1 |
de MEER S, DRURY M R, de BRESSER J H P, et al. Current issues and new developments in deformation mechanisms, rheology and tectonics[J]. Geological Society, London, Special Publications, 2002, 200(1): 1-27.
|
2 |
CAO Shuyun, LIU Junlai, HU Ling. Micro- and submicrostructural evidence for high-temperature brittle-ductile transition deformation of hornblende:case study of high-grade mylonites from Diancangshan,western Yunnan[J]. Science China:Earth Sciences, 2007, 50(10): 1 459-1 470.
|
|
曹淑云,刘俊来,胡玲. 角闪石高温脆—韧性转变变形的显微与亚微构造证据——以滇西点苍山深变质剪切糜棱岩为例[J]. 中国科学:地球科学, 2007, 37(8): 1 004-1 013.
|
3 |
XIA Haoran, LIU Junlai. The crystallographic preferred orientation of quartz and its applications[J]. Geological Bulletin of China, 2011, 30(1): 58-70.
|
|
夏浩然, 刘俊来. 石英结晶学优选与应用[J]. 地质通报, 2011, 30(1): 58-70.
|
4 |
SUN Lijing, ZHAO Zhongbao, WANG Genhou, et al. Research advances of microstructural deformation mechanism and rheological features of quartz[J]. Acta Geologica Sinica, 2019, 93(10): 2 698-2 714.
|
|
孙丽静, 赵中宝, 王根厚, 等. 石英显微变形机制及流变学特征研究进展[J]. 地质学报, 2019, 93(10): 2 698-2 714.
|
5 |
CASALE G, LEVINE J S F, ECONOMOU J. Extracting quartz deformation fabrics from polymineralic rocks[J]. Journal of Structural Geology,2023,173(21). DOI: 10.1016/j.jsg.2023.104893 .
|
6 |
WANG Shuting, CAO Shuyun, ZHAN Lefan,et al. Deformation behavior and fluid action of quartz veins in the Xuelongshan metamorphic complex, western Yunnan[J]. Science China: Earth Sciences, 2023, 53(9): 2 011-2 033.
|
|
王淑婷,曹淑云,占乐凡,等. 滇西雪龙山变质杂岩中石英脉的变形行为与流体作用[J]. 中国科学:地球科学,2023, 53(9): 2 035-2 058.
|
7 |
LIU J H, CAO S Y. Development of amphibole Crystal Preferred Orientations (CPOs) and their effects on seismic anisotropy in deformed amphibolites[J]. Journal of Geophysical Research: Solid Earth, 2023, 128(4). DOI: 10.1029/2022JB026136 .
|
8 |
TRÉPIED L, DOUKHAN J C, PAQUET J. Subgrain boundaries in quartz theoretical analysis and microscopic observations[J]. Physics and Chemistry of Minerals, 1980, 5(3): 201-218.
|
9 |
PASSCHIER C W, TROUW R A J. Microtectonics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.
|
10 |
LLOYD G E, KNIPE R J. Deformation mechanisms accommodating faulting of quartzite under upper crustal conditions[J]. Journal of Structural Geology, 1992, 14(2): 127-143.
|
11 |
LIU Junlai. Microstructures of deformed rocks and rheology of the lithosphere[J]. Geological Bulletin of China, 2004, 23(): 980-985.
|
|
刘俊来. 变形岩石的显微构造与岩石圈流变学[J]. 地质通报, 2004, 23(): 980-985.
|
12 |
WANG Qin, JI Shaocheng, XU Zhiqin. Lattice-preferred orientation, water content and seismic anisotropy of olivine: implications for deformation environment of continental subduction zones[J]. Acta Petrologica Sinica, 2007, 23(12): 3 065-3 077.
|
|
王勤, 嵇少丞, 许志琴. 橄榄石的晶格优选定向、含水量与地震波各向异性: 对大陆俯冲带变形环境的约束[J]. 岩石学报, 2007, 23(12): 3 065-3 077.
