地球科学进展 ›› 2024, Vol. 39 ›› Issue (12): 1227 -1242. doi: 10.11867/j.issn.1001-8166.2024.090

综述与评述 上一篇    下一篇

矿物变形行为与滑移系的限定:EBSD取向差与迹线法
王淑婷(), 曹淑云(), 占乐凡, 刘建华, 程雪梅   
  1. 中国地质大学(武汉) 地球科学学院,地质过程与矿产资源国家重点实验室,湖北 武汉 430074
  • 收稿日期:2024-09-23 修回日期:2024-11-27 出版日期:2024-12-10
  • 通讯作者: 曹淑云 E-mail:18202795669@163.com;shuyun.cao@cug.edu.cn
  • 基金资助:
    国家自然科学基金重点国际合作研究项目(42320104007);国家自然科学基金项目(42302262)

Mineral Deformation Behavior and Slip System Limitation: Electron Backscatter Diffraction Misorientation and Subgrain Boundary Trace Analysis

Shuting WANG(), Shuyun CAO(), Lefan ZHAN, Jianhua LIU, Xuemei CHENG   

  1. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
  • Received:2024-09-23 Revised:2024-11-27 Online:2024-12-10 Published:2025-02-28
  • Contact: Shuyun CAO E-mail:18202795669@163.com;shuyun.cao@cug.edu.cn
  • About author:WANG Shuting, research areas include structural deformation and fluid interaction. E-mail: 18202795669@163.com
  • Supported by:
    the International (Regional) Cooperation and Exchange Projects of the National Natural Science Foundation of China(42320104007);The National Natural Science Foundation of China(42302262)

矿物变形与滑移系的明确限定,对深入解析矿物响应外界应力和温度的内在机制及其流变弱化过程具有重要意义。随着科技的快速发展及其在地质学领域的深度融合,为精细厘定解析构造变形行为及其机理提供了契机。以典型的天然变形矿物,如石英与角闪石为例,通过显微构造分析,并结合利用场发射扫描电镜搭载的电子背散射衍射探头探测的海量矿物晶格优选取向数据进行综合分析。基于显微构造特征、电子背散射衍射mapping数据、位错几何结构类型及其属性,详细阐述了颗粒边界迹线与取向差(轴)分析方法,并揭示出石英和角闪石残斑在塑性变形过程中,在亚颗粒旋转重结晶机制支配下,石英主要通过{m}<a>滑移系、角闪石通过多滑移系进行应变调节并实现细粒化过程。因此,电子背散射衍射颗粒边界迹线与取向差轴分析方法结合显微构造特征,不仅能获得矿物变形精细的显微地质过程信息,还可以很好地阐释从单颗粒内部到颗粒(或基质)之间的取向演变规律,并有效地限定矿物变形过程中的主导滑移系及其与之相关的变形环境,在显微构造分析中具有重要的地质意义。

Clearly defining mineral deformation and slip systems is crucial for an in-depth analysis of the intrinsic mechanisms governing mineral responses to external stress and temperature, as well as their rheological weakening processes. The rapid advancement of science and technology and its deep integration into the geological field provide an opportunity for a detailed analysis of structural deformation behavior and mechanisms. In this study, quartz and amphibole from representative naturally deformed rocks were used as examples. Based on microstructural analysis, a comprehensive assessment was conducted using a substantial dataset of mineral lattice preferred orientation measurements obtained via an electron backscatter diffraction (EBSD) probe mounted on a field-emission scanning electron microscope. By examining microstructural features, EBSD mapping data, dislocation geometry types, and properties, a detailed analytical method for grain boundary trace and misorientation axes was developed. The results reveal that the strain adjustment and grain refinement process in quartz occur mainly through the {m}<a> slip system, dominated by the subgrain rotational recrystallization mechanism in quartz veins. It was also found that in mylonitic amphibolites, amphibole porphyroclasts exhibit pronounced fine-grained deformation behavior, primarily driven by subgrain rotational recrystallization. Furthermore, amphibole undergoes multi-slip system interactions, predominantly governed by the [001] direction through dislocation creep in banded amphibolites. Thus, integrating EBSD grain boundary trace analysis with misorientation axis analysis and microstructural characterization enables a comprehensive determination of microgeological information—including composition, shape, grain size, orientation, boundaries, and strain—of deformed minerals. This approach further elucidates the evolution of orientation from the grain interior to intergranular regions (or matrix). Moreover, the dominant slip system in mineral deformation processes can be effectively defined and correlated with the deformation environment, which has substantial geological implications.

