1 |
ZHAO P, XU X D, CHEN F, et al. The third atmospheric scientific experiment for understanding the Earth-atmosphere coupled system over the Tibetan Plateau and its effects[J]. Bulletin of the American Meteorological Society, 99(4): 757-776.
|
2 |
GARREAUD R D. The Andes climate and weather[J]. Advances in Geosciences, 2009, 22: 3-11.
|
3 |
BARRY R G. Mountain weather and climate[M]. 3rd ed. Cambridge: Cambridge University Press, 2008.
|
4 |
WHITEMAN C D. Mountain climates of North America[M]//Mountain meteorology. Oxford: Oxford University Press, 2000.
|
5 |
SMITH R B. 100 years of progress on mountain meteorology research[J]. Meteorological Monographs, 2019,59:20.1-20.73.
|
6 |
ZHENG Guoguang, CHEN Yue, CHEN Tianyu, et al. The observational study of summer orographic clouds structures of Qilian Mountains[J]. Advances in Earth Science, 2011, 26(10): 1 057-1 070.
|
|
郑国光, 陈跃, 陈添宇, 等. 祁连山夏季地形云综合探测试验[J]. 地球科学进展, 2011, 26(10): 1 057-1 070.
|
7 |
MO R P, JOE P, ISAAC G A, et al. Mid-mountain clouds at whistler during the Vancouver 2010 winter olympics and Paralympics[J]. Pure and Applied Geophysics, 2014, 171(1): 157-183.
|
8 |
LI Zihua, YANG Jun, SHI Chune, et al. The physics of regional dense fog[M]. Beijing: China Meteorological Press, 2008.
|
|
李子华, 杨军, 石春娥, 等. 地区性浓雾物理[M]. 北京: 气象出版社, 2008.
|
9 |
MENDONCA B G, IWAOKA W T. The trade wind inversion at the slopes of Mauna Loa, Hawaii[J]. Journal of Applied Meteorology, 1969, 8(2): 213-219.
|
10 |
WU Dui, ZHAO Bo, DENG Xuejiao, et al. A study on bad visibility over foggy section of freeway in Nanling Mountainous region[J]. Plateau Meteorology, 2007, 26(3): 649-654.
|
|
吴兑, 赵博, 邓雪娇, 等. 南岭山地高速公路雾区恶劣能见度研究[J]. 高原气象, 2007, 26(3): 649-654.
|
11 |
LUAN Tian, YANG Jun, LUO Yajun, et al. Unsymmetrical variation characteristics of fog and mist frequency in mountain area of west Hubei Province in recent 50 years[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2013, 5(3): 216-221.
|
|
栾天, 杨军, 骆亚军, 等. 近50a鄂西山区雾和轻雾发生频次的非对称变化特征[J]. 南京信息工程大学学报(自然科学版), 2013, 5(3): 216-221.
|
12 |
WU Dui, DENG Xuejiao, MAO Jietai, et al. A study on macro-and micro-structures of heavy fog and visibility at freeway in the Nanling Dayaoshan Mountain[J]. Acta Meteorologica Sinica, 2007, 65(3): 406-415.
|
|
吴兑, 邓雪娇, 毛节泰, 等. 南岭大瑶山高速公路浓雾的宏微观结构与能见度研究[J]. 气象学报, 2007, 65(3): 406-415.
|
13 |
CHEN Tianyu, ZHENG Guoguang, CHEN Yue, et al. Observational experiment on generation and development of summer orographic cloud during the southwest air current pattern in Qilian Mountain[J]. Plateau Meteorology, 2010, 29(1): 152-163.
|
|
陈添宇, 郑国光, 陈跃, 等. 祁连山夏季西南气流背景下地形云形成和演化的观测研究[J]. 高原气象, 2010, 29(1): 152-163.
|
14 |
ZÄNGL G. Interaction between dynamics and cloud microphysics in orographic precipitation enhancement: a high-resolution modeling study of two north Alpine heavy-precipitation events[J]. Monthly Weather Review, 2007, 135(8): 2 817-2 840.
|
15 |
GEERTS B, MIAO Q, YANG Y. Boundary layer turbulence and orographic precipitation growth in cold clouds: evidence from profiling airborne radar data[J]. Journal of the Atmospheric Sciences, 2011, 68(10): 2 344-2 365.
|
16 |
HOUZE R A. Orographic effects on precipitating clouds[J]. Reviews of Geophysics, 2012, 50(1). DOI:10.1029/2011RG000365 .
|
17 |
ROE G H. Orographic precipitation[J]. Annual Review of Earth and Planetary Sciences, 2005, 33: 645-671.
|
18 |
RAMELLI F, HENNEBERGER J, DAVID R O, et al. Influence of low-level blocking and turbulence on the microphysics of a mixed-phase cloud in an inner-Alpine valley[J]. Atmospheric Chemistry and Physics, 2021, 21(6): 5 151-5 172.
|
19 |
KINGSMILL D E, PERSSON P O G, HAIMOV S, et al. Mountain waves and orographic precipitation in a northern Colorado winter storm[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(695): 836-853.
|
20 |
WANG Xiaoming, XIE Jingfang. The analysis of the effects of topography in northeast China on strong covection weather[J]. Scientia Geographica Sinica, 1994, 14(4): 347-354.
|
|
王晓明, 谢静芳. 东北地形对强对流天气影响的分析[J]. 地理科学, 1994, 14(4): 347-354.
|
21 |
WANG Ning, XU Xiangde, XU Hongxiong, et al. Water vapor transport features and potential vorticity analysis of a northeast cold vortex rainstorm[J]. Scientia Geographica Sinica, 2014, 34(2): 211-219.
|
|
王宁, 徐祥德, 徐洪雄, 等. 一次东北冷涡暴雨的水汽输送特征和位涡分析[J]. 地理科学, 2014, 34(2): 211-219.