|
13 |
LLOYD G E, BUTLER R W H, CASEY M, et al. Mica, deformation fabrics and the seismic properties of the continental crust[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 320-328.
|
14 |
ZHANG Jinjiang, SHANG Shan, WEI Chunjing, et al. Present status and development prospect of studies of rheology of continental lithosphere[J]. Acta Geoscientica Sinica, 2019, 40(1): 9-16.
|
|
张进江, 商姗, 魏春景, 等. 大陆岩石圈流变学研究的发展现状与前景[J]. 地球学报, 2019, 40(1): 9-16.
|
15 |
SANTOS S C, LAGOEIRO L, CAVALCANTE C, et al. Deformation mechanisms and seismic anisotropy in lower crustal rocks from the Barro Alto complex, Central Brazil[J]. Tectonophysics, 2021, 819. DOI: 10.1016/j.tecto.2021.229087 .
|
16 |
YEO T, SHIGEMATSU N, KATORI T. Dynamically recrystallized grains identified via the application of Gaussian mixture model to EBSD data[J]. Journal of Structural Geology, 2023, 167. DOI: 10.1016/j.jsg.2023.104800 .
|
17 |
SUN Shengsi, DONG Yunpeng, LI Yixi, et al. Rheology of continental lithosphere and seismic anisotropy[J]. Science China: Earth Sciences, 2024, 54(1): 31-60.
|
|
孙圣思,董云鹏,黎乙希,等. 大陆岩石圈流变与地震波速各向异性[J]. 中国科学:地球科学,2023, 54(1): 31-63.
|
18 |
KOHLSTEDT D L, GOETZE C, DURHAM W B, et al. New technique for decorating dislocations in olivine[J]. Science, 1976, 191(4 231): 1 045-1 046.
|
19 |
LLOYD G E. Microstructural evolution in a mylonitic quartz simple shear zone: the significant roles of dauphine twinning and misorientation[J]. Geological Society, London, Special Publications, 2004, 224(1): 39-61.
|
20 |
GUTMANN M J, KOCKELMANN W, CHAPON L C, et al. Phase imaging using time-of-flight neutron diffraction[J]. Journal of Applied Crystallography, 2006, 39(1): 82-89.
|
21 |
HU Ling, LIU Junlai, JI Mo, et al. Manual for identification of deformation microstructure[M]. Beijing: Geological Publishing House,2009.
|
|
胡玲,刘俊来,纪沫,等. 变形显微构造识别手册[M]. 北京:地质出版社,2009.
|
22 |
XU Zhiqin, WANG Qin, LIANG Fenghua, et al. Electron Backscatter Diffraction (EBSD) technique and its application to study of continental dynamics[J]. Acta Petrologica Sinica, 2009, 25(7): 1 721-1 736.
|
|
许志琴, 王勤, 梁凤华, 等. 电子背散射衍射(EBSD)技术在大陆动力学研究中的应用[J]. 岩石学报, 2009, 25(7): 1 721-1 736.
|
23 |
PRIOR D J, MARIANI E, WHEELER J. EBSD in the Earth sciences: applications, common practice, and challenges[M]//Electron backscatter diffraction in materials science. Boston, MA: Springer US, 2009: 345-360.
|
24 |
ZHANG Qing, LI Xin. The application and associated problems of EBSD technique in fabric analysis[J]. Acta Petrologica Sinica, 2021, 37(4): 1 000-1 014.
|
|
张青, 李馨. 电子背散射衍射技术(EBSD)在组构分析中的应用和相关问题[J]. 岩石学报, 2021, 37(4): 1 000-1 014.
|
25 |
KARATO S. Scanning electron microscope observation of dislocations in olivine[J]. Physics and Chemistry of Minerals, 1987, 14(3): 245-248.
