1 |
YU K F. Coral reefs in the South China Sea: their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012, 55(8): 1 217-1 229.
|
2 |
HALLOCK P. Production of carbonate sediments by selected large benthic foraminifera on two Pacific coral reefs[J]. SEPM Journal of Sedimentary Research, 1981, 51: 467-474.
|
3 |
LANGER M R. Oxygen and carbon isotopic composition of recent larger and smaller foraminifera from the Madang Lagoon (Papua New Guinea)[J]. Marine Micropaleontology, 1995, 26(1/2/3/4): 215-221.
|
4 |
LEA D W. Trace elements in foraminiferal calcite[M]// Modern foraminifera. Dordrecht: Springer Netherlands, 1999: 259-277.
|
5 |
BOUDAGHER-FADEL M K. Evolution and geological significance of larger benthic foraminifera[M]. Amsterdam: Elsevier, 2008.
|
6 |
SARASWATI P K. Larger benthic foraminifera through space and time[M]. Cham: Springer, 2024.
|
7 |
HALLOCK P, SEDDIGHI M. Why did some larger benthic foraminifera become so large and flat?[J]. Sedimentology, 2022, 69(1): 74-87.
|
8 |
BEAVINGTON-PENNEY S J, RACEY A. Ecology of extant nummulitids and other larger benthic foraminifera: applications in Palaeoenvironmental analysis[J]. Earth-Science Reviews, 2004, 67(3/4): 219-265.
|
9 |
RAJA R, SARASWATI P K, IWAO K. A field-based study on variation in Mg/Ca and Sr/Ca in larger benthic foraminifera[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(10). DOI: 10.1029/2006GC001478 .
|
10 |
HOOGAKKER B, ISHIMURA T, de NOOIJER L, et al. A review of benthic foraminiferal oxygen and carbon isotopes[J]. Quaternary Science Reviews, 2024, 342. DOI:10.1016/j.quascirev.2024.108896 .
|
11 |
SHACKLETON N J, OPDYKE N D. Oxygen isotope and Palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale[J]. Quaternary Research, 1973, 3(1): 39-55.
|
12 |
MUDELSEE M, BICKERT T, LEAR C H, et al. Cenozoic climate changes: a review based on time series analysis of marine benthic δ18O records[J]. Reviews of Geophysics, 2014, 52(3): 333-374.
|
13 |
VÖLPEL R, MULITZA S, PAUL A, et al. Water mass versus sea level effects on benthic foraminiferal oxygen isotope ratios in the Atlantic Ocean during the LGM[J]. Paleoceanography and Paleoclimatology, 2019, 34(1): 98-121.
|
14 |
CEN Y, WANG J S, DING X, et al. Tracing the methane events by stable carbon isotopes of benthic foraminifera at glacial periods in the andaman sea[J]. Journal of Earth Science, 2022, 33(6): 1 571-1 582.
|
15 |
DANSGAARD W. The O18-abundance in fresh water[J]. Geochimica et Cosmochimica Acta, 1954, 6(5/6): 241-260.
|
16 |
LI Yue, WANG Rujian, LI Wenbao. Review on research on paleo-sea level reconstruction based on foraminiferal oxygen isotope in deep sea sediments[J]. Advances in Earth Science, 2016, 31(3): 310-319.
|
|
李悦, 王汝建, 李文宝. 利用有孔虫氧同位素重建古海平面变化的研究进展[J]. 地球科学进展, 2016, 31(3): 310-319.
|
17 |
PEARSON P N. Oxygen isotopes in foraminifera: overview and historical review[J]. The Paleontological Society Papers, 2012, 18: 1-38.
|
18 |
GUO Qimei, LI Baohua, WANG Xiaoyan,et al. Applications of benthic foraminifera in paleoceanography[J] Acta Palaeontologica Sinica,2020,59(3):347-361.
|
|
郭启梅,李保华,王晓燕,等. 深海底栖有孔虫在古海洋学研究中的应用 [J].古生物学报,2020,59 (3):347-361.
|
19 |
CURRY W B, OPPO D W. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the western Atlantic Ocean [J]. Paleoceanography,2005,20 (1). DOI:10.1029/2004pa001021 .
|
20 |
CENTER W. Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment,Gulf of Mexico slope [J]. Journal of Foraminiferal Research,1997,27(4): 292-300.
|
21 |
XIANG Rong, LIU Fang, CHEN Zhong, et al. Recent progress in cold seep benthic foraminifera[J]. Advances in Earth Science, 2010, 25(2): 193-202.
|
|
向荣, 刘芳, 陈忠, 等. 冷泉区底栖有孔虫研究进展[J]. 地球科学进展,2010, 25(2): 193-202.
|
22 |
LU Yinghan, YANG Hailin, HUANG Baoqi, et al. Foraminifera associated with cold seeps in marine sediments [J]. Frontiers in Marine Science, 2023, 10. DOI:10.3389/fmars.2023.1157879 .