|
22 |
WANG Xiujuan, RAN Lingkun, QI Yanbin, et al. Analysis of characteristics of gravity waves of heavy rainfall event based on microbarograph observation[J]. Acta Physica Sinica, 2021, 70(23): 271-283.
|
|
王秀娟, 冉令坤, 齐彦斌, 等. 基于微压计观测的暴雨过程重力波特征分析[J]. 物理学报, 2021, 70(23): 271-283.
|
23 |
YANG Kan, JI Xiaoling, MAO Lu, et al. Analysis on influence of Helan Mountain topography on extraordinary severe flood-causing rainstorm under abnormal circulation background occurring on 21 August[J]. Journal of Natural Disasters, 2020, 29(1): 132-142.
|
|
杨侃, 纪晓玲, 毛璐, 等. 异常环流背景下贺兰山地形对8.21特大致洪暴雨的影响分析[J]. 自然灾害学报, 2020, 29(1): 132-142.
|
24 |
GAO Liangshu. Numerical study on orographic summertime cloud structure and precipitation mechanism over the Liupan Mountain area[D]. Beijing: China Academy of Meteorological Sciences, 2020.
|
|
高亮书. 六盘山地区夏季地形云系结构及其降水形成机制数值模拟研究[D]. 北京: 中国气象科学研究院, 2020.
|
25 |
MA Simin, MU Jianhua, SHU Zhiliang, et al. Topography sensitivity simulation test of a typical rainstorm process in Liupan Mountain region[J]. Journal of Arid Meteorology, 2022, 40(3): 457-468.
|
|
马思敏, 穆建华, 舒志亮, 等. 六盘山区一次典型暴雨过程的地形敏感性模拟试验[J]. 干旱气象, 2022, 40(3): 457-468.
|
26 |
ZHAO Qingyun, ZHANG Wu, CHEN Xiaoyan, et al. Propagation characteristics of mesoscale convection system in an event of severe convection rainstorm over both sides of Liupanshan Mountains[J]. Plateau Meteorology, 2018, 37(3): 767-776.
|
|
赵庆云, 张武, 陈晓燕, 等. 一次六盘山两侧强对流暴雨中尺度对流系统的传播特征[J]. 高原气象, 2018, 37(3): 767-776.
|
27 |
STEKL J, PODZIMEK J. Old mountain meteorological station milesovka (donnersberg) in central Europe[J]. Bulletin of the American Meteorological Society, 1993, 74(5): 831-834.
|
28 |
BENISTON M, DIAZ H F, BRADLEY R S. Climatic change at high elevation sites: an overview[M]// Climatic change at high elevation sites. Dordrecht: Springer Netherlands, 1997: 1-19.
|
29 |
ZHANG Gaizhen, LI Beibei, LU Yatian. Zhu Kezhen and Taishan Riguanfeng meteorological station[J]. Journal of Shandong University of Science and Technology (Social Sciences), 2020, 22(6): 29-34.
|
|
张改珍, 李蓓蓓, 路雅恬. 竺可桢与泰山日观峰气象台[J]. 山东科技大学学报(社会科学版), 2020, 22(6): 29-34.
|
30 |
MASON B J. The physics of clouds [M]. Cambridge: Oxford University Press, 1971.
|
|
梅森, 云物理学[M]. 北京: 科学出版社, 1971.
|
31 |
BAUMGARDNER D. An analysis and comparison of five water droplet measuring instruments[J]. Journal of Climate and Applied Meteorology, 1983, 22(5): 891-910.
|
32 |
ZHOU Xiuji. Study on the microphysical mechanism of warm cloud precipitation [M]. Beijing: Science Press, 2000.
|
|
周秀骥. 暖云降水微物理机制的研究[M]. 北京: 科学出版社, 2000.
|
33 |
XU Huaying, GU Zhenchao. On the formation of the precipitation element in a shallow warm-cloud[J]. Acta Meteorologica Sinica, 1963, 33(1): 108-114.
|
|
徐华英, 顾震潮. 起伏条件下重力碰并造成的暖性薄云降水[J]. 气象学报, 1963, 33(1): 108-114.
|
34 |
WEN Jingsong. The effect of the correlation time of the undulating field on the random growth of water droplets[J]. Acta Meteorologica Sinica, 1964, 34(3): 369-377.
|
|
温景嵩. 起伏场的相关时间对水滴随机长大的作用[J]. 气象学报, 1964, 34(3): 369-377.
|
35 |
DOULGERIS K M, KOMPPULA M, ROMAKKANIEMI S, et al. In situ cloud ground-based measurements in the Finnish sub-Arctic: intercomparison of three cloud spectrometer setups[J]. Atmospheric Measurement Techniques, 2020, 13(9): 5 129-5 147.
|
36 |
COELHO A A, BRENGUIER J L, PERRIN T. Droplet spectra measurements with the FSSP-100. part I: low droplet concentration measurements[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(11): 1 748-1 755.
|
37 |
COELHO A A, BRENGUIER J L, PERRIN T. Droplet spectra measurements with the FSSP-100. part II: coincidence effects[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(11): 1 756-1 761.
|
38 |
GULTEPE I, ISAAC G A, JOE P, et al. Roundhouse (RND) mountain top research site: measurements and uncertainties for winter alpine weather conditions[J]. Pure and Applied Geophysics, 2014, 171(1): 59-85.
|
39 |
LU C S, LIU Y G, NIU S J, et al. Examination of microphysical relationships and corresponding microphysical processes in warm fogs[J]. Acta Meteorologica Sinica, 2013, 27(6): 832-848.
|
40 |
SPIEGEL J K, ZIEGER P, BUKOWIECKI N, et al. Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100)[J]. Atmospheric Measurement Techniques, 2012, 5(9): 2 237-2 260.
