地球科学进展 ›› 2024, Vol. 39 ›› Issue (4): 357 -373. doi: 10.11867/j.issn.1001-8166.2024.031

综述与评述 上一篇    下一篇

新矿物( U-Th/He年代学的研究进展
陈玉柳 1 , 2( ), 丁汝鑫 1 , 2( ), 孙转 3, 卢胜城 1 , 2   
  1. 1.广东省地球动力作用与地质灾害重点实验室,中山大学 地球科学与工程学院,广东 珠海 519082
    2.广东省地质过程与矿产资源探查重点实验室,广东 珠海 519082
    3.中国石油辽河油田 勘探开发研究院,辽宁 盘锦 124010
  • 收稿日期:2024-03-05 修回日期:2024-03-27 出版日期:2024-04-10
  • 通讯作者: 丁汝鑫 E-mail:chenyliu3@mail2.sysu.edu.cn;dingrux@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(42072229);辽河油田公司科技项目(20230ZJC-02)

Advancements in (U-Th)/He Thermochronology of New Minerals

Yuliu CHEN 1 , 2( ), Ruxin DING 1 , 2( ), Zhuan SUN 3, Shengcheng LU 1 , 2   

  1. 1.Guangdong Provincial Key Laboratory of Geodynamics and Geohazards,School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai Guangdong 519082, China
    2.Guangdong Provincial Key Laboratory of Geological Processes and Mineral Resources, Zhuhai Guangdong 519082, China
    3.Research Institute of Petroleum Exploration Development, PetroChina Liaohe Oilfield Company, Panjin Liaoning 124010, China
  • Received:2024-03-05 Revised:2024-03-27 Online:2024-04-10 Published:2024-04-26
  • Contact: Ruxin DING E-mail:chenyliu3@mail2.sysu.edu.cn;dingrux@mail.sysu.edu.cn
  • About author:CHEN Yuliu, Master student, research area includes mineralogy, petrology, ore deposit. E-mail: chenyliu3@mail2.sysu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(42072229);The Technology Project of Liaohe Oilfield Company(20230ZJC-02)

自20世纪末(U-Th)/He定年技术诞生以来,(U-Th)/He定年在地质学等领域发挥着越来越重要的作用,尤其是磷灰石及锆石的(U-Th)/He定年技术得到了广泛应用,然而这两种矿物在自然界中的分布相对有限,极大地限制了(U-Th)/He年代学的发展。近年来,随着He扩散动力学研究的不断深入和分析测试技术的提高,其他矿物的(U-Th)/He定年技术也得到了长足进步,理论与技术方法也日臻完善,为(U-Th)/He年代学开辟了新的应用领域。此外,不同类型的矿物记录了不同的地质信息,通过结合多种矿物的(U-Th)/He定年数据,将增进对地质过程的理解。基于(U-Th)/He定年新理论和新技术的发展,总结了赤铁矿、针铁矿、磁铁矿、碳酸盐矿物、牙形石、萤石、钙钛矿、尖晶石、金红石以及石榴子石等矿物的(U-Th)/He定年,重点介绍了相对成熟的赤铁矿、针铁矿、磁铁矿、碳酸盐矿物以及牙形石的(U-Th)/He定年的研究进展。目前,这些新矿物的(U-Th)/He定年在矿床学、沉积学、构造地质学、地球动力学和环境科学等领域得到了初步应用,尤其在约束成矿时代、古环境古气候重建、洋壳蚀变和俯冲剥露过程、热液活动、断裂变形以及古地震研究等方面将发挥关键作用。然而,这些新矿物的(U-Th)/He年代学仍存在不少问题,限制了这些方法的广泛推广与应用,比如多扩散域行为、辐射损伤和化学成分对He扩散的影响、加热脱气过程中母体同位素的挥发以及(U-Th)/He体系的开放行为等,这些因素将导致(U-Th)/He年龄数据表现出较大的分散性。因此,未来需要进一步研究He在这些矿物中的扩散行为,改善实验方法并提高仪器测试精度,以确保(U-Th)/He定年数据的准确性,为理解地质过程提供更加可靠的时间框架。

Since the inception of the (U-Th)/He thermochronometer at the turn of the last century, it has assumed an increasingly pivotal role in geology and related disciplines, notably in the dating of apatite and zircon. However, the occurrence of apatite and zircon is relatively restricted in nature, significantly constraining the advancement and application of (U-Th)/He dating. Through ongoing, comprehensive investigations into He diffusion kinetics and advancements in analytical technology, alongside apatite and zircon, other minerals (U-Th)/He thermochronologies have also made significant strides, progressively refining and broadening their applications, thereby opening new avenues for the (U-Th)/He thermochronometer. Moreover, different minerals record distinct geological information; hence, employing (U-Th)/He dating across multiple minerals enhances our comprehension of geological processes. This paper provides a concise overview of the progress in (U-Th)/He dating of hematite, goethite, magnetite, carbonate minerals, conodont, fluorite, perovskite, spinel, rutile, and garnet, with a focus on the advanced research in hematite, goethite, magnetite, carbonate minerals, and conodont (U-Th)/He dating, which are relatively mature. Presently, these novel methodologies have found applications in diverse fields such as ore deposits, sedimentology, tectonic geology, geodynamics, and environmental science, particularly in determining mineralization age, reconstructing paleoenvironments and paleoclimates, elucidating processes of oceanic crust alteration, subduction, and exhumation, understanding the functioning of hydrothermal systems, investigating fault deformation, and conducting paleoseismic research, wherein they are poised to play a pivotal role. However, several challenges persist, including multiple diffusion domains, the impact of radiation damage and chemical composition on helium diffusion, loss of parent isotopes during heating and degassing, and open behavior within the (U-Th)/He system, often resulting in dispersed thermochronological (U-Th)/He dates. Thus, further investigations into He diffusion behavior in these minerals, enhancements in experimental methodologies, and improvements in instrument accuracy are imperative to ensure the precision of (U-Th)/He data, thereby furnishing a more dependable framework for understanding geological processes.