|
23 |
DUPLESSY J C, SHACKLETON N J, MATTHEWS R K, et al. 13C record of benthic foraminifera in the last interglacial ocean: implications for the carbon cycle and the global deep water circulation[J]. Quaternary Research, 1984, 21(2): 225-243.
|
24 |
KROOPNICK P M. The distribution of 13C of ΣCO2 in the world oceans[J]. Deep Sea Research Part A: Oceanographic Research Papers, 1985, 32(1): 57-84.
|
25 |
SARASWATI P K, SETO K, NOMURA R. Oxygen and carbon isotopic variation in co-existing larger foraminifera from a reef flat at Akajima, Okinawa, Japan[J]. Marine Micropaleontology, 2004, 50(3/4): 339-349.
|
26 |
ISHIMURA T, TSUNOGAI U, HASEGAWA S, et al. Variation in stable carbon and oxygen isotopes of individual benthic foraminifera: tracers for quantifying the magnitude of isotopic disequilibrium[J]. Biogeosciences, 2012, 9(11): 4 353-4 367.
|
27 |
MILLIMAN J D. Production and accumulation of calcium carbonate in the ocean: budget of a nonsteady state[J]. Global Biogeochemical Cycles, 1993, 7(4): 927-957.
|
28 |
SPERO H J, DENIRO M J. The influence of symbiont photosynthesis on the δ18O and δ13C values of planktonic foraminiferal shell calcite [M]. UK: Balaban Publishers, 1987.
|
29 |
WEFER G, KILLINGLEY J S, LUTZE G F. Stable isotopes in recent larger foraminifera[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 33(1/2/3): 253-270.
|
30 |
CORLISS B H. Microhabitats of benthic foraminifera within deep-sea sediments[J]. Nature, 1985, 314: 435-438.
|
31 |
JÖHNCK J, HOLBOURN A, KUHNT W, et al. Oxygen isotope offsets in deep-water benthic foraminifera[J]. Journal of Foraminiferal Research, 2021, 51(3): 225-244.
|
32 |
WOODRUFF F, SAVIN S M, DOUGLAS R G. Biological fractionation of oxygen and carbon isotopes by recent benthic foraminifera[J]. Marine Micropaleontology, 1980, 5: 3-11.
|
33 |
MUGLIA J, MULITZA S, REPSCHLÄGER J, et al. A global synthesis of high-resolution stable isotope data from benthic foraminifera of the last deglaciation[J]. Scientific Data, 2023, 10(1). DOI: 10.1038/s41597-023-02024-2 .
|
34 |
TACHIKAWA K, ELDERFIELD H. Microhabitat effects on Cd/Ca and δ13C of benthic foraminifera[J]. Earth and Planetary Science Letters, 2002, 202(3/4): 607-624.
|
35 |
EREZ J. Vital effect on stable-isotope composition seen in foraminifera and coral skeletons[J]. Nature, 1978, 273: 199-202.
|
36 |
BILLUPS K, EICHLER P P B, RAVELO C, et al. Stable isotopic variability in individual benthic foraminifera from the continental shelf of tropical Brazil[J]. Journal of Foraminiferal Research, 2022, 52(4): 212-228.
|
37 |
HALLOCK P. Symbiont-bearing foraminifera[M]// Modern foraminifera. Dordrecht: Springer Netherlands, 1999: 123-139.
|
38 |
MARQUES W S, MENOR E A, SIAL A N, et al. Oceanographic parameters in continental margin of the State of Ceará (northeastern Brazil) deduced from C and O isotopes in foraminifers[J]. Anais da Academia Brasileira de Ciencias, 2007, 79(1): 129-139.
|
39 |
MULLER P H. 14 Carbon fixation and loss in a foraminiferal-algal symbiont system[J]. The Journal of Foraminiferal Research, 1978, 8(1): 35-41.
|
40 |
WILLIAMS D F, RÖTTGER R, SCHMALJOHANN R, et al. Oxygen and carbon isotopic fractionation and algal symbiosis in the benthic foraminiferan Heterostegina depressa [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1981, 33(1/2/3): 231-251.
|
41 |
EREZ J. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies[J]. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 115-149.
|
42 |
de NOOIJER L J, TOYOFUKU T, KITAZATO H. Foraminifera promote calcification by elevating their intracellular pH[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(36): 15 374-15 378.
|
43 |
TEN K B, EREZ J. Uptake of inorganic carbon and internal carbon cycling in symbiont-bearing benthonic foraminifera[J]. Marine Biology, 1987, 94(4): 499-509.
|
44 |
TER K B, EREZ J. The size and function of the internal inorganic carbon pool of the foraminifer Amphistegina lobifera [J]. Marine Biology, 1988, 99(4): 481-487.
|
45 |
TARUTANI T, CLAYTON R N, MAYEDA T K. The effect of polymorphism and magnesium substitution on oxygen isotope fractionation between calcium carbonate and water[J]. Geochimica et Cosmochimica Acta, 1969, 33(8): 987-996.
