地球科学进展 ›› 2022, Vol. 37 ›› Issue (5): 472 -483. doi: 10.11867/j.issn.1001-8166.2022.026

研究论文 上一篇    下一篇

太行山地形影响其东麓强对流系统触发、发展、移动路径的个例分析
李艳 1( ), 王玉 1, 陈鲜艳 2( )   
  1. 1.南京信息工程大学 气象灾害教育部重点实验室, 江苏 南京 210044
    2.中国气象局 国家气候中心, 北京 100081
  • 收稿日期:2022-01-23 修回日期:2022-02-22 出版日期:2022-05-10
  • 通讯作者: 陈鲜艳 E-mail:yanlee@nuist.edu.cn;chenxy@cma.gov.cn
  • 基金资助:
    中国长江三峡集团有限公司项目“三峡工程成库以来阶段性气候效应评估”(0704182);国家自然科学基金项目“高空外流特征及对热带气旋强度与强度变化的影响”(41775058)

Influence of the Taihang Mountains on the InitiationDevelopmentand Track of a Convective Precipitation System

Yan LI 1( ), Yu WANG 1, Xianyan CHEN 2( )   

  1. 1.Key Laboratory of Meteorological Disaster,Ministry of Education,Nanjing University of Information Science and Technology,Nanjing 210044,China
    2.National Climate Center,China Meteorological Administration,Beijing 100081,China
  • Received:2022-01-23 Revised:2022-02-22 Online:2022-05-10 Published:2022-05-31
  • Contact: Xianyan CHEN E-mail:yanlee@nuist.edu.cn;chenxy@cma.gov.cn
  • About author:LI Yan (1975-), female, Penglai City, Shandong Province, Associate professor. Research areas include short-term convective precipitation and tropical cyclone. E-mail: yanlee@nuist.edu.cn
  • Supported by:
    the China Yangtze River Three Gorges Group Company Limited “Assessment of the climatic effects of the Three Gorges Project”(0704182);The National Natural Science Foundation of China “Structure and the impact on tropical cyclone intensity and intensity change”(41775058)

2017年5月22日,受500 hPa高空槽、850 hPa切变线、地面冷锋,以及中尺度辐合线的共同作用,一次较强的对流性降水过程发生在太行山东坡200~800 m 海拔高度区域。利用高分辨率的WRF数值模式,重点分析了太行山地形对对流系统触发、发展、移动路径的影响。研究发现山脉—平原的陆面分布在日辐射的作用下,能够在特定的地形结构处形成气候场上的地形辐合区。此地形辐合区在冷锋系统的动力抬升作用下形成了更强的地形辐合带,从而促进了对流单体群在此地形辐合带中的触发。研究还发现,对流单体群均是沿着地形走向移动,其移动路径均在山脉坡度较大的位置。对流系统的强度变化与太行山东部的山脉—平原环流系统密切相关。一方面,山脉—平原环流系统的近地层东风异常与太行山脉东麓地形相耦,增强了太行山山脚附近对流发展的动力抬升作用;另一方面,东风气流增强了来自东部平原地区的水汽输送。暖湿气流在地形抬升和山脉—平原环流系统上升支的共同作用下,增强了对流单体的降水强度。研究认为太行山东坡上对流系统的触发、发展、移动均与局地地形的坡度、坡向存在密切关系。能够增进对太行山东坡强对流天气的理解,为其短时强降水预报提供理论参考。

On May 22, 2017, strong convective precipitation occurred at an elevation of 200-800 m on the foot of the Taihang Mountains, which was controlled by a 500-hPa cold trough, 850-hPa shear line, cold front, and mesoscale convergence line. The effects of topography on the initiation, development, and tracking of convective systems were analyzed based on the results of high-resolution numerical simulations using the WRF model. The results show that a topographic convergence zone was formed under the influence of solar radiation on the mountain-plain land surface. The cold front strengthened the topographic convergence zone and triggered convective clusters from the convergence zone. The results also showed that the convective clusters moved along the orientation of the local topography, where the local slope was steeper. The intensity of the convective clusters was closely related to the Mountain-Plains Solenoid (MPS) on the east side of the Taihang Mountains. First, the low-level easterly anomaly of the MPS coupled with the local terrain enhanced uplift near the foot of the Taihang Mountains. Second, the easterly flow intensified the water vapor transportation from the eastern plain. The large amount of water vapor carried by the MPS-induced easterly wind was forced to ascend due to topographic obstruction; therefore, convective cells developed. The results suggest that the slope gradient and slope aspect of the local terrain played a key role in the initiation, maintenance, as well as the track of the convective clusters along the eastern foothills of the Taihang Mountains. This analysis contributes to the understanding of the development of convective precipitation systems on the eastern slope of the Taihang Mountains and forecasting short-term heavy rainfall events.

中图分类号: 