中图分类号: 

表1 用于( U-Th/He定年的矿物
Table 1 Minerals used forU-Th/He dating
图1 各种矿物(U-Th/He系统封闭温度范围(据参考文献[ 75 ]修改)
假设冷却速率为10 °C/Ma
Fig. 1 The closure temperature range of various mineralU-Th/He systemsmodified after reference 75 ])
Assuming a 10 °C/Ma cooling rate
表2 实验所得的不同矿物活化能( Ea )和频率因子( D0 )的参数值
Table 2 EaD0 for different minerals obtained from the experiment
图2 赤铁矿封闭温度与颗粒大小的关系(据参考文献[ 60 ]修改)
Fig. 2 The relationship between closure temperature and grain sizes of hematitemodified after reference 60 ])
图3 各种碳酸盐矿物封闭温度和颗粒半径之间的关系(据参考文献[ 118 ]修改)
Fig. 3 The relationship between the radius of various carbonate minerals and the closure temperaturemodified after reference 118 ])
表3 碳酸盐矿物不同晶体方向的活化能( Ea )和频率因子( D0 118
Table 3 EaD0 for carbonate minerals in different crystal orientations 118
图4 赤铁矿、针铁矿、磁铁矿、碳酸盐矿物和牙形石在不同地质环境中的产出(据参考文献[ 59 ]修改)
Fig. 4 Simplified diagram showing geologically diverse occurrences of hematitegoethitemagnetitecarbonate mineralsand conodont in different geological settingsmodified after reference 59 ])
图5 风化剖面演化过程示意图
Fig. 5 Simplified diagram showing the process during the evolution of the weathering profile
图6 断层带赤铁矿(U-Th/He年代学数据的解释示意图(据参考文献[ 135 ]修改)
赤铁矿(U-Th)/He年龄:(a) 形成年龄,(b) 冷却年龄,(c) 热重置事件的时间,这取决于赤铁矿形成时的环境温度相对封闭温度的高低以及形成后的热历史和变形历史
Fig. 6 Simplified diagram showing potential interpretations of hematiteU-Th/He data from fault zonesmodified after reference 135 ])
Hematite (U-Th)/He dates: (a) formation age, (b) cooling age, (c) thermal resetting, respectively. This depending on the ambient temperature hematite formed relative to closure temperature,and the post-formation thermal and deformation history
图7 大洋蛇纹岩中的磁铁矿(U-Th/He年代学数据的解释示意图
Fig. 7 Simplified diagram showing potential interpretations of magnetiteU-Th/He data from oceanic serpentinites
1 FLOWERS R M, ZEITLER P K, DANIŠÍK M, et al. (U-Th)/He chronology: part 1. data, uncertainty, and reporting[J]. GSA Bulletin, 2023, 135(1/2): 104-136.
2 ZEITLER P K, HERCZEG A L, McDOUGALL I, et al. U-Th-He dating of apatite: a potential thermochronometer[J]. Geochimica et Cosmochimica Acta, 1987, 51(10): 2 865-2 868.
3 SHUSTER D L, FLOWERS R M, FARLEY K A. The influence of natural radiation damage on helium diffusion kinetics in apatite[J]. Earth and Planetary Science Letters, 2006, 249(3/4): 148-161.
4 FLOWERS R M, KETCHAM R A, SHUSTER D L, et al. Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model[J]. Geochimica et Cosmochimica Acta, 2009, 73(8): 2 347-2 365.
5 GAUTHERON C, TASSAN-GOT L, BARBARAND J, et al. Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology[J]. Chemical Geology, 2009, 266(3/4): 157-170.
6 GAUTHERON C, DJIMBI D M, ROQUES J, et al. A multi-method, multi-scale theoretical study of He and Ne diffusion in zircon[J]. Geochimica et Cosmochimica Acta, 2020, 268: 348-367.
7 GUENTHNER W R, REINERS P W, KETCHAM R A, et al. Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology[J]. American Journal of Science, 2013, 313(3): 145-198.
8 DANIŠÍK M, MCINNES B I A, KIRKLAND C L, et al. Seeing is believing: visualization of He distribution in zircon and implications for thermal history reconstruction on single crystals[J]. Science Advances, 2017, 3(2). DOI:10.1126/sciadv.1601121 .
9 WILLETT C D, FOX M, SHUSTER D L. A helium-based model for the effects of radiation damage annealing on helium diffusion kinetics in apatite[J]. Earth and Planetary Science Letters, 2017, 477: 195-204.
10 GINSTER U, REINERS P W, NASDALA L, et al. Annealing kinetics of radiation damage in zircon[J]. Geochimica et Cosmochimica Acta, 2019, 249: 225-246.
