用展望[J]. 工程力学, 2021, 38(4): 1-7, 92.
72 COLELLA A, di BENEDETTO C, CALCATERRA D, et al. The Neapolitan Yellow Tuff: an outstanding example of heterogeneity[J]. Construction and Building Materials, 2017, 136: 361-373.
73 DE’GENNARO M, CAPPELLETTI P, LANGELLA A, et al. Genesis of zeolites in the Neapolitan Yellow Tuff: geological, volcanological and mineralogical evidence[J]. Contributions to Mineralogy and Petrology, 2000, 139(1): 17-35.
74 WANG Xiaogang, SHI Caijun, HE Fuqiang, et al. Chloride binding and its effects on microstructure of cement-based materials[J]. Journal of the Chinese Ceramic Society, 2013, 41(2): 187-198.
王小刚, 史才军, 何富强, 等. 氯离子结合及其对水泥基材料微观结构的影响[J]. 硅酸盐学报, 2013, 41(2): 187-198.
75 ELAKNESWARAN Y, NAWA T, KURUMISAWA K. Electrokinetic potential of hydrated cement in relation to adsorption of chlorides[J]. Cement and Concrete Research, 2009, 39(4): 340-344.
76 LEI Yongsheng, HAN Tao, WANG Huiqi, et al. Preparation and characterization of Calcium Silicate Hydrate(C-S-H) synthesized by the hydrothermal method[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(3): 465-469.
雷永胜, 韩涛, 王慧奇, 等. 水热合成水化硅酸钙(C-S-H)的制备与表征[J]. 硅酸盐通报, 2014, 33(3): 465-469.
77 ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy and Geochemistry, 2015, 80(1): 61-164.
78 ZHANG Mingbo, QIU Shengtao, LI Jianxin, et al. Effect of cooling methods on the mineralogical composition and microstructure of low titanium-containing blast furnace slag[J]. Chinese Journal of Engineering, 2016, 38(5): 658-667.
张明博, 仇圣桃, 李建新, 等. 冷却方式对低钛高炉渣矿物组成和矿相结构的影响[J]. 工程科学学报, 2016, 38(5): 658-667.
79 LI Zhangang, BAI Pinbo, TIAN Yuming, et al. Preparation and properties of gehlenite with magnesium slag as a raw material[J]. Journal of Taiyuan University of Science and Technology, 2013, 34(6): 435-439.
李占刚, 白频波, 田玉明, 等. 镁渣为原料制备钙铝黄长石材料及其性能研究[J]. 太原科技大学学报, 2013, 34(6): 435-439.
80 HOU Xiaowei, YIN Jianhao, KONG Xiangming. Interaction between chemical admixtures and calcium silicate hydrate and chemical admixtures impacts on calcium silicate hydrate properties by molecular: a short review dynamics studies[J]. Journal of the Chinese Ceramic Society, 2022, 50(11): 2 959-2 970.
侯晓伟, 尹健昊, 孔祥明. 化学外加剂与水化硅酸钙相互作用的分子动力学研究进展[J]. 硅酸盐学报, 2022, 50(11): 2 959-2 970.
81 AITCIN P. Cements of yesterday and today Concrete of tomorrow[J]. Cement and Concrete Research, 2000, 30: 1 349-1 359.
82 ZHANG Siyu, HUANG Shaowen. Evaluation methods and influence factors of pozzolanic activity[J]. Materials Reports, 2011, 25(15): 104-106, 113.
张思宇, 黄少文. 火山灰活性评价方法及其影响因素[J]. 材料导报, 2011, 25(15): 104-106, 113.
83 SUN Zhenping, YAN Zhuhua, ZHANG Ting, et al. Review of pozzolanic activity detection methods for pozzolanic materials[J]. Materials Reports, 2024, 38(1): 113-118.
孙振平, 闫珠华, 张挺, 等. 火山灰质材料的火山灰活性检测方法综述[J]. 材料导报, 2024, 38(1): 113-118.
84 JUENGER M C G, SNELLINGS R, BERNAL S A. Supplementary cementitious materials: new sources, characterization, and performance insights[J]. Cement and Concrete Research, 2019, 122: 257-273.
85 Morris A M A. English engineer John Smeaton's experimental method (s): optimisation, hypothesis testing and exploratory experimentation[J]. Studies in History and Philosophy of Science Part A, 2021, 89: 283-294.
86 GARCIA-TRONCOSO N, XU B, PROBST-PESANTEZ W. Development of concrete incorporating recycled aggregates,hydrated lime and natural volcanic pozzolan[J]. Infrastructures, 2021, 6(11). DOI: 10.3390/infrastructures6110155 .
87 PU Xincheng, LIU Fang, WANG Chong, et al. Pozzolanic reaction and enhancement effect of active mineral admixtures in high strength and high performance concrete[C]// Concrete Quality Professional Committee of the Concrete and Prestressed Concrete Branch of the Chinese Society of Civil Engineering. Proceedings of the national conference on advanced concrete technology and mineral admixtures research and engineering applications. 2006: 4.
蒲心诚,刘芳,王冲,等. 高强高性能混凝土中活性矿物掺料的火山灰反应及增强效应[C]// 中国土木工程学会混凝土及预应力混凝土分会混凝土质量专业委员会 . 全国高性能混凝土和矿物掺合料的研究与工程应用技术交流会论文集. 2006: 4.