中图分类号: 

图1 电子背散射衍射结构和操作示意图
①前置背散射电子监测器及上边的监测器提供原子序数衬度,下边的监测器提供形貌和取向衬度;②矩形磷光屏;③红外滤波器;④磷光体和CCD之间的最佳光路;⑤快速与高灵敏度的HKLNordlysS和HKLNordlysF+
Fig. 1 Electron Back Scatter DiffractionEBSDstructure and operation process
① Forward scattered & back scattered electron detectors. The upper detectors provide atomic number contrast, whilst the lower detectors provide topographic and orientation contrast. ② Rectangular phosphor screen. ③ IR filter. ④ Optimum optical path between the phosphor and the CCD. ⑤ High speed and high sensitivity options HKLNordlysS and HKLNordlysF+
图2 电子背散射衍射不同类型mapping
(a)雪龙山糜棱岩化石英脉中的石英花样拟合mapping数据,拟合值>1.5为不可靠数据;(b)和(c)分别为对应的颗粒横纵比和晶体形态叠加颗粒边界mapping数据;(d)欧拉mapping数据;(e)M2M mapping;(f)基于GOS进行区分的重结晶和残斑颗粒mapping;(g)透明化IPF Z mapping叠加亚颗粒边界类型,其中蓝色边界线代表倾斜边界,红色边界线代表倾斜边界或扭曲边界
Fig. 2 Different types of Electron Back Scatter DiffractionEBSDmapping
(a) The pattern fitting mapping of Xuelongshan mylonitic quartz veins, the fitting value > 1.5 is unreliable data; (b) and (c) The grain aspect ratio and crystal shape overlay grain boundary mapping; (d) The Euler mapping; (e) M2M mapping; (f) The recrystallized quartz and porphyroclasts mapping based on GOS; (g) Transparent IPF Z mapping overlays subgrain boundary types, where blue boundary lines represent likely tilt boundaries, and red boundary lines represent likely tilt or twist boundaries
图3 取向差轴特征(据参考文献[738]修改)
(a)矿物颗粒中位错蠕变与单位错壁的形成(基于倾斜边界模型);(b)倾斜边界和刃型位错之间的关系模型;(c)扭曲边界和螺位错之间的关系模型
Fig. 3 Misorientation axesmodified after references738])
(a)The dislocations creep in mineral grains and the formation of unit dislocation walls (based on the tilt boundary model); (b)The relationship model between tilt boundaries and edge dislocations; (c)The relationship model between twist boundaries and screw dislocations
图4 滇西石英脉显微特征(据参考文献[645]修改)
(a)雪龙山糜棱岩化石英脉的正交薄片扫描显微构造特征,呈现明显的石英残斑和细粒化基质,白色虚线框为图5和图6的EBSD测试分析域;(b)高黎贡微剪切带变形石英脉显微特征
Fig. 4 Microscopic characteristics of quartz veins in western Yunnanmodified after references645])
(a) Microstructure of Xuelongshan mylonitic quartz vein, showing obvious quartz porphyroclasts and fine-grained matrix, the white dashed box represents the EBSD testing regions in figure 5 and figure 6; (b) Microscopic characteristics of deformed quartz veins in the Gaoligong shear zone
图5 雪龙山糜棱岩化石英脉中石英晶体与电子背散射衍射特征分析(据参考文献[6]修改)
(a)石英晶型及主要滑移系4;(b)石英晶体与剪切面和剪切方向之间的关系与对应的组构特征,其中石英晶体只为说明c轴取向,是理想化的六方柱概图;(c)石英在晶体坐标系中的旋转轴分布图,并显示了不同旋转轴的最常见滑移系(刃型位错和螺位错),其中不同深度的灰色圈显示了滑移系发生的常见程度(以及可能的扩展),颜色越深代表越常见38;(d)雪龙山糜棱岩化石英脉的IPF Z面扫图;(e)~(g)对应石英脉整体的取向差角度分布图、c-轴极图和2°~15°取向差轴反极图
Fig. 5 Crystalline structure and Electron Back Scatter DiffractionEBSDcharacteristics of quartz in Xuelongshan mylonitic quartz veinsmodified after reference6])
(a) Quartz crystalline structure and main slip system4;(b) The relationship and corresponding fabric characteristics among quartz crystals, shear planes, and shear directions, where quartz crystals are only used to illustrate the c-axis orientation and are idealized for the hexagonal prism; (c)The rotation axis distribution of quartz in the crystal coordinate system shows the most common slip systems (edge dislocations and screw dislocations) for different rotation axes38; (d)IPF Z mapping of Xuelongshan mylonitic quartz veins; (e)~(g) The overall misorientation angle distribution, c-axis pole figure, and reverse pole figure of 2°~15° misorientation of the quartz grains in figure (d)