|
46 |
JIMÉNEZ-LÓPEZ C, ROMANEK C S, HUERTAS F J, et al. Oxygen isotope fractionation in synthetic magnesian calcite[J]. Geochimica et Cosmochimica Acta, 2004, 68(16): 3 367-3 377.
|
47 |
MAVROMATIS V, SCHMIDT M, BOTZ R, et al. Experimental quantification of the effect of Mg on calcite-aqueous fluid oxygen isotope fractionation[J]. Chemical Geology, 2012, 310: 97-105.
|
48 |
LOUGH J M. Small change, big difference: sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011[J]. Journal of Geophysical Research: Oceans, 2012, 117(C9). DOI: 10.1029/2012JC008199 .
|
49 |
SEGEV E, EREZ J. Effect of Mg/Ca ratio in seawater on shell composition in shallow benthic foraminifera[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(2). DOI:10.1029/2005GC000969 .
|
50 |
RAJA R, SARASWATI P K, ROGERS K, et al. Magnesium and strontium compositions of recent symbiont-bearing benthic foraminifera[J]. Marine Micropaleontology, 2005, 58(1): 31-44.
|
51 |
BENTOV S, EREZ J. Impact of biomineralization processes on the Mg content of foraminiferal shells: a biological perspective[J]. Geochemistry, Geophysics, Geosystems, 2006, 7(1). DOI:10.1029/2005GC001015 .
|
52 |
ROSENTHAL Y, BOYLE E A, SLOWEY N. Temperature control on the incorporation of magnesium, strontium, fluorine, and cadmium into benthic foraminiferal shells from little bahama bank: prospects for thermocline paleoceanography[J]. Geochimica et Cosmochimica Acta, 1997, 61(17): 3 633-3 643.
|
53 |
ROBBINS L L, KNORR P O, WYNN J G, et al. Interpreting the role of pH on stable isotopes in large benthic foraminifera[J]. ICES Journal of Marine Science, 2017, 74(4): 955-964.
|
54 |
ZEEBE R E. An explanation of the effect of seawater carbonate concentration on foraminiferal oxygen isotopes[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 2 001-2 007.
|
55 |
BALESTRA B, ORLAND I J, FESSENDEN-RAHN J, et al. Paired analyses of oxygen isotope and elemental ratios within individual shells of benthic foraminifera genus Uvigerina [J]. Chemical Geology, 2020, 533. DOI:10.1016/j.chemgeo.2019.119377 .
|
56 |
ROLLION-BARD C, EREZ J, ZILBERMAN T. Intra-shell oxygen isotope ratios in the benthic foraminifera genus Amphistegina and the influence of seawater carbonate chemistry and temperature on this ratio[J]. Geochimica et Cosmochimica Acta, 2008, 72(24): 6 006-6 014.
|
57 |
FUJITA K, NISHI H, SAITO T. Population dynamics of Marginopora kudakajimensis gudmundsson (Foraminifera: Soritidae) in the Ryukyu Islands, the subtropical northwest Pacific[J]. Marine Micropaleontology, 2000, 38(3/4): 267-284.
|
58 |
MAEDA A, FUJITA K, HORIKAWA K, et al. Evaluation of oxygen isotope and Mg/Ca ratios in high-magnesium calcite from benthic foraminifera as a proxy for water temperature[J]. Journal of Geophysical Research: Biogeosciences, 2017, 122(1): 185-199.
|
59 |
SUZUKI A, KAWAHATA H, TANIMOTO Y, et al. Skeletal isotopic record of a Porites coral during the 1998 mass bleaching event[J]. Geochemical Journal, 2000, 34(4): 321-329.
|
60 |
SUZUKI A, HIBINO K, IWASE A, et al. Intercolony variability of skeletal oxygen and carbon isotope signatures of cultured Porites corals: temperature-controlled experiments[J]. Geochimica et Cosmochimica Acta, 2005, 69(18): 4 453-4 462.
|
61 |
EPSTEIN S, BUCHSBAUM R, LOWENSTAM H A, et al. Revised carbonate-water isotopic temperature scale[J]. Geological Society of America Bulletin, 1953, 64(11). DOI:10.1130/0016-7606(1951)62 [417:CITS]2.0.CO;2.
|
62 |
KIM S T, O’NEIL J R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates[J]. Geochimica et Cosmochimica Acta, 1997, 61(16): 3 461-3 475.
|
63 |
ZHANG Q H, WENDLER I, XU X X, et al. Structure and magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum[J]. Gondwana Research, 2017, 46: 114-123.
|
64 |
ZHANG Q H, DING L, KITAJIMA K, et al. Constraining the magnitude of the carbon isotope excursion during the Paleocene-Eocene thermal maximum using larger benthic foraminifera[J]. Global and Planetary Change, 2020, 184. DOI:10.1016/j.gloplacha.2019.103049 .
|