88 LI Ni, WEI Haiquan, ZHANG Liuyi, et al. Discovery of Daliuchong volcanic edifice in Tengchong, Yunnan Province and its significance[J]. Acta Petrologica Sinica, 2014, 30(12): 3 627-3 634.
李霓, 魏海泉, 张柳毅, 等. 云南腾冲大六冲火山机构的发现及意义[J]. 岩石学报, 2014, 30(12): 3 627-3 634.
89 HU Zhenqi, XIE Maxian, XIE Ming. Research and application of volcanic ash in mass concrete engineering [J]. Transpo World (Engineering Technology), 2015(3): 78-79.
胡振奇,谢马贤,谢明.火山灰在大体积混凝土工程中的研究和应用[J].交通世界(工程技术), 2015(3): 78-79.
90 SHI Zhengyou, Gangfei LÜ, FU Rong. Research on the application of volcanic ash in concrete[C]// New technology of concrete construction in hydropower project. Beijing: China Environment Press, 2015: 5.
施正友,吕刚裴,芙蓉.火山灰在混凝土中的应用研究[C]// 水电工程混凝土施工新技术.北京:中国环境出版社,2015:5.
91 ZHANG Zhong, LI Chunhong. Use of natural pozzuolanic admixture in construction of hydropower projects[J]. Yunnan Water Power, 2009, 25(1): 67-71.
张众, 李春洪. 天然火山灰掺合料在水电工程中的应用[J]. 云南水力发电, 2009, 25(1): 67-71.
92 DAI Qingan, GUO Kangsheng. Application of volcanic ash in cement concrete pavement[J]. Transpo World, 2020(24): 151-152, 157.
戴庆安,郭康生.火山灰在水泥混凝土路面中的应用[J].交通世界,2020(24): 151-152, 157.
93 MERLINO S, BONACCORSI E, ARMBRUSTER T. The real structure of tobermorite 11A: normal and anomalous forms, OD character and polytypic modifications[J]. European Journal of Mineralogy, 2001, 13(3): 577-590.
94 GMIRA A, ZABAT M, PELLENQ R J M, et al. Microscopic physical basis of the poromechanical behavior of cement-based materials[J]. Materials and Structures, 2004, 37(1): 3-14.
95 MANZANO H, DOLADO J S, GUERRERO A, et al. Mechanical properties of crystalline calcium-silicate-hydrates: comparison with cementitious C-S-H gels[J]. Physica Status Solidi, 2007, 204(6): 1 775-1 780.
96 SHAHSAVARI R, BUEHLER M J, PELLENQ R J M, et al. First-principles study of elastic constants and interlayer interactions of complex hydrated oxides: case study of tobermorite and jennite[J]. Journal of the American Ceramic Society, 2009, 92(10): 2 323-2 330.
97 OH J E, CLARK S M, MONTEIRO P J M. Does the Al substitution in C-S-H(I) change its mechanical property?[J]. Cement and Concrete Research, 2011, 41(1): 102-106.
98 KOMARNENI S. Phillipsite in Cs decontamination and immobilization[J]. Clays and Clay Minerals, 1985, 33(2): 145-151.
99 TSUJI M, KOMARNENI S, MALLA P. Substituted tobermorites: 27Al and 29Si MASNMR, cation exchange, and water sorption studies[J]. Journal of the American Ceramic Society, 1991, 74(2): 274-279.
100 TSUTSUMI T, NISHIMOTO S, KAMESHIMA Y, et al. Hydrothermal preparation of tobermorite from blast furnace slag for Cs+ and Sr2+ sorption[J]. Journal of Hazardous Materials, 2014, 266: 174-181.
101 KOMARNENI S, TSUJI M. Selective cation exchange in substituted tobermorites[J]. Journal of the American Ceramic Society, 1989, 72(9): 1 668-1 674.
102 TROTIGNON L, DEVALLOIS V, PEYCELON H, et al. Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste[J]. Physics And Chemistry Earth, Parts A/B/C, 2007, 32(1/2/3/4/5/6/7): 259-274.
103 MARUYAMA I, RYMEŠ J, AILI A, et al. Long-term use of modern Portland cement concrete: the impact of Al-tobermorite formation[J]. Materials & Design, 2021, 198. DOI: 10.1016/j.matdes.2020.109297 .
104 HOUSTON J R, MAXWELL R S, CARROLL S A. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy[J]. Geochemical Transactions, 2009, 10. DOI: 10.1186/1467-4866-10-1 .
105 SHAW S, CLARK S M, HENDERSON C M B. Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2·4H2O) and xonotlite (Ca6Si6O17(OH)2): an in situ synchrotron study[J]. Chemical Geology, 2000, 167(1/2): 129-140.
106 KOMARNENI S, ROY R, ROY D M, et al. 27Al and 29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites[J]. Journal of Materials Science, 1985, 20(11): 4 209-4 214.
[1] 李晓,梁收运,郑国东. 滑带土的研究进展[J]. 地球科学进展, 2010, 25(5): 484-491.
[2] 郭正府,刘嘉麒. 火山活动与气候变化研究进展[J]. 地球科学进展, 2002, 17(4): 595-604.
阅读次数
全文


摘要