图6 雪龙山糜棱岩化石英脉中石英亚颗粒边界迹线分析(据参考文献[6]修改)
(a)糜棱岩化石英脉中残斑单颗粒的Texture Component mapping,右边为其对应的石英晶体取向;(b)图(a)中对应的i和ⅱ取向差剖面图,均为相对第一个点采集;(c)~(e)分别对应图(a)中选择的3个进行迹线分析的亚颗粒边界区域中石英颗粒晶轴、晶面取向的极图和2°~15°取向差轴反极图。其中,紫色短线指示亚颗粒边界, 黑色虚线为滑移面
Fig. 6 Subgrain boundaries trace analysis of quartz in Xuelongshan mylonitic quartz veinsmodified after reference6])
(a) Texture Component mapping of single porphyroclasts in the mylonitic quartz veins, with the corresponding quartz crystal orientation on the right; (b) The misorientation profiles corresponding to i and ii in figure (a) are both collected relative to the first point; (c)~(e) The pole figure of crystal axis (plane) and the inverse pole figure of 2°~15° misorientation axis of the three selected subgrain boundaries for quartz trace analysis in figure (a). The purple short line indicates the subgrain boundaries and the black dashed line represents the slip plane
图7 高黎贡石英脉道芬双晶电子背散射衍射特征与边界迹线分析图(据参考文献[45]修改)
(a)高黎贡石英道芬双晶残斑的IPF Z mapping;(b)~(d)分别为对应的石英取向差角度分布图、c-轴极图和旋转轴反极图;(e)分别对应图(a)中选择的4个进行迹线分析的亚颗粒边界区域中石英对应晶轴取向的极图,其中R为旋转轴,黄色线为亚颗粒边界
Fig. 7 Electron Back Scatter DiffractionEBSDcharacteristics and boundary trace analysis of Dauphiné twinning in Gaoligong quartz veinsmodified after reference45])
(a)IPF Z mapping of Dauphiné twinning porphyroclasts of Gaoligong quartz veins; (b)~(d)The corresponding misorientation angle distribution, c-axis pole figure, and rotation axis inverse pole figure of quartz, respectively; (e)The pole figure of quartz crystal axes of the four selected regions in figure (a), where R is the rotation axis and the yellow lines show the subgrain boundaries
图8 雪龙山糜棱岩化石英脉施密特因子分析
(a)石英滑移系(r)<a>在最大主应力Z加载方向上施密特因子mapping; (b)石英滑移系(c)<a>、{r}<a>和{m}<a>在最大主应力Z加载方向上施密特因子值的相对频率
Fig. 8 Schmidt factor analysis of mylonitic quartz veins in Xuelongshan
(a) Schmidt factor mapping of quartz slip system (r)<a> in the maximum principal stress loading direction-Z; (b)The relative frequency curves of schmidt factor values for quartz slip systems (c)<a>, {r}<a>, and {m}<a> in the maximum principal stress loading direction-Z, respectively
图9 滇西角闪岩显微特征(据参考文献[7]修改)
(a)和(b)分别为哀牢山定向拉长的条带状角闪岩和糜棱岩化角闪岩
Fig. 9 Microscopic characteristics of amphibolites in western Yunnanmodified after reference7])
The oriented elongated banded amphibolite(a) and mylonitic amphibolite(b) in Ailao Shan, respectively
图10 哀牢山糜棱岩化角闪石中角闪石EBSD特征与亚颗粒边界迹线分析(据参考文献[7]修改)
(a)角闪石晶型与4种组构类型(据参考文献[747]修改);(b)和(c)角闪石残斑及周边细颗粒的显微和欧拉mapping;(d)d1~d3分别为残斑Z1对应的组构成分与灰度叠mapping、取向差轴极图和角闪石晶轴(面)极图,以及通过亚颗粒边界迹线分析方法得到的滑移系特征;(e)e1~e3分别为残斑Z2对应的组构成分与灰度叠mapping、取向差轴极图和角闪石晶轴(面)极图,以及通过亚颗粒边界迹线分析方法得到的滑移系特征;(f)f1~f3分别为残斑Z3对应的组构成分与灰度叠mapping、取向差轴极图和角闪石晶轴(面)极图,以及通过亚颗粒边界迹线分析方法得到的滑移系特征
Fig. 10 EBSD characteristics and subgrain boundary trace analysis of mylonitic amphibole in Ailao Shanmodified after reference7])