|
26 |
LIU Junlai, CAO Shuyun, ZOU Yunxin, et al. EBSD analysis of rock fabrics and its application[J]. Geological Bulletin of China, 2008, 27(10): 1 638-1 645.
|
|
刘俊来, 曹淑云, 邹运鑫, 等. 岩石电子背散射衍射(EBSD)组构分析及应用[J]. 地质通报, 2008, 27(10): 1 638-1 645.
|
27 |
CAO Shuyun, LIU Junlai. Modern techniques for the analysis of rock microstructure: EBSD and its application[J]. Advances in Earth Science, 2006, 21(10): 1 091-1 096.
|
|
曹淑云, 刘俊来. 岩石显微构造分析现代技术: EBSD技术及应用[J]. 地球科学进展, 2006, 21(10): 1 091-1 096.
|
28 |
BESTMANN M, PRIOR D J. Intragranular dynamic recrystallization in naturally deformed calcite marble: diffusion accommodated grain boundary sliding as a result of subgrain rotation recrystallization[J]. Journal of Structural Geology, 2003, 25(10): 1 597-1 613.
|
29 |
RANDLE V. Microtexture determination and its applications[M]. 2nd ed. London: Maney for the Institute of Materials, Minerals and Mining, 2003.
|
30 |
SOUSTELLE V, TOMMASI A, DEMOUCHY S, et al. Deformation and fluid-rock interaction in the supra-subduction mantle: microstructures and water contents in peridotite xenoliths from the avacha volcano, Kamchatka[J]. Journal of Petrology, 2010, 51(1/2): 363-394.
|
31 |
FALUS G, TOMMASI A, SOUSTELLE V. The effect of dynamic recrystallization on olivine crystal preferred orientations in mantle xenoliths deformed under varied stress conditions[J]. Journal of Structural Geology, 2011, 33(11): 1 528-1 540.
|
32 |
PALASSE L N, VISSERS R L M, PAULSSEN H, et al. Microstructural and seismic properties of the upper mantle underneath a rifted continental terrane (Baja California): an example of sub-crustal mechanical asthenosphere?[J]. Earth and Planetary Science Letters, 2012, 345: 60-71.
|
33 |
SOUSTELLE V, MANTHILAKE G. Deformation of olivine-orthopyroxene aggregates at high pressure and temperature: implications for the seismic properties of the asthenosphere[J]. Tectonophysics, 2017, 694: 385-399.
|
34 |
ELYASZADEH R, PRIOR D J, SARKARINEJAD K, et al. Different slip systems controlling crystallographic preferred orientation and intracrystalline deformation of amphibole in mylonites from the Neyriz mantle diapir, Iran[J]. Journal of Structural Geology, 2018, 107: 38-52.
|
35 |
KRUSE R, STÜNITZ H, KUNZE K. Dynamic recrystallization processes in plagioclase porphyroclasts[J]. Journal of Structural Geology, 2001, 23(11): 1 781-1 802.
|
36 |
LLOYD G E, FARMER A B, MAINPRICE D. Misorientation analysis and the formation and orientation of subgrain and grain boundaries[J]. Tectonophysics, 1997, 279(1/2/3/4): 55-78.
|
37 |
NEUMANN B. Texture development of recrystallised quartz polycrystals unravelled by orientation and misorientation characteristics[J]. Journal of Structural Geology, 2000, 22(11/12): 1 695-1 711.
|
38 |
CECCATO A, PENNACCHIONI G, MENEGON L, et al. Crystallographic control and texture inheritance during mylonitization of coarse grained quartz veins[J]. Lithos, 2017, 290: 210-227.
|
39 |
PRIOR D J, WHEELER J, PERUZZO L, et al. Some garnet microstructures: an illustration of the potential of orientation maps and misorientation analysis in microstructural studies[J]. Journal of Structural Geology, 2002, 24(6/7): 999-1 011.