11 ANDERSON A J, van SOEST M C, HODGES K V, et al. Helium diffusion in zircon: effects of anisotropy and radiation damage revealed by laser depth profiling[J]. Geochimica et Cosmochimica Acta, 2020, 274: 45-62.
12 EVANS N J, McINNES B I A, McDONALD B, et al. Emplacement age and thermal footprint of the diamondiferous Ellendale E9 lamproite pipe, Western Australia[J]. Mineralium Deposita, 2013, 48(3): 413-421.
13 WU L, MONIÉ P, WANG F, et al. Multi-phase cooling of Early Cretaceous granites on the Jiaodong Peninsula, East China: evidence from 40Ar/39Ar and (U-Th)/He thermochronology[J]. Journal of Asian Earth Sciences, 2018, 160: 334-347.
14 FARLEY K A, MCKEON R. Radiometric dating and temperature history of banded iron formation-associated hematite, Gogebic iron range, Michigan, USA[J]. Geology, 2015, 43(12): 1 083-1 086.
15 COURTNEY-DAVIES L, DANIŠIK M, RAMANAIDOU E R, et al. Hematite geochronology reveals a tectonic trigger for iron ore mineralization during Nuna breakup[J]. Geology, 2022, 50(11): 1 318-1 323.
16 TYE A R, NIEMI N A, COWGILL E, et al. Diverse deformation mechanisms and lithologic controls in an active orogenic wedge: structural geology and thermochronometry of the eastern greater Caucasus[J]. Tectonics, 2022, 41(12). DOI:10.1029/2022TC007349 .
17 HEJL E, HEBERER B, SALCHER B, et al. Thermochronological constraints on the post-Variscan exhumation history of the southeastern Bohemian Massif (Waldviertel and Weinsberg Forest, Austria): palaeogeographic and geomorphologic implications[J]. International Journal of Earth Sciences, 2023, 112(4): 1 203-1 226.
18 DING R X, MIN K, ZOU H P. Inversion of topographic evolution using low-T thermal history: a case study from coastal mountain system in southeastern China[J]. Gondwana Research, 2019, 67: 21-32.
19 VERMEER J L, QUIGLEY M C, BOONE S C, et al. Tectono-thermal evolution of the hope-kelly fault system, southern Alps, New Zealand: insights from topographic analysis and (U-Th)/He thermochronology[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(4). DOI:10.1029/2022JB024358 .
20 ORME D A. Burial and exhumation history of the Xigaze forearc basin, Yarlung suture zone, Tibet[J]. Geoscience Frontiers, 2019, 10(3): 895-908.
21 ZAWACKI E E, van SOEST M C, HODGES K V, et al. Sediment provenance and silicic volcano-tectonic evolution of the northern East African Rift System from U/Pb and (U-Th)/He laser ablation double dating of detrital zircons[J]. Earth and Planetary Science Letters, 2022, 580. DOI:10.1016/j.epsl.2022.117375 .
22 LIU Fangbin, NIE Junsheng, ZHENG Dewen, et al. The Cenozoic exhumation history and forcing mechanism of SE Tibetan Plateau: a case study of the Lincang granite area[J]. Advances in Earth Science, 2021, 36(4): 421-441.
刘方斌, 聂军胜, 郑德文, 等. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例[J]. 地球科学进展, 2021, 36(4): 421-441.
23 BLACKBURN T J, STOCKLI D F, CARLSON R W, et al. (U-Th)/He dating of kimberlites—a case study from north-eastern Kansas[J]. Earth and Planetary Science Letters, 2008, 275(1/2): 111-120.
24 FU S L, HU R Z, YAN J, et al. The mineralization age of the Banxi Sb deposit in Xiangzhong metallogenic province in Southern China[J]. Ore Geology Reviews, 2019, 112. DOI:10.1016/j.oregeorev.2019.103033 .
25 BAUGHMAN J S, FLOWERS R M, METCALF J R, et al. Influence of radiation damage on titanite He diffusion kinetics[J]. Geochimica et Cosmochimica Acta, 2017, 205: 50-64.
26 BAUGHMAN J S, FLOWERS R M. Mesoproterozoic burial of the Kaapvaal craton, southern Africa during Rodinia supercontinent assembly from (U-Th)/He thermochronology[J]. Earth and Planetary Science Letters, 2020, 531. DOI:10.1016/j.epsl.2019.115930 .
27 WEISBERG W R, METCALF J R, FLOWERS R M. Distinguishing slow cooling versus multiphase cooling and heating in zircon and apatite (U-Th)/He datasets: the case of the McClure Mountain syenite standard[J]. Chemical Geology, 2018, 485: 90-99.
28 COPELAND P, WATSON E B, URIZAR S C, et al. Alpha thermochronology of carbonates[J]. Geochimica et Cosmochimica Acta, 2007, 71(18): 4 488-4 511.
29 COPELAND P, COX K, BRUCE WATSON E. The potential of crinoids as (U+Th+Sm)/He thermochronometers[J]. Earth and Planetary Science Letters, 2015, 422: 1-10.
30 CROS A, GAUTHERON C, PAGEL M, et al. 4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies[J]. Geochimica et Cosmochimica Acta, 2014, 125: 414-432.
31 PEPPE D J, REINERS P W. Conodont (U-Th)/He thermochronology: initial results, potential, and problems[J]. Earth and Planetary Science Letters, 2007, 258(3/4): 569-580.