(a) Crystalline structure and fabric types of amphibole (modified after references [7,47]); (b) and (c)Microscopic and Euler mapping of amphibole porphyroclasts and surrounding fine grains; (d) d1~d3 are respectively the Texture Component mapping, 2°~15° misorientation axes distribution, crystal axis (plane) pole figure, and slip system characteristics obtained by subgrain boundary trace analysis of amphibole porphyroclast Z1; (e) e1~e3 are respectively the Texture Component mapping, 2°~15° misorientation axes distribution, crystal axis (plane) pole figure, and slip system characteristics obtained by subgrain boundary trace analysis of amphibole porphyroclast Z2; (f) f1~f3 are respectively the Texture Component mapping, 2°~15° misorientation axes distribution, crystal axis (plane) pole figure, and slip system characteristics obtained by subgrain boundary trace analysis of amphibole porphyroclast Z3
图11 角闪石EBSD特征与亚颗粒边界迹线分析——以哀牢山条带状角闪石为例(据参考文献[7]修改)
(a) a1~a3分别为最左边角闪石颗粒对应的组构成分与灰度叠mapping、取向差角度剖面、取向差轴极图以及角闪石晶轴(面)极图和通过亚颗粒边界迹线分析方法得到的滑移系特征;(b) b1~b3分别为最左边角闪石颗粒对应的组构成分与灰度叠mapping、取向差角度剖面、取向差轴极图以及角闪石晶轴(面)极图和通过亚颗粒边界迹线分析方法得到的滑移系特征;(c) c1~c3分别为最左边角闪石颗粒对应的组构成分与灰度叠mapping、取向差角度剖面、2°~15°取向差轴极图以及角闪石晶轴(面)极图和通过亚颗粒边界迹线分析方法得到的滑移系特征
Fig. 11 EBSD characteristics and subgrain boundary trace analysis of banded amphibole in Ailao Shanmodified after reference7])
(a) a1~a3 are respectively the Texture Component mapping, the misorientation angle profile, 2°~15° misorientation axes distribution, and slip system characteristics obtained by subgrain boundary trace analysis of leftmost amphibole grain;(b) b1~b3 are respectively the Texture Component mapping, the misorientation angle profile, 2°~15° misorientation axes distribution, and slip system characteristics obtained by subgrain boundary trace analysis of leftmost amphibole grain;(c) c1~c3 are respectively the Texture Component mapping, the misorientation angle profile, 2°~15° misorientation axes distribution, and slip system characteristics obtained by subgrain boundary trace analysis of leftmost amphibole grain
1 de MEER S, DRURY M R, de BRESSER J H P, et al. Current issues and new developments in deformation mechanisms, rheology and tectonics[J]. Geological Society, London, Special Publications, 2002200(1): 1-27.
2 CAO Shuyun, LIU Junlai, HU Ling. Micro- and submicrostructural evidence for high-temperature brittle-ductile transition deformation of hornblende:case study of high-grade mylonites from Diancangshan,western Yunnan[J]. Science China:Earth Sciences200750(10): 1 459-1 470.
曹淑云,刘俊来,胡玲. 角闪石高温脆—韧性转变变形的显微与亚微构造证据——以滇西点苍山深变质剪切糜棱岩为例[J]. 中国科学:地球科学200737(8): 1 004-1 013.
3 XIA Haoran, LIU Junlai. The crystallographic preferred orientation of quartz and its applications[J]. Geological Bulletin of China201130(1): 58-70.
夏浩然, 刘俊来. 石英结晶学优选与应用[J]. 地质通报201130(1): 58-70.
4 SUN Lijing, ZHAO Zhongbao, WANG Genhou, et al. Research advances of microstructural deformation mechanism and rheological features of quartz[J]. Acta Geologica Sinica201993(10): 2 698-2 714.