|
41 |
KNOLLENBERG R G. The optical array: an alternative to scattering or extinction for airborne particle size determination[J]. Journal of Applied Meteorology, 1970, 9(1): 86-103.
|
42 |
LAWSON R P, O’CONNOR D, ZMARZLY P, et al. The 2D-S (stereo) probe: design and preliminary tests of a new airborne, high-speed, high-resolution particle imaging probe[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(11): 1 462-1 477.
|
43 |
WANG Lei, LI Chengcai, ZHAO Zengliang, et al. Application of 2D habit classification in cloud microphysics analysis[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(2): 201-212.
|
|
王磊, 李成才, 赵增亮, 等. 二维粒子形状分类技术在云微物理特征分析中的应用[J]. 大气科学, 2014, 38(2): 201-212.
|
44 |
LAWSON R P, BAKER B A, ZMARZLY P, et al. Microphysical and optical properties of atmospheric ice crystals at south pole station[J]. Journal of Applied Meteorology and Climatology, 2006, 45(11): 1 505-1 524.
|
45 |
RYERSON C C, POLITOVICH M K, RANCOURT K L. Overview of Mount Washington icing sensors project [Z]. Prepared for the 38th Aerospace Sciences Meeting and Exhibit, 2003.
|
46 |
LOWENTHAL D H, HALLAR A G, DAVID R O, et al. Mixed-phase orographic cloud microphysics during StormVEx and IFRACS[J]. Atmospheric Chemistry and Physics, 2019, 19(8): 5 387-5 401.
|
47 |
GUO Xueliang, YU Ziping, YANG Zehou, et al. Development and application of the high-performance airborne cloud particle imager[J]. Acta Meteorologica Sinica, 2020, 78(6): 1 050-1 064.
|
|
郭学良, 于子平, 杨泽后, 等. 高性能机载云粒子成像仪研制及应用[J]. 气象学报, 2020, 78(6): 1 050-1 064.
|
48 |
CAI L L, LIU L, ZENG Q W, et al. Design and experiment of a lightweight cloud particle imager[J]. Measurement Science and Technology, 2024, 35(11). DOI:10.1088/1361-6501/ad6b40 .
|
49 |
ZHANG R, XIAO H X, GAO Y, et al. Shape classification of cloud particles recorded by the 2D-S imaging probe using a convolutional neural network[J]. Journal of Meteorological Research, 2023, 37(4): 521-535.
|
50 |
CONWAY B J, CAUGHEY S J, BENTLEY A N, et al. Ground-based and airborne holography of ice and water clouds[J]. Atmospheric Environment (1967), 1982, 16(5): 1 193-1 207.
|
51 |
SILVERMAN B A, THOMPSON B J, WARD J H. A laser-fog disdrometer[J]. Journal of Applied Meteorology, 1964, 3(6): 792-801.
|
52 |
KOZIKOWSKA A, HAMAN K, SUPRONOWICZ J. Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method[J]. Quarterly Journal of the Royal Meteorological Society, 1984, 110(463): 65-73.
|
53 |
BORRMANN S, JAENICKE R, NEUMANN P. On spatial distributions and inter-droplet distances measured in stratus clouds with in-line holography[J]. Atmospheric Research, 1993, 29(3/4): 229-245.
|
54 |
BORRMANN S, JAENICKE R, MASER R, et al. Instrument intercomparison study on cloud droplet size distribution measurements: holography vs. laser optical particle counter[J]. Journal of Atmospheric Chemistry, 1994, 19(1): 253-258.
|
55 |
RAMELLI F, BECK A, HENNEBERGER J, et al. Using a holographic imager on a tethered balloon system for microphysical observations of boundary layer clouds[J]. Atmospheric Measurement Techniques, 2020, 13(2): 925-939.
|
56 |
BECK A, HENNEBERGER J, SCHÖPFER S, et al. HoloGondel: in situ cloud observations on a cable car in the Swiss Alps using a holographic imager[J]. Atmospheric Measurement Techniques, 2017, 10(2): 459-476.
|
57 |
WANG Peng, LIU Lei, LIU Xichuan, et al. Research status and progress of balloon-borne cloud and precipitation particles probe[J]. Advances in Earth Science, 2020, 35(7): 704-714.
|
|
王鹏, 刘磊, 刘西川, 等. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714.
|
58 |
LIN Xiaodan. Study on holographic three-dimensional visualization of combustion particle fragmentation and droplet splash and wind tunnel test of cloud particles[D]. Hangzhou: Zhejiang University, 2021.
|
|
林小丹. 燃烧颗粒破碎和液滴飞溅全息三维可视化及云雾颗粒风洞测试研究[D]. 杭州: 浙江大学, 2021.
|
59 |
ZENG Qingwei, LIU Lei, HU Shuai, et al. The actuality and progress of digital holographic techniques for cloud particle measurement[J]. Advances in Earth Science, 2023, 38(7): 661-674.
|
|
曾庆伟, 刘磊, 胡帅, 等. 数字全息云粒子测量技术现状及进展[J]. 地球科学进展, 2023, 38(7): 661-674.
|
60 |
GAO Yangzi, WANG Jun, TANG Jiabin, et al. Dispersion of cloud droplet based on pulsed digital holographic interferometry[J]. Acta Optica Sinica, 2022, 42(6): 157-166.
|
|
高阳子, 王骏, 唐家斌, 等. 基于脉冲数字全息干涉术的云滴谱离散度研究[J]. 光学学报, 2022, 42(6): 157-166.
|
61 |
YANG Chenyu, WANG Jun, ZHANG Chuan, et al. Observation method of microphysical parameters of ice crystals in cloud based on digital holography[J]. Acta Optica Sinica, 2024, 44(6). DOI:10.3788/AOS231067 .
