地球科学进展 ›› 2022, Vol. 37 ›› Issue (5): 484 -495. doi: 10.11867/j.issn.1001-8166.2022.016

研究论文 上一篇    下一篇

排水沟附近农田潜水蒸发计算的渗流力学方法
林飞( ), 任红蕾, 韦婷, 陶月赞( )   
  1. 合肥工业大学 土木与水利工程学院,安徽 合肥 230009
  • 收稿日期:2021-11-14 修回日期:2022-02-24 出版日期:2022-05-10
  • 通讯作者: 陶月赞 E-mail:linfei@mail.hfut.edu.cn;taoyuezan@163.com
  • 基金资助:
    清华大学水沙科学与水利水电工程国家重点实验室2020年度开放基金项目“数值模拟在重金属污染场地精准调查设计中的应用研究”(sklhse-2020-D-06);国家重点研发计划项目“中南有色金属冶炼场地综合防控及再开发安全利用技术研发与集成示范”(2018YFC1802700)

A Seepage Mechanics-based Method for Calculating Phreatic Water Evaporation on Farmland near a Drainage Ditch

Fei LIN( ), Honglei REN, Ting WEI, Yuezan TAO( )   

  1. College of Civil Engineering,Hefei University of Technology,Hefei 230009,China
  • Received:2021-11-14 Revised:2022-02-24 Online:2022-05-10 Published:2022-05-31
  • Contact: Yuezan TAO E-mail:linfei@mail.hfut.edu.cn;taoyuezan@163.com
  • About author:LIN Fei (1988-), male, Linyi City, Shandong Province, Ph.D student. Research areas include water resources engineering and structures. E-mail: linfei@mail.hfut.edu.cn
  • Supported by:
    the Open Research Fund Program of State key Laboratory of Hydroscience and Engineering, Tsinghua University “Application of numerical simulation method to precise investigation in heavy metal contaminated sites”(sklhse-2020-D-06);The National Key Research and Development Program of China “Research and development and integrated demonstration of comprehensive prevention and control and redevelopment safety utilization technology for nonferrous metal smelting sites in southern central China”(2018YFC1802700)

潜水蒸发计算方法通常依据潜水水位消退规律建立经验和半经验公式,或是依据土壤—植物—大气连续体建立的SPAC模型。但在设置排水沟控制潜水水位的地段,潜水水位的消退受沟渠排水与潜水蒸发的共同影响,需建立特定水文地质条件下的渗流力学算法。结合实际观测统计制度,将潜水蒸发及灌溉回归等变量离散成阶梯函数;将设置滚水坝的排水沟,概化为水位稳定不变的第一类边界,建立沟渠边界控制下含阶梯函数型源汇项的潜水非稳定渗流模型;利用Laplace变换给出模型解析解,并通过数值法验证解析解的可靠性。依据模型的解,建立利用潜水水位动态实测数据逐日计算潜水蒸发强度的递推公式,讨论沟渠边界的影响;以安徽淮北平原的一个实例,演示方法应用过程与步骤。计算农田潜水蒸发的渗流力学方法,原理上有别于基于潜水位消退规律或SPAC模型的现行算法,且新方法可清晰反映边界条件的影响,计算所需参量较少,易于实际应用。

In previous studies, methods for calculating phreatic water evaporation were based on empirical and semi-empirical formulas established by the law of phreatic subsidence, or were based on the Soil-Plant-Atmosphere Continuum (SPAC) model. However, in the section where the drainage ditch is set to control the phreatic water level, the decline in the phreatic water level is affected by the ditch drainage and phreatic evaporation; therefore, it is necessary to establish a seepage mechanics algorithm under specific hydrogeological conditions. Combined with an observation statistical system of observation data, phreatic water evaporation and irrigation regression were discretized into a step function. The drainage ditch with a rolling dam was generalized into the first type of boundary with a stable water level, and an unsteady seepage model of the phreatic water with a stepped function source sink term under the control of the ditch boundary was established. The analytical solution of the model was derived using Laplace transform, and the reliability of the analytical solution was verified using a numerical solution. Based on the solution of the model, a recursive formula for calculating the evaporation intensity of the phreatic water daily by using the dynamic measured data of the groundwater level was established, and the influence of the ditch boundary was discussed. Taking the Huaibei Plain in the Anhui Province as an example, the application process and steps of the method were demonstrated. The seepage mechanics method for calculating phreatic water evaporation for farmland is different from the existing algorithms based on the submergence law of the phreatic level or SPAC model in principle. The new method can clearly reflect the influence of boundary conditions and requires fewer parameters for calculation, and it is thus more convenient to apply.