孙丽静, 赵中宝, 王根厚, 等. 石英显微变形机制及流变学特征研究进展[J]. 地质学报201993(10): 2 698-2 714.
5 CASALE G, LEVINE J S F, ECONOMOU J. Extracting quartz deformation fabrics from polymineralic rocks[J]. Journal of Structural Geology2023173(21). DOI: 10.1016/j.jsg.2023.104893 .
6 WANG Shuting, CAO Shuyun, ZHAN Lefan,et al. Deformation behavior and fluid action of quartz veins in the Xuelongshan metamorphic complex, western Yunnan[J]. Science China: Earth Sciences202353(9): 2 011-2 033.
王淑婷,曹淑云,占乐凡,等. 滇西雪龙山变质杂岩中石英脉的变形行为与流体作用[J]. 中国科学:地球科学202353(9): 2 035-2 058.
7 LIU J H, CAO S Y. Development of amphibole Crystal Preferred Orientations (CPOs) and their effects on seismic anisotropy in deformed amphibolites[J]. Journal of Geophysical Research: Solid Earth2023128(4). DOI: 10.1029/2022JB026136 .
8 TRÉPIED L, DOUKHAN J C, PAQUET J. Subgrain boundaries in quartz theoretical analysis and microscopic observations[J]. Physics and Chemistry of Minerals19805(3): 201-218.
9 PASSCHIER C W, TROUW R A J. Microtectonics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
10 LLOYD G E, KNIPE R J. Deformation mechanisms accommodating faulting of quartzite under upper crustal conditions[J]. Journal of Structural Geology199214(2): 127-143.
11 LIU Junlai. Microstructures of deformed rocks and rheology of the lithosphere[J]. Geological Bulletin of China200423(): 980-985.
刘俊来. 变形岩石的显微构造与岩石圈流变学[J]. 地质通报200423(): 980-985.
12 WANG Qin, JI Shaocheng, XU Zhiqin. Lattice-preferred orientation, water content and seismic anisotropy of olivine: implications for deformation environment of continental subduction zones[J]. Acta Petrologica Sinica200723(12): 3 065-3 077.
王勤, 嵇少丞, 许志琴. 橄榄石的晶格优选定向、含水量与地震波各向异性: 对大陆俯冲带变形环境的约束[J]. 岩石学报200723(12): 3 065-3 077.
13 LLOYD G E, BUTLER R W H, CASEY M, et al. Mica, deformation fabrics and the seismic properties of the continental crust[J]. Earth and Planetary Science Letters2009288(1/2): 320-328.
14 ZHANG Jinjiang, SHANG Shan, WEI Chunjing, et al. Present status and development prospect of studies of rheology of continental lithosphere[J]. Acta Geoscientica Sinica201940(1): 9-16.
张进江, 商姗, 魏春景, 等. 大陆岩石圈流变学研究的发展现状与前景[J]. 地球学报201940(1): 9-16.
15 SANTOS S C, LAGOEIRO L, CAVALCANTE C, et al. Deformation mechanisms and seismic anisotropy in lower crustal rocks from the Barro Alto complex, Central Brazil[J]. Tectonophysics2021, 819. DOI: 10.1016/j.tecto.2021.229087 .
16 YEO T, SHIGEMATSU N, KATORI T. Dynamically recrystallized grains identified via the application of Gaussian mixture model to EBSD data[J]. Journal of Structural Geology2023, 167. DOI: 10.1016/j.jsg.2023.104800 .
17 SUN Shengsi, DONG Yunpeng, LI Yixi, et al. Rheology of continental lithosphere and seismic anisotropy[J]. Science China: Earth Sciences202454(1): 31-60.
孙圣思,董云鹏,黎乙希,等. 大陆岩石圈流变与地震波速各向异性[J]. 中国科学:地球科学202354(1): 31-63.
18 KOHLSTEDT D L, GOETZE C, DURHAM W B, et al. New technique for decorating dislocations in olivine[J]. Science1976191(4 231): 1 045-1 046.
19 LLOYD G E. Microstructural evolution in a mylonitic quartz simple shear zone: the significant roles of dauphine twinning and misorientation[J]. Geological Society, London, Special Publications, 2004224(1): 39-61.
20 GUTMANN M J, KOCKELMANN W, CHAPON L C, et al. Phase imaging using time-of-flight neutron diffraction[J]. Journal of Applied Crystallography200639(1): 82-89.