|
|
杨晨遇, 王骏, 张川, 等. 基于数字全息的云中冰晶微物理参数观测方法[J]. 光学学报, 2024,44(6). DOI:10.3788/AOS231067 .
|
62 |
ZHANG Chuan, WANG Jun, ZHOU Hao, et al. Digital holographic method for observation of microphysical parameters of orographic clouds[J]. Acta Photonica Sinica, 2023, 52(12): 170-182.
|
|
张川, 王骏, 周浩, 等. 地形云微物理参数观测的数字全息方法研究[J]. 光子学报, 2023, 52(12): 170-182.
|
63 |
CHA J W, YUM S S. Characteristics of precipitation particles measured by PARSIVEL disdrometer at a mountain and a coastal site in Korea[J]. Asia-Pacific Journal of Atmospheric Sciences, 2021, 57(2): 261-276.
|
64 |
ZHAN Lishan, CHEN Wankui, HUANG Meiyuan. Preliminary analysis on the fluctuation data of cloud microphysics on the Hengshan and Taishan Mountains[C]// Studies on cloud/fog precipitation microphysics in China. Beijing: Science Press, 1965: 30-40.
|
|
詹丽珊, 陈万奎, 黄美元 .南岳和泰山云中微结构起伏资料的初步分析[C]//我国云雾降水微物理特征的研究.北京: 科学出版社,1965: 30-40.
|
65 |
ZHAO Tianbao, LIU Hongtao, YAO Li. Constructing an atmospheric collaborative observation network and big data platform[J]. Chinese Journal of Atmospheric Sciences, 2024, 48(5): 1 952-1 960.
|
|
赵天保, 刘洪韬, 姚利. 大气协同观测网络与大数据平台建设[J]. 大气科学, 2024, 48(5): 1 952-1 960.
|
66 |
SIEBERT H, SHAW R A, DITAS J, et al. High-resolution measurement of cloud microphysics and turbulence at a mountaintop station[J]. Atmospheric Measurement Techniques, 2015, 8(8): 3 219-3 228.
|
67 |
LOHMANN U, HENNEBERGER J, HENNEBERG O, et al. Persistence of orographic mixed-phase clouds[J]. Geophysical Research Letters, 2016, 43(19): 10 512-10 519.
|
68 |
LACHER L, DEMOTT P J, LEVIN E J T, et al. Background free-tropospheric ice nucleating particle concentrations at mixed-phase cloud conditions[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(18): 10 506-10 525.
|
69 |
BORYS R D, WETZEL M A. Storm peak laboratory: a research, teaching, and service facility for the atmospheric sciences[J]. Bulletin of the American Meteorological Society, 1997, 78(10): 2 115-2 123.
|
70 |
HINDMAN E E, CAMPBELL M A, BORYS R D. A ten-winter record of cloud-droplet physical and chemical properties at a mountaintop site in Colorado[J]. Journal of Applied Meteorology, 1994, 33(7): 797-807.
|
71 |
HICKS J R, VALI G. Ice nucleation in clouds by liquefied propane spray[J]. Journal of Applied Meteorology, 1973, 12(6): 1 025-1 034.
|
72 |
WEINSTEIN A I, HICKS J R. Use of compressed air for supercooled fog dispersal[J]. Journal of Applied Meteorology, 1976, 15(11): 1 226-1 231.
|
73 |
KONWAR M, DAS S K, DESHPANDE S M, et al. Microphysics of clouds and rain over the western ghat[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(10): 6 140-6 159.
|
74 |
ANIL K V, PANDITHURAI G, LEENA P P, et al. Investigation of aerosol indirect effects on monsoon clouds usingground-based measurements over a high-altitude site in Western Ghats[J]. Atmospheric Chemistry and Physics, 2016, 16(13): 8 423-8 430.
|
75 |
LEENA P P, VARGHESE M, ANIL K V, et al. Droplet characteristics in monsoon clouds before rain as observed over a high altitude site in Western Ghats, India[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 221. DOI:10.1016/j.jastp.2021.105709 .
|
76 |
SONG J I, YUM S S, GULTEPE I, et al. Development of a new visibility parameterization based on the measurement of fog microphysics at a mountain site in Korea[J]. Atmospheric Research, 2019, 229: 115-126.
|
77 |
TESSENDORF S A, FRENCH J R, FRIEDRICH K, et al. A transformational approach to winter orographic weather modification research: the SNOWIE project[J]. Bulletin of the American Meteorological Society, 2018, 100(1): 71-92.
|
78 |
MANTON M J, WARREN L, KENYON S L, et al. A confirmatory snowfall enhancement project in the snowy mountains of Australia. part I: project design and response variables[J]. Journal of Applied Meteorology and Climatology, 2011, 50(7): 1 432-1 447.
|
79 |
ANDREWS E, OGREN J A, BONASONI P, et al. Climatology of aerosol radiative properties in the free troposphere[J]. Atmospheric Research, 2011, 102(4): 365-393.
|
80 |
COLLAUD C M, ANDREWS E, ALIAGA D, et al. Identification of topographic features influencing aerosol observations at high altitude stations[J]. Atmospheric Chemistry and Physics, 2018, 18(16): 12 289-12 313.
|
81 |
NIU Shengjie, SUN Jiming, CHEN Yue, et al. Observation and analysis of mass concentration of dust and sand aerosol in spring in Helanshan area[J]. Plateau Meteorology, 2001, 20(1): 82-87.
|
|
牛生杰, 孙继明, 陈跃, 等. 贺兰山地区春季沙尘气溶胶质量浓度的观测分析[J]. 高原气象, 2001, 20(1): 82-87.
|
82 |
LIU Chenxi, JIANG Mengjiao, WU Hao, et al. Long-term evolution and sources of the black carbon at Waliguan station over the Qinghai-Tibetan Plateau[J]. Acta Meteorologica Sinica, 2023, 81(3): 469-477.