32 LANDMAN R L, FLOWERS R M, ROSENAU N A, et al. Conodont (U-Th)/He thermochronology: a case study from the Illinois Basin[J]. Earth and Planetary Science Letters, 2016, 456: 55-65.
33 WOLFF R, DUNKL I, KEMPE U, et al. The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany: constraints from fluorite (U-Th-Sm)/He thermochronology[J]. Economic Geology, 2015, 110(8): 2 025-2 040.
34 WOLFF R, DUNKL I, KEMPE U, et al. Variable helium diffusion characteristics in fluorite[J]. Geochimica et Cosmochimica Acta, 2016, 188: 21-34.
35 EVANS N J, WILSON N S F, CLINE J S, et al. Fluorite (U-Th)/He thermochronology: constraints on the low temperature history of Yucca Mountain, Nevada[J]. Applied Geochemistry, 2005, 20(6): 1 099-1 105.
36 SEMAN S, STOCKLI D F, SMYE A J, et al. Garnet (U-Th)/He thermochronometry and its application to exhumed high-pressure low-temperature metamorphic rocks[C]// 14th international conference on thermochronology. Chamonix, France: Thermo, 2014.
37 BAUGHMAN J S, FLOWERS R M. Deciphering a 2 gyr-long thermal history from a multichronometer (U-Th)/He study of the phalaborwa carbonatite, kaapvaal craton, South Africa[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(5): 1 581-1 594.
38 COOPERDOCK E H G, STOCKLI D F. Dating exhumed peridotite with spinel (U-Th)/He chronometry[J]. Earth and Planetary Science Letters, 2018, 489: 219-227.
39 BOYCE J W, HODGES K V, OLSZEWSKI W J, et al. He diffusion in monazite: implications for (U-Th)/He thermochronometry[J]. Geochemistry, Geophysics, Geosystems, 2005, 6(12). DOI:10.1029/2005GC001058 .
40 FARLEY K A. He diffusion systematics in minerals: evidence from synthetic monazite and zircon structure phosphates[J]. Geochimica et Cosmochimica Acta, 2007, 71(16): 4 015-4 024.
41 PETERMAN E M, HOURIGAN J K, GROVE M. Experimental and geologic evaluation of monazite (U-Th)/He thermochronometry: catnip sill, Catalina core complex, Tucson, AZ[J]. Earth and Planetary Science Letters, 2014, 403: 48-55.
42 YAKUBOVICH O, VIKENTYEV I, IVANOVA E, et al. U-Th-He geochronology of pyrite from alteration of the Au-Fe-skarn novogodnee-monto deposit (polar urals, Russia)—the next step in the development of a new approach for direct dating of ore-forming processes[J]. Geosciences, 2021, 11(10). DOI:10.3390/geosciences11100408 .
43 YAKUBOVICH O V, VASILYEVA N A, VASILYEVA K Y, et al. First results of U-Th/He dating of epigenetic pyrite from rocks of the bazhenov formation, western Siberia[J]. Doklady Earth Sciences, 2023, 513(1): 1 156-1 160.
44 STOCKLI D F, WOLFE M R, BLACKBURN T J, et al. He diffusion and (U-Th)/He thermochronometry of rutile[C]. San Francisco: American Geophysical Union Fall Meeting, 2007.
45 ROBINSON K H, FLOWERS R M, METCALF J R. Rutile (U-Th)/He thermochronology: temperature sensitivity and radiation damage effects[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(11): 4 737-4 755.
46 Wolfe M R. Calibration of rutile (U-Th)/He Thermochronology: assessing the thermal evolution of the KTB drill hole, Germany and adjacent Bohemian Massif[D]. Kansa: University of Kansas, 2009.
47 ANDERSON A J, HODGES K V, van SOEST M C, et al. Helium diffusion in natural xenotime[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(1): 417-433.
48 FARLEY K A, STOCKLI D F. (U-Th)/He dating of phosphates: apatite, monazite, and xenotime[J]. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 559-577.
49 STANLEY J R, FLOWERS R M. Dating kimberlite emplacement with zircon and perovskite (U-Th)/He geochronology[J]. Geochemistry, Geophysics, Geosystems, 2016, 17(11): 4 517-4 533.
50 BLACKBURN T J, STOCKLI D F, WALKER J D. Magnetite (U-Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks[J]. Earth and Planetary Science Letters, 2007, 259(3/4): 360-371.
51 SCHWARTZ S, GAUTHERON C, KETCHAM R A, et al. Unraveling the exhumation history of high-pressure ophiolites using magnetite (U-Th-Sm)/He thermochronometry[J]. Earth and Planetary Science Letters, 2020, 543. DOI:10.1016/j.epsl.2020.116359 .
52 COOPERDOCK E H G, STOCKLI D F. Unraveling alteration histories in serpentinites and associated ultramafic rocks with magnetite (U-Th)/He geochronology[J]. Geology, 2016, 44(11): 967-970.
53 COX S E, FARLEY K A, HEMMING S R. Insights into the age of the Mono Lake Excursion and magmatic crystal residence time from (U-Th)/He and 230Th dating of volcanic allanite[J]. Earth and Planetary Science Letters, 2012, 319/320: 178-184.
54 YAKUBOVICH O V, SHUKOLYUKOV Y A, KOTOV A B, et al. U-Th-He dating of native gold: first results, problems, and outlooks[J]. Petrology, 2014, 22(5): 429-437.