|
40 |
HILDYARD R C, PRIOR D J, FAULKNER D R, et al. Microstructural analysis of anhydrite rocks from the Triassic evaporites, Umbria-Marche Apennines, central Italy: an insight into deformation mechanisms and possible slip systems[J]. Journal of Structural Geology, 2009, 31(1): 92-103.
|
41 |
TRIMBY P W, PRIOR D J. Microstructural imaging techniques: a comparison between light and scanning electron microscopy[J]. Tectonophysics, 1999, 303(1/2/3/4): 71-81.
|
42 |
CROSS A J, PRIOR D J, STIPP M, et al. The recrystallized grain size piezometer for quartz: an EBSD-based calibration[J]. Geophysical Research Letters, 2017, 44(13): 6 667-6 674.
|
43 |
CAO S Y, LIU J L, LEISS B. Orientation-related deformation mechanisms of naturally deformed amphibole in amphibolite mylonites from the Diancang Shan, SW Yunnan, China[J]. Journal of Structural Geology, 2010, 32(5): 606-622.
|
44 |
HU Gengxiang, CAI Xun, RONG Yonghua. Fundamentals of materials science[M]. 3rd ed. Shanghai: Shanghai Jiao Tong University Press, 2010.
|
|
胡赓祥, 蔡珣, 戎咏华. 材料科学基础[M]. 3版. 上海: 上海交通大学出版社, 2010.
|
45 |
ZHAN Lefan, CAO Shuyun. The effect of Dauphiné twinning on the crystallographic preferred orientation and deformation mechanism in quartz[J]. Acta Petrologica et Mineralogica, 2022, 41(6): 1 135-1 146.
|
|
占乐凡, 曹淑云. 石英道芬双晶对晶格优选取向及变形机制的贡献和意义[J]. 岩石矿物学杂志, 2022, 41(6): 1 135-1 146.
|
46 |
BARRIE C D, BOYLE A P, COX S F, et al. Slip systems and critical resolved shear stress in pyrite: an Electron Backscatter Diffraction (EBSD) investigation[J]. Mineralogical Magazine, 2008, 72(6): 1 181-1 199.
|
47 |
KO B, JUNG H. Crystal preferred orientation of an amphibole experimentally deformed by simple shear[J]. Nature Communications, 2015, 6. DOI: 10.1038/ncomms7586 .
|
48 |
STIPP M, STÜNITZ H, HEILBRONNER R, et al. The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 ℃[J]. Journal of Structural Geology, 2002, 24(12): 1 861-1 884.
|
49 |
CAO S Y, NEUBAUER F, BERNROIDER M, et al. Structures, microfabrics and textures of the Cordilleran-type Rechnitz metamorphic core complex, Eastern Alps[J]. Tectonophysics, 2013, 608: 1 201-1 225.
|
50 |
CAO S Y, NEUBAUER F, BERNROIDER M, et al. The lateral boundary of a metamorphic core complex: the Moutsounas shear zone on Naxos, Cyclades, Greece[J]. Journal of Structural Geology, 2013, 54: 103-128.
|
51 |
GLEASON G C, TULLIS J. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell[J]. Tectonophysics, 1995, 247(1/2/3/4): 1-23.
|
52 |
JUNG H, KARATO S I. Effects of water on dynamically recrystallized grain-size of olivine[J]. Journal of Structural Geology, 2001, 23(9): 1 337-1 344.
|
53 |
PRÉCIGOUT J, PRIGENT C, PALASSE L, et al. Water pumping in mantle shear zones[J]. Nature Communications, 2017, 8. DOI: 10.1038/NCOMMS15736 .
|
54 |
LI Limin, LIU Xiangwen, XIE Zhanjun. Deformation mechanism and rheological property of granulite in the continental lower crust: a review[J]. Advances in Earth Science, 2011, 26(3): 275-285.
|
|
李丽敏, 刘祥文, 谢战军. 大陆下地壳麻粒岩的流变学研究进展[J]. 地球科学进展, 2011, 26(3): 275-285.
|