|
|
刘晨曦, 蒋梦姣, 吴昊, 等. 青藏高原瓦里关站黑碳气溶胶长期演变特征及来源分析[J]. 气象学报, 2023, 81(3): 469-477.
|
83 |
ZHANG Z J, XU W Q, ZHANG Y, et al. Measurement report: Impact of cloud processes on secondary organic aerosols at a forested mountain site in southeastern China[J]. Atmospheric Chemistry and Physics, 2024, 24(14): 8 473-8 488.
|
84 |
WANG G, LI J, CHENG C, et al. Observation of atmospheric aerosols at Mt. Hua and Mt. Tai in central and East China during spring 2009-part 1: EC, OC and inorganic ions[J]. Atmospheric Chemistry and Physics, 2011, 11(9): 4 221-4 235.
|
85 |
JAYACHANDRAN V, NAIR V S, BABU S S. CCN activation properties at a tropical hill station in Western Ghats during south-west summer monsoon: vertical heterogeneity[J]. Atmospheric Research, 2018, 214: 36-45.
|
86 |
DUAN J, CHEN Y, WANG W L, et al. Cable-car measurements of vertical aerosol profiles impacted by mountain-valley breezes in Lushan Mountain, East China[J]. Science of the Total Environment, 2021, 768. DOI:10.1016/j.scitotenv.2020.144198 .
|
87 |
MENG Qing, BAI Hongying, ZHAO Ting, et al. The eco-barrier effect of Qinling Mountain on aerosols[J]. Remote Sensing for Natural Resources, 2021, 33(1): 240-248.
|
|
孟清, 白红英, 赵婷, 等. 秦岭山地对气溶胶的生态屏障效应[J]. 国土资源遥感, 2021, 33(1): 240-248.
|
88 |
SHEN Lijuan, WANG Honglei, YIN Yan, et al. Size distributions of aerosol during the summer at the summit of Mountain Taishan (1 534 m) in central East China[J]. Environmental Science, 2019, 40(5): 2 019-2 026.
|
|
沈利娟, 王红磊, 银燕, 等. 泰山顶(1 534 m)夏季气溶胶粒径分布特征[J]. 环境科学, 2019, 40(5): 2 019-2 026.
|
89 |
NUGENT A D, WATSON C D, THOMPSON G, et al. Aerosol impacts on thermally driven orographic convection[J]. Journal of the Atmospheric Sciences, 2016, 73(8): 3 115-3 132.
|
90 |
MARTUCCI G, OVADNEVAITE J, CEBURNIS D, et al. Impact of volcanic ash plume aerosol on cloud microphysics[J]. Atmospheric Environment, 2012, 48: 205-218.
|
91 |
ROSENFELD D, DAI J, YU X, et al. Inverse relations between amounts of air pollution and orographic precipitation[J]. Science, 2007, 315(5 817): 1 396-1 398.
|
92 |
XU Xiaohong, YU Xing, DAI Jin. Effect of aerosol on orographic precipitation in Qinling Mountains[J]. Meteorological Monthly, 2009, 35(1): 37-47.
|
|
徐小红, 余兴, 戴进. 气溶胶对秦岭山脉地形云降水的影响[J]. 气象, 2009, 35(1): 37-47.
|
93 |
WANG Ying, ZHU Bin, KANG Hanqing, et al. Theoretical and observational study on below-cloud rain scavenging of aerosol particles[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3): 306-313, 321.
|
|
王瑛, 朱彬, 康汉青, 等. 气溶胶云下清除理论及观测研究[J]. 中国科学院大学学报, 2014, 31(3): 306-313, 321.
|
94 |
SU T N, LI Z Q, HENAO N R, et al. Constraining effects of aerosol-cloud interaction by accounting for coupling between cloud and land surface[J]. Science Advances, 2024, 10(21). DOI:10.1126/sciadv.adl5044 .
|
95 |
CUI Lian, HU Jianhua, QI Yanbin, et al. Observation and analysis of cloud condensation nucleus concentration in Jingyu and Baicheng, Jilin Province[J]. Meteorological Disaster Prevention, 2020, 27(1): 34-37.
|
|
崔莲, 胡建华, 齐彦斌, 等. 吉林省靖宇、白城云凝结核浓度观测分析[J]. 气象灾害防御, 2020, 27(1): 34-37.
|
96 |
LI Li, YIN Yan, GU Xuesong, et al. Observational study of cloud condensation nuclei properties at various altitudes of Huangshan Mountains[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(3): 410-420.
|
|
李力, 银燕, 顾雪松, 等. 黄山地区不同高度云凝结核的观测分析[J]. 大气科学, 2014, 38(3): 410-420.
|
97 |
CHEN K, YIN Y, CHEN C, et al. Observations of cloud condensation nuclei in Mt. Huang: instrumentation and early observations[C]// PIAGENG 2009: intelligent information, control, and communication technology for agricultural engineering. Zhangjiajie, China: SPIE, 2009.
|
98 |
MIAO Q, ZHANG Z F, LI Y W, et al. Measurement of Cloud Condensation Nuclei (CCN) and CCN closure at Mt. Huang based on hygroscopic growth factors and aerosol number-size distribution[J]. Atmospheric Environment, 2015, 113: 127-134.
|
99 |
FAN Shuxian, AN Xialan. Measurement and analysis of the concentration of cloud condensation nuclei in MT. Helanshan area[J]. Journal of Desert Research, 2000, 20(3): 338-340.
|
|
樊曙先, 安夏兰. 贺兰山地区云凝结核浓度的测量及分析[J]. 中国沙漠, 2000, 20(3): 338-340.
|
100 |
SANG Jianren, TAO Tao, YUE Yanyu, et al. Distribution of cloud condensation nuclei over desert and polluted city beside the Helan Mountains[J]. Journal of Desert Research, 2012, 32(2): 484-490.