55 AULT A K, REINERS P W, EVANS J P, et al. Linking hematite (U-Th)/He dating with the microtextural record of seismicity in the Wasatch fault damage zone, Utah, USA[J]. Geology, 2015, 43(9): 771-774.
56 EVENSON N S, REINERS P W, SPENCER J E, et al. Hematite and Mn oxide (U-Th)/He dates from the Buckskin-Rawhide detachment system, western Arizona: gaining insights into hematite (U-Th)/He systematics[J]. American Journal of Science, 2014, 314(10): 1 373-1 435.
57 AULT A K, FRENZEL M, REINERS P W, et al. Record of paleofluid circulation in faults revealed by hematite (U-Th)/He and apatite fission-track dating: an example from Gower Peninsula fault fissures, Wales[J]. Lithosphere, 2016, 8(4): 379-385.
58 BALOUT H, ROQUES J, GAUTHERON C, et al. Helium diffusion in pure hematite (α-Fe2O3) for thermochronometric applications: a theoretical multi-scale study[J]. Computational and Theoretical Chemistry, 2017, 1 099: 21-28.
59 COOPERDOCK E H G, AULT A K. Iron oxide (U-Th)/He thermochronology: new perspectives on faults, fluids, and heat[J]. Elements, 2020, 16(5): 319-324.
60 FARLEY K A. Helium diffusion parameters of hematite from a single-diffusion-domain crystal[J]. Geochimica et Cosmochimica Acta, 2018, 231: 117-129.
61 FARLEY K A, FLOWERS R M. (U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from eastern Grand Canyon[J]. Earth and Planetary Science Letters, 2012, 359/360: 131-140.
62 HOFMANN F, REICHENBACHER B, FARLEY K A. Evidence for >5 ma paleo-exposure of an eocene-miocene paleosol of the bohnerz formation, Switzerland[J]. Earth and Planetary Science Letters, 2017, 465: 168-175.
63 HUFF D E, HOLLEY E, GUENTHNER W R, et al. Fe-oxides in jasperoids from two gold districts in Nevada: characterization, geochemistry, and (U-Th)/He dating[J]. Geochimica et Cosmochimica Acta, 2020, 286: 72-102.
64 JENSEN J L, SIDDOWAY C S, REINERS P W, et al. Single-crystal hematite (U-Th)/He dates and fluid inclusions document widespread Cryogenian sand injection in crystalline basement[J]. Earth and Planetary Science Letters, 2018, 500: 145-155.
65 JENSEN J L, AULT A K, GEISSMAN J W. Evaluating the compatibility of hematite (U-Th)/He data and hematite-carried secondary magnetizations: an example from the Colorado front range[J]. Geochemistry, Geophysics, Geosystems, 2023, 24(9). DOI:10.1029/2023GC010993 .
66 DENG X D, LI J W, SHUSTER D L. Late Mio-Pliocene chemical weathering of the Yulong porphyry Cu deposit in the eastern Tibetan Plateau constrained by goethite (U-Th)/He dating: implication for Asian summer monsoon[J]. Earth and Planetary Science Letters, 2017, 472: 289-298.
67 HEIM J A, VASCONCELOS P M, SHUSTER D L, et al. Dating paleochannel iron ore by (U-Th)/He analysis of supergene goethite, Hamersley Province, Australia[J]. Geology, 2006, 34(3): 173-176.
68 MILLER H B D, VASCONCELOS P M, EILER J M, et al. A Cenozoic terrestrial paleoclimate record from He dating and stable isotope geochemistry of goethites from Western Australia[J]. Geology, 2017, 45(10): 895-898.
69 MONTEIRO H S, VASCONCELOS P M, FARLEY K A, et al. (U-Th)/He geochronology of goethite and the origin and evolution of cangas[J]. Geochimica et Cosmochimica Acta, 2014, 131: 267-289.
70 RIFFEL S B, VASCONCELOS P M, CARMO I O, et al. Goethite (U-Th)/He geochronology and precipitation mechanisms during weathering of basalts[J]. Chemical Geology, 2016, 446: 18-32.
71 SHUSTER D L, VASCONCELOS P M, HEIM J A, et al. Weathering geochronology by (U-Th)/He dating of goethite[J]. Geochimica et Cosmochimica Acta, 2005, 69(3): 659-673.
72 SHUSTER D L, FARLEY K A, VASCONCELOS P M, et al. Cosmogenic 3He in hematite and goethite from Brazilian “canga” duricrust demonstrates the extreme stability of these surfaces[J]. Earth and Planetary Science Letters, 2012, 329/330: 41-50.
73 VASCONCELOS P M, HEIM J A, FARLEY K A, et al. 40Ar/39Ar and (U-Th)/He- 4He/3He geochronology of landscape evolution and channel iron deposit genesis at Lynn Peak, Western Australia[J]. Geochimica et Cosmochimica Acta, 2013, 117: 283-312.
74 GARCIA V H, REINERS P W, SHUSTER D L, et al. Thermochronology of sandstone-hosted secondary Fe- and Mn-oxides near Moab, Utah: record of paleo-fluid flow along a fault[J]. GSA Bulletin, 2018, 130(1/2): 93-113.
75 COOPER F J, ADAMS B A, BLUNDY J D, et al. Aridity-induced Miocene canyon incision in the Central Andes[J]. Geology, 2016, 44(8): 675-678.