1 ZHANG H, ZHAI P M. Temporal and spatial characteristics of extreme hourly precipitation over Eastern China in the warm season[J]. Advances in Atmospheric Sciences, 2011, 28(5): 1 177-1 183.
2 LUO Y L, WU M W, REN F M, et al. Synoptic situations of extreme hourly precipitation over China[J]. Journal of Climate, 2016, 29(24): 8 703-8 719.
3 LUO Y L, SUN J S, LI Y, et al. Science and prediction of heavy rainfall over China: research progress since the reform and opening-up of new China[J]. Journal of Meteorological Research, 2020, 34(3): 427-459.
4 TAO Shiyan. The heavy rain of China[M]. Beijing: Science Press, 1980.
陶诗言.中国之暴雨[M].北京:科学出版社,1980.
5 GAO Shouting, ZHOU Yushu, RAN Lingkun. A review on the formation mechanisms and forecast methods for torrential rain in China[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(4): 833-846.
高守亭, 周玉淑, 冉令坤. 我国暴雨形成机理及预报方法研究进展[J]. 大气科学, 2018, 42(4): 833-846.
6 YU X D, ZHENG Y G. Advances in severe convection research and operation in China[J]. Journal of Meteorological Research, 2020, 34(2): 189-217.
7 CHEN Mingxuan, WANG Yingchun, XIAO Xian, et al. Initiation and propagation mechanism for the Beijing extreme heavy rainstorm clusters on 21 July 2012[J]. Acta Meteorologica Sinica, 2013, 71(4): 569-592.
陈明轩, 王迎春, 肖现, 等. 北京“7.21”暴雨雨团的发生和传播机理[J]. 气象学报, 2013, 71(4): 569-592.
8 WANG Jianhong, ZHANG Meng, REN Shuyuan, et al. Simulation study on the impact of Taihang Mountain slopes on downhill front cyclone rainstorm[J]. Advances in Earth Science, 2019, 34(7): 717-730.
王坚红, 张萌, 任淑媛, 等. 太行山脉地形坡度对下山锋面气旋暴雨影响模拟研究[J]. 地球科学进展, 2019, 34(7): 717-730.
9 YUAN W H, SUN W, CHEN H M, et al. Topographic effects on spatiotemporal variations of short-duration rainfall events in warm season of central North China[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(19): 11 223-11 234.
10 ZHAI Panmao, NI Yunqi, CHEN Yang. Mechanism and forecasting method of persistent extreme weather events: review and prospect[J]. Advances in Earth Science, 2013, 28(11): 1 177-1 188.
翟盘茂, 倪允琪, 陈阳. 我国持续性重大天气异常成因与预报方法研究回顾与未来展望[J]. 地球科学进展, 2013, 28(11): 1 177-1 188.
11 MA R Y, SUN J H, YANG X L. An eight-year climatology of the warm-season severe thunderstorm environments over North China[J]. Atmospheric Research, 2021, 254: 105519.
12 ZHOU T J, SONG F F, LIN R P, et al. The 2012 North China floods: explaining an extreme rainfall event in the context of a longer-term drying tendency[J]. Bulletin of the American Meteorological Society, 2013, 94(9): S49-S51.
13 SUN Jianhua, ZHAO Sixiong, FU Shenming, et al. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(3): 705-718.
孙建华, 赵思雄, 傅慎明, 等. 2012年7月21日北京特大暴雨的多尺度特征[J]. 大气科学, 2013, 37(3): 705-718.
14 XIA R D, ZHANG D L. An observational analysis of three extreme rainfall episodes of 19-20 July 2016 along the Taihang Mountains in North China[J]. Monthly Weather Review, 2019, 147(11): 4 199-4 220.
15 SUN W, LI J, YU R C, et al. Two major circulation structures leading to heavy summer rainfall over central North China[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(10):4 466-4 482.
16 LI H Q, CUI X P, ZHANG D L. A statistical analysis of hourly heavy rainfall events over the Beijing metropolitan region during the warm seasons of 2007-2014[J]. International Journal of Climatology, 2017, 37(11):4 027-4 042.
[1] 王姣娥, 黄洁. 交通—区域发展交互的理论创新与实践应用[J]. 地球科学进展, 2022, 37(2): 177-186.
[2] 王奕佳,刘焱序,宋爽,傅伯杰. 水—粮食—能源—生态系统关联研究进展[J]. 地球科学进展, 2021, 36(7): 684-693.
[3] 吴殿廷, 张文新, 王彬. 国土空间规划的现实困境与突破路径[J]. 地球科学进展, 2021, 36(3): 223-232.
[4] 王翔宇, 王元慧, 高培超, 宋长青, 程昌秀, 沈石. “可持续社会指数”的研究综述与展望[J]. 地球科学进展, 2021, 36(3): 317-324.
[5] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[6] 李侠祥, 刘昌新, 王芳, 郝志新. 中国投资对“一带一路”地区经济增长和碳排放强度的影响[J]. 地球科学进展, 2020, 35(6): 618-631.
[7] 陆大道. 地理国情与国家战略[J]. 地球科学进展, 2020, 35(3): 221-230.
[8] 陈明星,周园,郭莎莎,黄莘绒. 新型城镇化研究的意义、目标与任务[J]. 地球科学进展, 2019, 34(9): 974-983.
[9] 金荣花,马杰,任宏昌,尹姗,蔡芗宁,黄威. 我国 1030天延伸期预报技术进展与发展对策[J]. 地球科学进展, 2019, 34(8): 814-825.
[10] 黄亦鹏,李万彪,赵玉春,白兰强. 基于雷达与卫星的对流触发观测研究和临近预报技术进展[J]. 地球科学进展, 2019, 34(12): 1273-1287.
[11] 黄强,陈子燊,唐常源,李绍峰. 珠江流域重大干旱事件时空发展过程反演研究[J]. 地球科学进展, 2019, 34(10): 1050-1059.
[12] 张宸嘉, 方一平, 陈秀娟. 基于文献计量的国内可持续生计研究进展分析[J]. 地球科学进展, 2018, 33(9): 969-982.
[13] 夏军, 左其亭, 韩春辉. 生态水文学学科体系及学科发展战略[J]. 地球科学进展, 2018, 33(7): 665-674.
[14] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[15] 宋晓谕, 高峻, 李新, 李巍岳, 张中浩, 王亮绪, 付晶, 黄春林, 高峰. 遥感与网络数据支撑的城市可持续性评价:进展与前瞻[J]. 地球科学进展, 2018, 33(10): 1075-1083.
阅读次数
全文


摘要