|
|
桑建人, 陶涛, 岳岩裕, 等. 贺兰山两侧沙漠及污染城市CCN分布特征的观测研究[J]. 中国沙漠, 2012, 32(2): 484-490.
|
101 |
DUAN J, CHEN Y, ZHANG X P, et al. Influence of aerosol physicochemical properties on CCN activation during the Asian winter monsoon at the summit of Mt. Lu, China[J]. Atmospheric Environment, 2023, 296. DOI:10.1016/j.atmosenv.2023.119592 .
|
102 |
LOWENTHAL D H, BORYS R D, WETZEL M A. Aerosol distributions and cloud interactions at a mountaintop laboratory[J]. Journal of Geophysical Research: Atmospheres, 2002, 107(D18). DOI:10.1029/2001JD002046 .
|
103 |
HU D W, LIU D T, ZHAO D L, et al. Closure investigation on cloud condensation nuclei ability of processed anthropogenic aerosols[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15). DOI:10.1029/2020JD032680 .
|
104 |
CHEN Y C, HUO J, LI X, et al. Classification and characteristic analysis of the clouds and dust in a dust-carrying precipitation process based on multi-source remote sensing observations[J]. Atmospheric Pollution Research, 2022, 13(1). DOI:10.1016/j.apr.2021.101267 .
|
105 |
VALI G, DEMOTT P J, MÖHLER O, et al. Technical note: a proposal for ice nucleation terminology[J]. Atmospheric Chemistry and Physics, 2015, 15(18): 10 263-10 270.
|
106 |
HODSHIRE A L, LEVIN E J T, HALLAR A G, et al. A high-resolution record of ice nuclei concentrations between -20 to -30 ℃ for fall and winter at storm peak laboratory with the autonomous continuous flow diffusion chamber ice activation spectrometer[J]. Atmospheric Measurement Techniques Discussions, 2022. DOI: 10.5194/amt-2022-216 .
|
107 |
LACHER L, LOHMANN U, BOOSE Y, et al. The Horizontal Ice Nucleation Chamber (HINC): INP measurements at conditions relevant for mixed-phase clouds at the high altitude research station jungfraujoch[J]. Atmospheric Chemistry and Physics, 2017, 17(24): 15 199-15 224.
|
108 |
ZHANG Jianxin, LIAO Feijia, GAO Ziyi, et al. Study on atmospheric ice nuclei on north slop of mid-Tianshan Mountains in summer[J]. Plateau Meteorology, 2006, 25(1): 138-142.
|
|
张建新, 廖飞佳, 高子毅, 等. 夏季新疆中天山北坡大气冰核的浓度观测分析[J]. 高原气象, 2006, 25(1): 138-142.
|
109 |
LI Yanwei, DU Bingyu. Measurement and analysis of concentration of atmospheric ice nuclei in Tianshan Mountain area[J]. Journal of Nanjing Institute of Meteorology, 2003, 26(3): 364-370.
|
|
李艳伟, 杜秉玉, 新疆天山山区大气冰核浓度的测量及分析[J]. 南京气象学院学报, 2003, 26(3): 364-370.
|
110 |
NIU Shengjie, AN Xialan, CHEN Yue, et al. Measurements and analysis of concentrations of atmospheric ice nuclei in the Helanshan area[J]. Journal of Nanjing Institute of Meteorology, 2000, 23(2): 294-298.
|
|
牛生杰, 安夏兰, 陈跃, 等.贺兰山地区大气冰核浓度的测量及初步分析[J]. 南京气象学院学报, 2000, 23(2): 294-298.
|
111 |
SU Hang, YIN Yan, LU Chunsong, et al. Development of new diffusion cloud chamber type and its observation study of ice nuclei in the Huangshan area[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(2): 386-398.
|
|
苏航, 银燕, 陆春松, 等. 新型扩散云室搭建及其对黄山地区大气冰核的观测研究[J]. 大气科学, 2014, 38(2): 386-398.
|
112 |
CONEN F, RODRÍGUEZ S, GLIN C H, et al. Atmospheric ice nuclei at the high-altitude observatory Jungfraujoch, Switzerland[J]. Tellus B: Chemical and Physical Meteorology, 2022, 67(1). DOI:10.3402/tellusb.v67.25014 .
|
113 |
SUN Y, ZHU Y J, QI Y B, et al. Measurement report: atmospheric ice nuclei in the Changbai Mountains (2623 m a.s.l.) in northeastern Asia[J]. Atmospheric Chemistry and Physics, 2024, 24(5): 3 241-3 256.
|
114 |
YOU Laiguang, SHI Anying. The measurement and analysis of ice-nucleus concentration at Peking during the period from March 18th to April 20th in 1963[J]. Acta Meteorological Sinica, 1964(4): 548-554.
|
|
游来光, 石安英. 北京地区1963年春季冰核浓度变化特点的观测分析[J]. 气象学报, 1964(4): 548-554.
|
115 |
ZHAO Jianping, ZHANG Mi, WANG Yuxi, et al. Analysis and study of atmospheric ice nuclei observation in northern China[J]. Acta Meteorological Sinica, 1965(4): 416-422.
|
|
赵剑平, 张滵, 王玉玺, 等. 我国北部地区大气冰核观测的分析研究[J]. 气象学报, 1965(4): 416-422.
|
116 |
WANG Xuelin, ZHANG Wanjun, XIONG Shangqing. Atmospheric ice nuclei in spring in Baicheng area[J]. Acta Meteorological Sinica, 1965, 35(3): 273-279.
|
|
汪学林, 张万钧, 熊尚清. 白城地区春季的大气冰核[J]. 气象学报, 1965, 35(3): 273-279.
|
117 |
JIANG H, YIN Y, SU H, et al. The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow Mountains) in SouthEast China using a newly built static vacuum water vapor diffusion chamber[J]. Atmospheric Research, 2015, 153: 200-208.