76 DANIŠÍK M, EVANS N J, RAMANAIDOU E R, et al. (U-Th)/He chronology of the Robe River channel iron deposits, Hamersley Province, Western Australia[J]. Chemical Geology, 2013, 354: 150-162.
77 DODSON M H. Closure temperature in cooling geochronological and petrological systems[J]. Contributions to Mineralogy and Petrology, 1973, 40(3): 259-274.
78 WOLF R A, FARLEY K A, SILVER L T. Helium diffusion and low-temperature thermochronometry of apatite[J]. Geochimica et Cosmochimica Acta, 1996, 60(21): 4 231-4 240.
79 FARLEY K A. Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite[J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2 903-2 914.
80 SHUSTER D L, FARLEY K A. The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite[J]. Geochimica et Cosmochimica Acta, 2009, 73(1): 183-196.
81 REINERS P W, FARLEY K A, HICKES H J. He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte[J]. Tectonophysics, 2002, 349(1/2/3/4): 297-308.
82 REINERS P W, SPELL T L, NICOLESCU S, et al. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating[J]. Geochimica et Cosmochimica Acta, 2004, 68(8): 1 857-1 887.
83 REINERS P W, FARLEY K A. Helium diffusion and (U-Th)/He thermochronometry of titanite[J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3 845-3 859.
84 AMIDON W H, HOBBS D, HYNEK S A. Retention of cosmogenic 3He in calcite[J]. Quaternary Geochronology, 2015, 27: 172-184.
85 REINERS P W, CHAN M A, EVENSON N S. (U-Th)/He geochronology and chemical compositions of diagenetic cement, concretions, and fracture-filling oxide minerals in Mesozoic sandstones of the Colorado Plateau[J]. Geological Society of America Bulletin, 2014, 126(9/10): 1 363-1 383.
86 IDLEMAN B D, ZEITLER P K, McDANNELL K T. Characterization of helium release from apatite by continuous ramped heating[J]. Chemical Geology, 2018, 476: 223-232.
87 SHUSTER D L, FARLEY K A, SISTERSON J M, et al. Quantifying the diffusion kinetics and spatial distributions of radiogenic 4He in minerals containing proton-induced 3He[J]. Earth and Planetary Science Letters, 2004, 217(1/2): 19-32.
88 FLOWERS R M, FARLEY K A. Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon[J]. Science, 2012, 338(6 114): 1 616-1 619.
89 MBONGO DJIMBI D, GAUTHERON C, ROQUES J, et al. Impact of apatite chemical composition on (U-Th)/He thermochronometry: an atomistic point of view[J]. Geochimica et Cosmochimica Acta, 2015, 167: 162-176.
90 GERIN C, GAUTHERON C, OLIVIERO E, et al. Influence of vacancy damage on He diffusion in apatite, investigated at atomic to mineralogical scales[J]. Geochimica et Cosmochimica Acta, 2017, 197: 87-103.
91 VASCONCELOS P M, REICH M, SHUSTER D L. The paleoclimatic signatures of supergene metal deposits[J]. Elements, 2015, 11(5): 317-322.
92 KULA J, BALDWIN S L. On hematite as a target for dating aqueous conditions on Mars[J]. Planetary and Space Science, 2012, 67(1): 101-108.
93 BASSAL F, ROQUES J, GAUTHERON C. Neon diffusion in goethite, α-FeO(OH): a theoretical multi-scale study[J]. Physics and Chemistry of Minerals, 2020, 47(3). DOI:10.1007/s00269-020-01083-w .
94 STRUTT R J. The accumulation of helium in geological time.-II[J]. Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character, 1909, 83(560): 96-99.
95 BASSAL F, HELLER B, ROQUES J, et al. Revealing the radiation damage and Al-content impacts on He diffusion in goethite[J]. Chemical Geology, 2022, 611. DOI: 10.1016/j.chemgeo.2022.121118 .
96 MARQUES K P P, ALLARD T, GAUTHERON C, et al. Supergene phases from ferruginous duricrusts: non-destructive microsampling and mineralogy prior to (U-Th)∕He geochronological analysis[J]. European Journal of Mineralogy, 2023, 35(3): 383-395.
97 SCOGGIN S H, REINERS P W, SHUSTER D L, et al. (U-Th)/He and 4He/3He thermochronology of secondary oxides in faults and fractures: a regional perspective from southeastern Arizona[J]. Geochemistry, Geophysics, Geosystems, 2021, 22(12). DOI:10.1029/2021GC009905 .
98 HOFMANN F, TREFFKORN J, FARLEY K A. U-loss associated with laser-heating of hematite and goethite in vacuum during (U-Th)/He dating and prevention using high O2 partial pressure[J]. Chemical Geology, 2020, 532. DOI:10.1016/j.chemgeo.2019.119350 .
99 ALLARD T, GAUTHERON C, BRESSAN RIFFEL S, et al. Combined dating of goethites and kaolinites from ferruginous duricrusts. Deciphering the Late Neogene erosion history of Central Amazonia [J]. Chemical Geology, 2018, 479: 136-150.
100 MONTEIRO H S, VASCONCELOS P M P, FARLEY K A. A combined (U-Th)/He and cosmogenic 3He record of landscape armoring by biogeochemical iron cycling[J]. Journal of Geophysical Research: Earth Surface, 2018, 123(2): 298-323.
101 COOPERDOCK E H G, KETCHAM R A, STOCKLI D F. Resolving the effects of 2-D versus 3-D grain measurements on apatite (U-Th)∕He age data and reproducibility[J]. Geochronology, 2019, 1(1): 17-41.