中图分类号: 

图1 排水沟附近潜水渗流场
Fig. 1 The phreatic seepage field near drainage ditch
图2 εt )连续为正的情形下潜水水位空间分布随时间的变化规律
Fig. 2 The variation rule of groundwater level spatial distribution with time when εtis continuously negative
图3 εt )连续为负的情形下潜水水位空间分布随时间的变化规律
Fig. 3 The variation rule of groundwater level spatial distribution with time when εtis continuously positive
表1 地下水位观测数据与降水入渗补给强度计算结果
Table 1 Groundwater level observation data and rainfall infiltration intensity calculation results
表2 x=65 m处潜水蒸发强度计算结果 (m/d)
Table 2 The calculation process of evaporation intensity of phreatic water at x=65 m
图4 x=65 m处? hxt/? tεt )的时间变化过程
Fig. 4 The changing process of ? hxt/? t and εtwith time at x=65 m
图5 潜水水位观测值和模型解析解的时间变化过程
Fig. 5 The varying process with time of observations and calculation results by analytical solution of phreatic water level
图6 潜水水位 hxt )的空间分布随时间的变化规律
Fig. 6 The variation of the spatial distribution of phreatic water level hxtwith time
1 LIU Hu, ZHAO Wenzhi, LI Zhongkai. Ecohydrology of groundwater dependent ecosystems: a review[J]. Advances in Earth Science, 2018, 33(7):741-750.
刘鹄,赵文智,李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展,2018,33(7):741-750.
2 YU Tengfei, FENG Qi, SI Jianhua, et al. Estimating terrestrial ecosystems evapotranspiration:a review on methods of integrateing remote sensing and ground observations[J]. Advances in Earth Science, 2011, 26(12):1 260-1 268.
鱼腾飞,冯起,司建华,等. 遥感结合地面观测估算陆地生态系统蒸散发研究综述[J]. 地球科学进展,2011,26(12):1 260-1 268.
3 WANG Jingfeng, LIU Yuanbo, ZHANG Ke. The maximum entropy production approach for estimating evapotranspiration: principle and applications[J]. Advances in Earth Science, 2019, 34(6):596-605.
WANG Jingfeng,刘元波,张珂. 最大熵增地表蒸散模型:原理及应用综述[J]. 地球科学进展,2019,34(6):596-605.
4 LI Xiucang, JIANG Tong, WU Ping. Progress and prospect of the moisture recycling models[J]. Advances in Earth Science, 2020, 35(10):1 029-1 040.
李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展,2020,35(10):1 029-1 040.
5 LIU Jin, LI Hui, FANG Tao, et al. Study on the “four-water” transformation on north shore of middle reaches of the Huaihe River[J]. Journal of Natural Resources, 2015, 30(9): 1 570-1 581.
刘锦, 李慧, 方韬, 等. 淮河中游北岸地区“四水”转化研究[J]. 自然资源学报, 2015, 30(9): 1 570-1 581.
6 WANG Zhenlong, WANG Jiahu, LIU Miao, et al. A study of the four water phases transformation lumped model in the region of Huaibei Plain and its application[J]. Journal of Natural Resources, 2009, 24(12):2 194-2 203.
王振龙,王加虎,刘淼,等. 淮北平原“四水”转化模型实验研究与应用[J]. 自然资源学报,2009,24(12):2 194-2 203.
7 HE Chansheng, TIAN Jie, ZHANG Baoqing, et al. A review of advances in impacts of soil hydraulic properties on hydrological processes, challenges and opportunities[J]. Advances in Earth Science, 2021, 36(2):113-124.
贺缠生,田杰,张宝庆,等. 土壤水文属性及其对水文过程影响研究的进展、挑战与机遇[J].地球科学进展,2021,36(2):113-124.
8 ZHU Wendong. Phreatic water evaporation and dynamics of soil moisture and salt under different groundwater depths and water salinity[D]. Beijing: University of Chinese Academy of Sciences, 2019.
朱文东. 不同埋深与矿化度的潜水蒸发对土壤盐渍化的影响[D]. 北京:中国科学院大学,2019.
9 WANG Shaoli, XU Di, FANG Shuxing, et al. Effects of water management strategies on soil water-salt movement and subsurface drainage[J]. Journal of Hydraulic Engineering, 2005, 36(7): 799-805.