21 HU Ling, LIU Junlai, JI Mo, et al. Manual for identification of deformation microstructure[M]. Beijing: Geological Publishing House,2009.
胡玲,刘俊来,纪沫,等. 变形显微构造识别手册[M]. 北京:地质出版社,2009.
22 XU Zhiqin, WANG Qin, LIANG Fenghua, et al. Electron Backscatter Diffraction (EBSD) technique and its application to study of continental dynamics[J]. Acta Petrologica Sinica200925(7): 1 721-1 736.
许志琴, 王勤, 梁凤华, 等. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用[J]. 岩石学报200925(7): 1 721-1 736.
23 PRIOR D J, MARIANI E, WHEELER J. EBSD in the Earth sciences: applications, common practice, and challenges[M]//Electron backscatter diffraction in materials science. Boston, MA: Springer US, 2009: 345-360.
24 ZHANG Qing, LI Xin. The application and associated problems of EBSD technique in fabric analysis[J]. Acta Petrologica Sinica202137(4): 1 000-1 014.
张青, 李馨. 电子背散射衍射技术(EBSD)在组构分析中的应用和相关问题[J]. 岩石学报202137(4): 1 000-1 014.
25 KARATO S. Scanning electron microscope observation of dislocations in olivine[J]. Physics and Chemistry of Minerals198714(3): 245-248.
26 LIU Junlai, CAO Shuyun, ZOU Yunxin, et al. EBSD analysis of rock fabrics and its application[J]. Geological Bulletin of China200827(10): 1 638-1 645.
刘俊来, 曹淑云, 邹运鑫, 等. 岩石电子背散射衍射(EBSD)组构分析及应用[J]. 地质通报200827(10): 1 638-1 645.
27 CAO Shuyun, LIU Junlai. Modern techniques for the analysis of rock microstructure: EBSD and its application[J]. Advances in Earth Science200621(10): 1 091-1 096.
曹淑云, 刘俊来. 岩石显微构造分析现代技术: EBSD技术及应用[J]. 地球科学进展200621(10): 1 091-1 096.
28 BESTMANN M, PRIOR D J. Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization[J]. Journal of Structural Geology200325(10): 1 597-1 613.
29 RANDLE V. Microtexture determination and its applications[M]. 2nd ed. London: Maney for the Institute of Materials, Minerals and Mining, 2003.
30 SOUSTELLE V, TOMMASI A, DEMOUCHY S, et al. Deformation and fluid-rock interaction in the supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the avacha volcano, Kamchatka[J]. Journal of Petrology201051(1/2): 363-394.
31 FALUS G, TOMMASI A, SOUSTELLE V. The effect of dynamic recrystallization on olivine crystal preferred orientations in mantle xenoliths deformed under varied stress conditions[J]. Journal of Structural Geology201133(11): 1 528-1 540.
32 PALASSE L N, VISSERS R L M, PAULSSEN H, et al. Microstructural and seismic properties of the upper mantle underneath a rifted continental terrane (Baja California): an example of sub-crustal mechanical asthenosphere?[J]. Earth and Planetary Science Letters2012345: 60-71.
33 SOUSTELLE V, MANTHILAKE G. Deformation of olivine-orthopyroxene aggregates at high pressure and temperature: implications for the seismic properties of the asthenosphere[J]. Tectonophysics2017694: 385-399.
34 ELYASZADEH R, PRIOR D J, SARKARINEJAD K, et al. Different slip systems controlling crystallographic preferred orientation and intracrystalline deformation of amphibole in mylonites from the Neyriz mantle diapir, Iran[J]. Journal of Structural Geology2018107: 38-52.
35 KRUSE R, STÜNITZ H, KUNZE K. Dynamic recrystallization processes in plagioclase porphyroclasts[J]. Journal of Structural Geology200123(11): 1 781-1 802.
36 LLOYD G E, FARMER A B, MAINPRICE D. Misorientation analysis and the formation and orientation of subgrain and grain boundaries[J]. Tectonophysics1997279(1/2/3/4): 55-78.
37 NEUMANN B. Texture development of recrystallised quartz polycrystals unravelled by orientation and misorientation characteristics[J]. Journal of Structural Geology200022(11/12): 1 695-1 711.
38 CECCATO A, PENNACCHIONI G, MENEGON L, et al. Crystallographic control and texture inheritance during mylonitization of coarse grained quartz veins[J]. Lithos2017290: 210-227.