102 GLOTZBACH C, LANG K A, AVDIEVITCH N N, et al. Increasing the accuracy of (U-Th (-Sm))/He dating with 3D grain modelling[J]. Chemical Geology, 2019, 506: 113-125.
103 HERMAN F, BRAUN J, SENDEN T J, et al. (U-Th)/He thermochronometry: mapping 3D geometry using micro-X-ray tomography and solving the associated production-diffusion equation[J]. Chemical Geology, 2007, 242(1/2): 126-136.
104 KETCHAM R A, MOTE A S. Accurate measurement of small features in X-ray CT data volumes, demonstrated using gold grains[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(4): 3 508-3 529.
105 HUBER C, GUENTHNER W, KARANI H. A new correction for He loss applied to (U-Th)/He dating of grains with complex shapes and polymineralic aggregates[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(12): 5 744-5 764.
106 CALZOLARI G, ROSSETTI F, AULT A K, et al. Hematite (U-Th)/He thermochronometry constrains intraplate strike-slip faulting on the Kuh-e-Faghan Fault, central Iran[J]. Tectonophysics, 2018, 728/729: 41-54.
107 CALZOLARI G, AULT A K, HIRTH G, et al. Hematite (U-Th)/He thermochronometry detects asperity flash heating during laboratory earthquakes[J]. Geology, 2020, 48(5): 514-518.
108 DiMONTE A A, AULT A K, HIRTH G, et al. Hematite accommodated shallow, transient Pleistocene slow slip in the exhumed southern San Andreas fault system, California, USA[J]. Geology, 2022, 50(12): 1 443-1 447.
109 MCDERMOTT R G, AULT A K, EVANS J P, et al. Thermochronometric and textural evidence for seismicity via asperity flash heating on exhumed hematite fault mirrors, Wasatch fault zone, UT, USA[J]. Earth and Planetary Science Letters, 2017, 471: 85-93.
110 MCDERMOTT R G, AULT A K, CAINE J S. Dating fault damage along the eastern Denali fault zone with hematite (U-Th)/He thermochronometry[J]. Earth and Planetary Science Letters, 2021, 563. DOI:10.1016/j.epsl.2021.116872 .
111 MOSER A C, EVANS J P, AULT A K, et al. (U-Th)/He thermochronometry reveals Pleistocene punctuated deformation and synkinematic hematite mineralization in the Mecca Hills, southernmost San Andreas Fault zone[J]. Earth and Planetary Science Letters, 2017, 476: 87-99.
112 YAPP C J, SHUSTER D L. Environmental memory and a possible seasonal bias in the stable isotope composition of (U-Th)/He-dated goethite from the Canadian Arctic[J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4194-4215.
113 WU L Y, STUART F M, di NICOLA L, et al. Multi-aliquot method for determining (U+Th)/He ages of hydrothermal hematite: returning to Elba[J]. Chemical Geology, 2019, 504: 151-157.
114 BASSAL F, ROQUES J, CORRE M, et al. Role of defects and radiation damage on He diffusion in magnetite: implication for (U-Th)/He thermochronology[J]. Minerals, 2022, 12(5). DOI:10.3390/min12050590 .
115 COOPERDOCK E H G, STOCKLI D F, KELEMEN P B, et al. Timing of magnetite growth associated with peridotite-hosted carbonate veins in the SE samail ophiolite, wadi fins, Oman[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(5).DOI:10.1029/2019JB018632 .
116 CORRE M, AGRANIER A, LANSON M, et al. U and Th content in magnetite and Al spinel obtained by wet chemistry and laser ablation methods: implication for (U-Th)∕He thermochronometer[J]. Geochronology, 2022, 4(2): 665-681.
117 HOFMANN F, COOPERDOCK E H G, WEST A J, et al. Exposure dating of detrital magnetite using 3He enabled by microCT and calibration of the cosmogenic 3He production rate in magnetite[J]. Geochronology, 2021, 3(2): 395-414.
118 CHERNIAK D J, AMIDON W, HOBBS D, et al. Diffusion of helium in carbonates: effects of mineral structure and composition[J]. Geochimica et Cosmochimica Acta, 2015, 165: 449-465.
119 CHENG H, ZHANG H W, ZHAO J Y, et al. Chinese stalagmite paleoclimate researches: a review and perspective[J]. Science China Earth Sciences, 2019, 62(10): 1 489-1 513.
120 VERMEESCH P, SEWARD D, LATKOCZY C, et al. α-Emitting mineral inclusions in apatite, their effect on (U-Th)/He ages, and how to reduce it[J]. Geochimica et Cosmochimica Acta, 2007, 71(7): 1 737-1 746.
121 ZEITLER P K, ENKELMANN E, THOMAS J B, et al. Solubility and trapping of helium in apatite[J]. Geochimica et Cosmochimica Acta, 2017, 209: 1-8.
122 LI Shuchen. Theoretical simulation of helium diffusion in crystals of SiO2, and CaCO3 [D]. Beijing: Institute of Earthquake Forecasting China Earthquake Administration, 2019.
李书晨. 氦在SiO2和CaCO3晶体中扩散的理论模拟研究[D]. 北京:中国地震局地震预测研究所, 2019.
123 SHEN Anjiang, HU Anping, CHENG Ting, et al. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs[J]. Petroleum Exploration and Development, 2019, 46(6): 1 062-1 074.