王少丽, 许迪, 方树星, 等. 水管理策略对土壤水盐动态和区域地下排水影响的模拟评价[J]. 水利学报, 2005, 36(7): 799-805.
10 HAO Zhenchun, CHEN Xi, WANG Jiahu, et al. Trend and impact factors of evaporation from shallow phreatic groundwater of bare soil on Huaibei Plain in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(6):73-78.
郝振纯,陈玺,王加虎,等. 淮北平原裸土潜水蒸发趋势及其影响因素分析[J]. 农业工程学报,2011,27(6):73-78.
11 WANG Zhenlong, YANG Miao, Haishen LÜ, et al. Phreatic evaporation in bare and wheat land during freezing-thawing period of Huaibei Plain based on lysimeters experiments[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 129-137.
王振龙, 杨秒, 吕海深, 等. 基于蒸渗仪群淮北平原冻融期裸土及麦田潜水蒸发规律研究[J]. 农业工程学报, 2019, 35(13): 129-137.
12 WEN Lijun, SHI Wenjuan, GAO Zhiyong, et al. Simulated study on soil moisture and phreatic evaporation under different aperture ratios of film mulching[J]. Journal of Soil and Water Conservation, 2020, 34(1): 225-229.
文利军, 史文娟, 高志永, 等. 不同覆膜开孔率下土壤水分和潜水蒸发的模拟研究[J]. 水土保持学报, 2020, 34(1): 225-229.
13 ZHANG Qinghua, ZHAO Yufeng, TANG Jialiang, et al. Hydrochemistry characteristics and the recharge source of groundwater in typical watersheds of Beijing-Tianjin-Hebei region, China[J]. Journal of Natural Resources, 2020, 35(6): 1 314-1 325.
张清华, 赵玉峰, 唐家良, 等. 京津冀西北典型流域地下水化学特征及补给源分析[J]. 自然资源学报, 2020, 35(6): 1 314-1 325.
14 ZHANG Weizhen. Calculation of groundwater unsteady flow and evaluation of groundwater resources[M]. Wuhan: Wuhan University Press, 2013.
张蔚榛. 地下水非稳定流计算和地下水资源评价[M]. 武汉:武汉大学出版社, 2013.
15 WANG Siru, LEI Huimin, DUAN Limin, et al. Simulated impacts of climate change on evapotranspiration and vegetation in Horqin Sandy Land[J]. Journal of Hydraulic Engineering, 2017, 48(5): 535-544, 550.
王思如, 雷慧闽, 段利民, 等. 气候变化对科尔沁沙地蒸散发和植被的影响[J]. 水利学报, 2017, 48(5): 535-544, 550.
16 JIA Ruiliang, ZHOU Jinlong, GAO Yexin, et al. Preliminary analysis on evaporation rules of high-salinity phreatic water in arid area[J]. Advances in Water Science, 2015, 26(1): 44-50.
贾瑞亮, 周金龙, 高业新, 等. 干旱区高盐度潜水蒸发规律初步分析[J]. 水科学进展, 2015, 26(1): 44-50.
17 LU Xiaoming, YANG Miao, WANG Zhenlong, et al. Metrological factors affecting evaporation of shallow groundwater in the absence of plants in Huaibei Plain[J]. Journal of Irrigation and Drainage, 2019, 38(4): 84-91.
陆小明, 杨秒, 王振龙, 等. 淮北平原气象因素对裸地潜水蒸发的影响[J]. 灌溉排水学报, 2019, 38(4): 84-91.
18 LI Fei. Study on the influence of geotemperature on phreatic evaporation under non-stress conditions[D]. Hefei: Hefei University of Technology, 2016.
李飞. 地温对非胁迫潜水蒸发影响研究[D]. 合肥:合肥工业大学,2016.
19 SU Tingting, BAI Yanying, WEI Zhanmin. Response of ET0 to meteorological factors and related parameters in tumote Youqi[J]. Journal of Irrigation and Drainage, 2018, 37(3): 110-114.
苏婷婷, 白燕英, 魏占民. 土默特右旗ET0对气象因子和相关参数的响应[J]. 灌溉排水学报, 2018, 37(3): 110-114.
20 WANG Zhenlong, LIU Miao, LI Rui. Experiment on phreatic evaporation of bare soil and soil with crop in Huaibei Plain[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(6):26-32.
王振龙,刘淼,李瑞. 淮北平原有无作物生长条件下潜水蒸发规律试验[J]. 农业工程学报,2009,25(6):26-32.
21 TAO Yuezan. Evaporation law and calculation in phreatic aquifer under canal control[J]. Progress in Natural Science, 2006, 16(5):590-595.
陶月赞. 河渠控制下潜水含水层中的蒸发规律与计算[J]. 自然科学进展,2006,16(5):590-595.