|
118 |
BI Kai, HUANG Mengyu, MA Xincheng, et al. Observation and analysis of atmospheric ice-nucleating particles in online continuous-flow diffusion chamber in winter in North China[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(6): 1 243-1 257.
|
|
毕凯, 黄梦宇, 马新成, 等. 在线连续流量扩散云室对华北冬季大气冰核的观测分析[J]. 大气科学, 2020, 44(6): 1 243-1 257.
|
119 |
WU Minglin, LIU Jun, HUANG Wenjuan, et al. The measurement and analysis of atmospheric ice-nucleus concentraton on Fujian Shita Mountain[J]. Journal of Tropical Meteorology, 1986, 2(1): 71-78.
|
|
吴明林, 刘峻, 黄文娟, 等. 福建石塔山大气冰核的观测和分析[J]. 热带气象, 1986, 2(1): 71-78.
|
120 |
BI Kai, DING Deping, YANG Shuai, et al. The development and application of a Freezing Ice Nucleation Detector Array (FINDA) instrument on immersion mode measurement[J]. Acta Meteorologica Sinica, 2021, 79(5): 864-877.
|
|
毕凯, 丁德平, 杨帅, 等. 一种浸润冻结机制冰核测量装置(FINDA)的搭建与应用[J]. 气象学报, 2021, 79(5): 864-877.
|
121 |
POLITOVICH M K, VALI G. Observations of liquid water in orographic clouds over ELK mountain[J]. Journal of the Atmospheric Sciences, 1983, 40(5): 1 300-1 312.
|
122 |
BORYS R D, LOWENTHAL D H, COHN S A, et al. Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate[J]. Geophysical Research Letters, 2003, 30(10). DOI:10.1029/2002GL016855 .
|
123 |
LEENA P P, KUMAR V A, MUKHERJEE S, et al. Influence of aerosol physico-chemical properties on cloud microphysical parameters perceived using in situ high altitude observations[J]. Atmospheric Research, 2022, 271. DOI:10.1016/j.atmosres.2022.106111 .
|
124 |
WANG Yufei, QI Yanbin, LI Qian, et al. Macro and micro characteristics of a fog process in Changbai Mountain in summer[J]. Journal of Applied Meteorological Science, 2022, 33(4): 442-453.
|
|
王羽飞, 齐彦斌, 李倩, 等. 一次长白山夏季雾的宏微观特征[J]. 应用气象学报, 2022, 33(4): 442-453.
|
125 |
DANG Zhangli, SANG Jianren, CHANG Zhuolin, et al. Analysis of macro and microphysical characteristics of two heavy fog in Liupan Mountain area[J]. Ningxia Engineering Technology, 2020, 19(3): 200-210.
|
|
党张利, 桑建人, 常倬林, 等. 六盘山两次大雾过程宏微观物理特征分析[J]. 宁夏工程技术, 2020, 19(3): 200-210.
|
126 |
GUO L J, DUAN J, ZHANG X P, et al. Ground-based cloud microphysical observations at Mount Lu in the East Asian monsoon region from 2015 to 2020[J]. Atmospheric Research, 2024, 307. DOI:10.1016/j.atmosres.2024.107482 .
|
127 |
CHEN Yunbo, BI Kai, MA Xincheng, et al. Observation and analysis of macro and micro characteristics of clouds and fog in winter topography of Haituo Mountain [C]// National weather modification technology and methods exchange conference, 2020: 177-189.
|
|
陈云波, 毕凯, 马新成, 等. 海坨山冬季地形云雾宏微特征观测分析 [C]// 全国人工影响天气技术与方法交流会, 2020: 177-189.
|
128 |
FEI D D, NIU S J, YANG J. Analysis of the microphysical structure of structure of radiation fog in Xuanen Mountainous region of Hubei, China[J]. Journal of Tropical Meteorology, 2017, 23(2): 177-190.
|
129 |
HUDSON J G, NOBLE S. CCN spectral shape and cumulus cloud and drizzle microphysics[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(1). DOI:10.1029/2019JD031141 .
|
130 |
BEARD K V, OCHS H T III. Warm-rain initiation: an overview of microphysical mechanisms[J]. Journal of Applied Meteorology, 1993, 32(4): 608-625.
|
131 |
KOROLEV A V. A study of bimodal droplet size distributions in stratiform clouds[J]. Atmospheric Research, 1994, 32(1/2/3/4): 143-170.
|
132 |
BORQUE P, LUKE E P, KOLLIAS P, et al. Relationship between turbulence and drizzle in continental and marine low stratiform clouds[J]. Journal of the Atmospheric Sciences, 2018, 75(12): 4 139-4 148.
|
133 |
LU C S, NIU S J, LIU Y G, et al. Empirical relationship between entrainment rate and microphysics in cumulus clouds[J]. Geophysical Research Letters, 2013, 40(10): 2 333-2 338.
|
134 |
COOPER W A, LASHER-TRAPP S G, BLYTH A M. The influence of entrainment and mixing on the initial formation of rain in a warm cumulus cloud[J]. Journal of the Atmospheric Sciences, 2013, 70(6): 1 727-1 743.
|
135 |
SARDINA G, POULAIN S, BRANDT L, et al. Broadening of cloud droplet size spectra by stochastic condensation: effects of mean updraft velocity and CCN activation[J]. Journal of the Atmospheric Sciences, 2018, 75(2): 451-467.
|
136 |
LU C S, LIU Y G, NIU S J, et al. Broadening of cloud droplet size distributions and warm rain initiation associated with turbulence: an overview[J]. Atmospheric and Oceanic Science Letters, 2018, 11(2): 123-135.
|
137 |
XU Huanbin. Preliminary observation experiment of cloud microstructure fluctuation in Hengshan Mountain[J]. Acta Meteorologica Sinica, 1964, 34(4): 539-547.