39 PRIOR D J, WHEELER J, PERUZZO L, et al. Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies[J]. Journal of Structural Geology200224(6/7): 999-1 011.
40 HILDYARD R C, PRIOR D J, FAULKNER D R, et al. Microstructural analysis of anhydrite rocks from the Triassic evaporites, Umbria-Marche Apennines, central Italy: an insight into deformation mechanisms and possible slip systems[J]. Journal of Structural Geology200931(1): 92-103.
41 TRIMBY P W, PRIOR D J. Microstructural imaging techniques: a comparison between light and scanning electron microscopy[J]. Tectonophysics1999303(1/2/3/4): 71-81.
42 CROSS A J, PRIOR D J, STIPP M, et al. The recrystallized grain size piezometer for quartz: an EBSD-based calibration[J]. Geophysical Research Letters201744(13): 6 667-6 674.
43 CAO S Y, LIU J L, LEISS B. Orientation-related deformation mechanisms of naturally deformed amphibole in amphibolite mylonites from the Diancang Shan, SW Yunnan, China[J]. Journal of Structural Geology201032(5): 606-622.
44 HU Gengxiang, CAI Xun, RONG Yonghua. Fundamentals of materials science[M]. 3rd ed. Shanghai: Shanghai Jiao Tong University Press, 2010.
胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 3版. 上海: 上海交通大学出版社, 2010.
45 ZHAN Lefan, CAO Shuyun. The effect of Dauphiné twinning on the crystallographic preferred orientation and deformation mechanism in quartz[J]. Acta Petrologica et Mineralogica202241(6): 1 135-1 146.
占乐凡, 曹淑云. 石英道芬双晶对晶格优选取向及变形机制的贡献和意义[J]. 岩石矿物学杂志202241(6): 1 135-1 146.
46 BARRIE C D, BOYLE A P, COX S F, et al. Slip systems and critical resolved shear stress in pyrite: an Electron Backscatter Diffraction (EBSD) investigation[J]. Mineralogical Magazine200872(6): 1 181-1 199.
47 KO B, JUNG H. Crystal preferred orientation of an amphibole experimentally deformed by simple shear[J]. Nature Communications2015, 6. DOI: 10.1038/ncomms7586 .
48 STIPP M, STÜNITZ H, HEILBRONNER R, et al. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 ℃[J]. Journal of Structural Geology200224(12): 1 861-1 884.
49 CAO S Y, NEUBAUER F, BERNROIDER M, et al. Structures, microfabrics and textures of the Cordilleran-type Rechnitz metamorphic core complex, Eastern Alps[J]. Tectonophysics2013608: 1 201-1 225.
50 CAO S Y, NEUBAUER F, BERNROIDER M, et al. The lateral boundary of a metamorphic core complex: the Moutsounas shear zone on Naxos, Cyclades, Greece[J]. Journal of Structural Geology201354: 103-128.
51 GLEASON G C, TULLIS J. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell[J]. Tectonophysics1995247(1/2/3/4): 1-23.
52 JUNG H, KARATO S I. Effects of water on dynamically recrystallized grain-size of olivine[J]. Journal of Structural Geology200123(9): 1 337-1 344.
53 PRÉCIGOUT J, PRIGENT C, PALASSE L, et al. Water pumping in mantle shear zones[J]. Nature Communications2017, 8. DOI: 10.1038/NCOMMS15736 .
54 LI Limin, LIU Xiangwen, XIE Zhanjun. Deformation mechanism and rheological property of granulite in the continental lower crust: a review[J]. Advances in Earth Science201126(3): 275-285.
李丽敏, 刘祥文, 谢战军. 大陆下地壳麻粒岩的流变学研究进展[J]. 地球科学进展201126(3): 275-285.
[1] 张刚生,谢先德. CaCO3生物矿化的研究进展——有机质的控制作用[J]. 地球科学进展, 2000, 15(2): 204-209.
[2] 李三忠,杨振升. 变斑晶晶内微构造应用研究进展[J]. 地球科学进展, 1998, 13(1): 51-57.
[3] 龚荣洲,岑况. 量子地球化学的研究进展和发展展望[J]. 地球科学进展, 1997, 12(2): 111-117.
[4] 王淑婷, 曹淑云, 占乐凡, 刘建华, 程雪梅. 矿物变形行为与滑移系的限定: EBSD取向差与迹线法[J]. 地球科学进展, 0, (): 1-.
阅读次数
全文


摘要