22 C⋅Ф АВЕРЪЯНОВ. The level drainage facilities to control the irrigation salinization[M]. Beijing: China Industry Press, 1963.
C⋅Ф⋅阿维里扬诺夫. 防治灌溉土地盐渍化的水平排水设施(计算) [M]. 北京:中国工业出版社,1963.
23 YE Shuiting, SHI Xinyuan, MIAO Xiaofang. The analysis to the yield of water by the phreatic evaporation empirical formula calculation[J]. Hydrogeology and Engineering Geology, 1982, 9(4):49-52.
叶水庭,施鑫源,苗晓芳,用潜水蒸发经验公式计算给水度问题的分析[J]. 水文地质工程地质,1982,9(4):49-52.
24 SHEN Lichang. The study on the phreatic evaporation empirical formula[J]. Journal of Hydraulic Engineering, 1985, 16(7):34-40.
沈立昌. 关于潜水蒸发量经验公式的探讨[J]. 水利学报,1985,16(7):34-40.
25 LEI Zhidong, YANG Shixiu, XIE Senchuan. The soil water dynamics[M]. Beijing: Tsinghua University Press, 1988.
雷志栋,杨诗秀,谢森传. 土壤水动力学[M]. 北京:清华大学出版社,1988.
26 SHANG Songhao, MAO Xiaomin. Research progress on evaporation from phreatic water[J]. Advances in Science and Technology of Water Resources, 2010, 30(4):85-89, 94.
尚松浩,毛晓敏. 潜水蒸发研究进展[J]. 水利水电科技进展,2010,30(4):85-89, 94.
27 SHANG Songhao, MAO Xiaomin, LEI Zhidong, et al. Inverse-logistic formula for calculation of phreatic evaporation coefficient[J]. Irrigation and Drainage, 1999, 18(2): 18-21.
尚松浩, 毛晓敏, 雷志栋, 等. 计算潜水蒸发系数的反Logistic公式[J]. 灌溉排水, 1999, 18(2): 18-21.
28 LUO Yufeng, MAO Yilei, PENG Shizhang, et al. Modified Aver'yanov's phreatic evaporation equations under crop growing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(4):102-109.
罗玉峰,毛怡雷,彭世彰,等. 作物生长条件下的阿维里扬诺夫潜水蒸发公式改进[J]. 农业工程学报,2013,29(4):102-109.
29 SHU Longcang, JING Yandong, HUANG Xiudong, et al. On the development of improved empirical for calculating the phreatic water evaporation for bare land[J]. Journal of Jilin University(Earth Science Edition), 2012,42(6):1 859-1 865.
束龙仓,荆艳东,黄修东,等.改进的无作物潜水蒸发经验公式[J]. 吉林大学学报(地球科学版),2012,42(6):1 859-1 865.
30 LIU Peigui, XIA Yan, SHANG Manting. Estimation methods of phreatic evaporation for different textures in bare soil area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020,36(1):148-153.
刘佩贵,夏艳,尚熳廷. 不同质地裸土潜水蒸发估算方法[J]. 农业工程学报,2020,36(1):148-153.
31 SHE Dongli, SHAO Ming’an, YU Shuang’en. Water balance simulation in SPAC systems of slope lands covered with typical vegetations on loess plateau[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(5): 73-78.
佘冬立, 邵明安, 俞双恩. 黄土高原典型植被覆盖下SPAC系统水量平衡模拟[J]. 农业机械学报, 2011, 42(5): 73-78.
32 SHI Haibin, GUO Jiawei, ZHOU Hui, et al. Effects of irrigation amounts and groundwater regulation on soil water and salt distribution in arid region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4):268-278.
史海滨,郭珈玮,周慧,等. 灌水量和地下水调控对干旱地区土壤水盐分布的影响[J]. 农业机械学报,2020,51(4):268-278.
33 YANG Jianfeng, LI Baoqing, LI Yunsheng, et al. Preliminary studies on groundwater effects on SPAC system in shallow groundwater field[J]. Journal of Hydraulic Engineering, 1999, 30(7): 27-32.
杨建锋, 李宝庆, 李运生, 等. 浅地下水埋深区潜水对SPAC系统作用初步研究[J]. 水利学报, 1999, 30(7): 27-32.
34 MAO Xiaomin, SHANG Songhao, LEI Zhidong, et al. Study on evapotranspiration of winter wheat using SPAC model[J]. Journal of Hydraulic Engineering, 2001, 32(8): 7-11.
毛晓敏, 尚松浩, 雷志栋, 等. 利用SPAC模型对冬小麦蒸散发的研究[J]. 水利学报, 2001, 32(8): 7-11.
35 LI Dongfang. Study on the mechanism of water migration in GSPAC and its simulation by SWAP model in the horqin sandy land with sand-meadow land features[D]. Hohhot: Inner Mongolia Agricultural University, 2012.