沈安江, 胡安平, 程婷, 等. 激光原位U-Pb同位素定年技术及其在碳酸盐岩成岩—孔隙演化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1 062-1 074.
124 ROBERTS N M W, DROST K, HORSTWOOD M S A, et al. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb carbonate geochronology: strategies, progress, and limitations[J]. Geochronology, 2020, 2(1): 33-61.
125 SHEN Anjiang, ZHAO Wenzhi, HU Anping, et al. The dating and temperature measurement technologies for carbonate minerals and their application in hydrocarbon accumulation research in the paleo-uplift in central Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2021, 48(3): 476-487.
沈安江, 赵文智, 胡安平, 等. 碳酸盐矿物定年和定温技术及其在川中古隆起油气成藏研究中的应用[J]. 石油勘探与开发, 2021, 48(3): 476-487.
126 ZHANG Liangliang, ZHU Dicheng, XIE Jincheng, et al. Advances and perspectives of the in-situ laser ablation carbonate minerals U-Pb dating[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(6): 1 120-1 134.
张亮亮, 朱弟成, 谢锦程, 等. 碳酸盐矿物激光原位U-Pb定年:进展与展望[J]. 矿物岩石地球化学通报, 2022, 41(6): 1 120-1 134.
127 POWELL J W, SCHNEIDER D A, DESROCHERS A, et al. Low-temperature thermochronology of Anticosti Island: a case study on the application of conodont (U-Th)/He thermochronology to carbonate basin analysis[J]. Marine and Petroleum Geology, 2018, 96: 441-456.
128 BIDGOLI T S, TYRRELL J P, MÖLLER A, et al. Conodont thermochronology of exhumed footwalls of low-angle normal faults: a pilot study in the Mormon Mountains, Tule Springs Hills, and Beaver Dam Mountains, southeastern Nevada and southwestern Utah[J]. Chemical Geology, 2018, 495: 1-17.
129 EVANS N J, MCINNES B I A, SQUELCH A P, et al. Application of X-ray micro-computed tomography in (U-Th)/He thermochronology[J]. Chemical Geology, 2008, 257(1/2): 101-113.
130 CAI Chang’e, CHEN Hong, SHANG Wenliang, et al. Research progress of conodont(U-Th)/He thermochronology[J]. Advances in Earth Science, 2020, 35(9): 924-932.
蔡长娥, 陈鸿, 尚文亮, 等. 牙形石(U-Th)/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
131 RETALLACK G J. Cool-climate or warm-spike lateritic bauxites at high latitudes?[J]. The Journal of Geology, 2008, 116(6): 558-570.
132 WELLS M A, DANIŠÍK M, MCINNES B I A, et al. (U-Th)/He-dating of ferruginous duricrust: insight into laterite formation at Boddington, WA[J]. Chemical Geology, 2019, 522: 148-161.
133 YAPP C J, SHUSTER D L. D/H of late Miocene meteoric waters in Western Australia: paleoenvironmental conditions inferred from the δD of (U-Th)/He-dated CID goethite[J]. Geochimica et Cosmochimica Acta, 2017, 213: 110-136.
134 MONTEIRO H S, VASCONCELOS P M P, FARLEY K A, et al. Age and evolution of diachronous erosion surfaces in the Amazon: combining (U-Th)/He and cosmogenic 3He records[J]. Geochimica et Cosmochimica Acta, 2018, 229: 162-183.
135 AULT A K. Hematite fault rock thermochronometry and textures inform fault zone processes[J]. Journal of Structural Geology, 2020, 133. DOI:10.1016/j.jsg.2020.104002 .
136 ODLUM M L, AULT A K, CHANNER M A, et al. Seismicity recorded in hematite fault mirrors in the Rio Grande Rift[J]. Geosphere, 2022, 18(1): 241-260.
137 CATLING D C, MOORE J M. The nature of coarse-grained crystalline hematite and its implications for the early environment of Mars[J]. Icarus, 2003, 165(2): 277-300.
138 MAKHUBELA T V, KRAMERS J D. Testing a new combined (U,Th)-He and U/Th dating approach on Plio-Pleistocene calcite speleothems[J]. Quaternary Geochronology, 2022, 67. DOI: 10.1016/j.quageo.2021.101234 .
[1] 康逊, 胡瑞璞, 胡文瑄, 谭静强. 准噶尔盆地下三叠统百口泉组烃类热氧化的氧化性物质研究[J]. 地球科学进展, 2021, 36(10): 1004-1014.
[2] 蔡长娥,陈鸿,尚文亮,倪凤玲. 牙形石( U-Th/He热定年技术的研究进展[J]. 地球科学进展, 2020, 35(9): 924-932.
[3] 赵彬, 姚鹏, 杨作升, 于志刚. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[4] 黄柯, 朱明田, 张连昌, 李文君, 高炳宇. 磁铁矿LA-ICP-MS分析在矿床成因研究中的应用[J]. 地球科学进展, 2017, 32(3): 262-275.
[5] 张兴春. 国外铁氧化物铜—金矿床的特征及其研究现状[J]. 地球科学进展, 2003, 18(4): 551-560.
[6] 李荣西,魏家庸,杨卫东,郭庆军. 87Sr/ 86Sr研究海平面变化与全球对比问题[J]. 地球科学进展, 2000, 15(6): 729-733.
阅读次数
全文


摘要