|
|
许焕斌. 衡山云雾微结构起伏的初步观测试验[J]. 气象学报, 1964, 34(4): 539-547.
|
138 |
GU Zhenchao, ZHAN Lishan. On the growth of the droplets under gravitational coalescence in a fluctuating environment[J]. Acta Meteorological Sinica, 1962, 32(4): 301-307.
|
|
顾震潮, 詹丽珊. 起伏条件下云雾的重力碰并生长[J]. 气象学报, 1962, 32(4): 301-307.
|
139 |
ZHOU Xiuji. Statistical theory of microphysical mechanism of warm cloud precipitation[J]. Acta Meteorologica Sinica, 1963, 33(1): 99-109.
|
|
周秀骥. 暖云降水微观物理机制的統計理論[J]. 气象学报, 1963, 33(1): 99-109.
|
140 |
YU Xinyang. Study on the correlation between the dispersion of warm cloud droplet spectrum and its number concentration in Huangshan Mountain[D]. Nanjing: Nanjing University of Information Science & Technology, 2018.
|
|
余欣洋. 黄山暖性云雾滴谱离散度与其数浓度相关特征研究[D]. 南京: 南京信息工程大学, 2018.
|
141 |
BERA S, PRABHA T V, GRABOWSKI W W. Observations of monsoon convective cloud microphysics over India and role of entrainment-mixing[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(16): 9 767-9 788.
|
142 |
LIN Hai, GU Zhenchao. Preliminary interpretation of the second largest formation in the cloud droplet spectrum[J]. Chinese Science Bulletin, 1965(10): 923-925.
|
|
林海, 顾震潮. 云滴谱中第二极大形成的初步解释[J]. 科学通报, 1965(10): 923-925.
|
143 |
PINSKY M B, KHAIN A P. Effects of in-cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(580): 501-533.
|
144 |
WANG T S, NIU S J, LÜ J J, et al. Observational study on the supercooled fog droplet spectrum distribution and icing accumulation mechanism in Lushan, southeast China[J]. Advances in Atmospheric Sciences, 2019, 36(1): 29-40.
|
145 |
RASMUSSEN R M, BERNSTEIN B C, MURAKAMI M, et al. The 1990 valentine’s day Arctic outbreak. part I: mesoscale and microscale structure and evolution of a Colorado front range shallow upslope cloud[J]. Journal of Applied Meteorology, 1995, 34(7): 1 481-1 511.
|
146 |
VAILLANCOURT P A, YAU M K. Review of particle-turbulence interactions and consequences for cloud physics[J]. Bulletin of the American Meteorological Society, 2000, 81(2): 285-298.
|
147 |
RASMUSSEN R M, GERESDI I, THOMPSON G, et al. Freezing drizzle formation in stably stratified layer clouds: the role of radiative cooling of cloud droplets, cloud condensation nuclei, and ice initiation[J]. Journal of the Atmospheric Sciences, 2002, 59(4): 837-860.
|
148 |
FERNÁNDEZ-GONZÁLEZ S, VALERO F, SANCHEZ J L, et al. Observation of a freezing drizzle episode: a case study[J]. Atmospheric Research, 2014, 149: 244-254.
|
149 |
IGAWA M, WANG Y Z. Characteristics of fog and drizzle in Yokohama and in Mt. oyama, Japan[J]. Water, Air, and Soil Pollution, 2022, 233(12). DOI:10.1007/s11270-022-06012-x .
|
150 |
CHANG Y, MA Q R, GUO L J, et al. Characteristics of raindrop size distributions during Meiyu season in mount Lushan, Eastern China[J]. Journal of the Meteorological Society of Japan Series II, 2022, 100(1): 57-76.
|
151 |
GLIENKE S, KOSTINSKI A, FUGAL J, et al. Cloud droplets to drizzle: contribution of transition drops to microphysical and optical properties of marine stratocumulus clouds[J]. Geophysical Research Letters, 2017, 44(15): 8 002-8 010.
|
152 |
CHANDRAKAR K K, CANTRELL W, CHANG K, et al. Aerosol indirect effect from turbulence-induced broadening of cloud-droplet size distributions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(50): 14 243-14 248.
|
153 |
DORSI S W, SHUPE M D, PERSSON P O G, et al. Phase-specific characteristics of wintertime clouds across a midlatitude mountain range[J]. Monthly Weather Review, 2015, 143(10): 4 181-4 197.
|
154 |
HENNEBERG O, HENNEBERGER J, LOHMANN U. Formation and development of orographic mixed-phase clouds[J]. Journal of the Atmospheric Sciences, 2017, 74(11): 3 703-3 724.
|
155 |
RAUBER R M, GRANT L O. The characteristics and distribution of cloud water over the mountains of northern Colorado during wintertime storms. part II: spatial distribution and microphysical characteristics[J]. Journal of Climate and Applied Meteorology, 1986, 25(4): 489-504.
|
156 |
ROGERS D C, VALI G. Ice crystal production by mountain surfaces[J]. Journal of Climate and Applied Meteorology, 1987, 26(9): 1 152-1 168.
|
157 |
LLOYD G, CHOULARTON T W, BOWER K N, et al. The origins of ice crystals measured in mixed-phase clouds at the high-alpine site Jungfraujoch[J]. Atmospheric Chemistry and Physics, 2015, 15(22): 12 953-12 969.
|
158 |
GEERTS B, POKHAREL B, KRISTOVICH D A R. Blowing snow as a natural glaciogenic cloud seeding mechanism[J]. Monthly Weather Review, 2015, 143(12): 5 017-5 033.
|
159 |
HENNEBERGER J, FUGAL J P, STETZER O, et al. HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds[J]. Atmospheric Measurement Techniques, 2013, 6(11): 2 975-2 987.
|