李东方. 沙丘草甸区GSPAC系统水分运移机理与SWAP模拟研究: 以科尔沁沙地为例[D]. 呼和浩特: 内蒙古农业大学, 2012.
36 REN Jie. Study on the dynamic of GSPAC system water and water requirement in typifical wilderness prairie[D]. Hohhot: Inner Mongolia Agricultural University, 2006.
任杰. 典型荒漠化草地GSPAC系统水分动态模拟与生态需水研究[D]. 呼和浩特: 内蒙古农业大学, 2006.
37 LI Hongshou, WANG Wanfu, ZHANG Guobin, et al. GSPAC water movement in extremely dry area[J]. Journal of Arid Land, 2011, 3(2):141-149.
38 ZHANG Youyi, WANG Wenyan, LI Zhilu, et al. Discussion on the calculation of drainage distance in farmland under the influence of evaporation[J]. Journal of Hydraulic Engineering, 1993, 24(12): 23-28, 34.
张友义,王文焰,李智录, 等. 对考虑蒸发影响下农田排水沟(管)间距计算的探讨[J]. 水利学报,1993, 24(12): 23-28, 34.
39 MA Yingjie, SHEN Bing, HUDAN Tumaerbay. Spacing of drainage ditches in field under the influence of evaporation[J]. Journal of Hydraulic Engineering, 2006, 37(10):1 264-1 269.
马英杰,沈冰,虎胆·吐马尔拜. 蒸发影响下农田排水沟(管)间距的计算[J]. 水利学报,2006,37(10):1 264-1 269.
40 REN Hongrui. The study on groundwater evaporation under condition of crop crowing[D]. Beijing: Graduate School of the Chineses Academy of Sciences, 2006.
任鸿瑞. 作物种植条件影响下的浅层地下水蒸发研究[D]. 北京:中国科学院研究生院,2006.
41 TAO Yuezan, YAO Mei, ZHANG Bingfeng. Solution and its application of transient stream/groundwater model subjected to time-dependent vertical seepage[J]. Applied Mathematics and Mechanics, 2007, 28(9): 1 047-1 053.
陶月赞,姚梅,张炳峰. 时变垂向入渗影响下河渠—潜水非稳定渗流模型的解及应用[J]. 应用数学和力学,2007,28(9):1 047-1 053.
42 RAI S N, SINGH R N. On the predictability of the water-table variation in a ditch-drainage system[J]. Water Resources Management, 1988, 2(4): 289-298.
43 WANG Youzhen, WANG Xiugui, TANG Guangmin. Effects of controlled drainage of main ditch on groundwater table[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(6): 74-77.
王友贞,王修贵,汤广民. 大沟控制排水对地下水水位影响研究[J]. 农业工程学报,2008,24(6):74-77.
44 ZISSIS T S, TELOGLOU I S, TERZIDIS G A. Response of a sloping aquifer to constant replenishment and to stream varying water level[J]. Journal of Hydrology, 2001, 243(3/4):180-191.
45 BANSAL R K. Modeling of groundwater flow over sloping beds in response to constant recharge and stream of varying water level[J]. International Journal of Mathematical Modelling & Computations, 2014, 4(3):189-200.
46 BANSAL R K. Groundwater fluctuations in sloping aquifers induced by time-varying replenishment and seepage from a uniformly rising stream[J]. Transport in Porous Media, 2012, 94(3):817-836.
47 LIN Xinsan, XU Baoyuan, XIONG Huanguo. Apply generalized step function to solve the bending problem of statically indeterminate beams with variable flexural rigidity[J]. Applied Mathematics and Mechanics, 1981, 2(3):339-346.
林新三,许宝元,熊焕国. 应用广义阶梯函数解变刚度超静定梁的弯曲问题[J]. 应用数学和力学,1981,2(3):339-346.
48 KYURKCHIEV N, MARKOV S. On the Hausdorff distance between the Heaviside step function and Verhulst logistic function[J]. Journal of Mathematical Chemistry, 2016, 54(1): 109-119.
49 XIN Y W, ZHOU Z F, LI M W, et al. Analytical solutions for unsteady groundwater flow in an unconfined aquifer under complex boundary conditions[J]. Water, 2019, 12(1): 75.
50 MARINO M A. Water-table fluctuation in semipervious stream-unconfined aquifer systems[J]. Journal of Hydrology, 1973, 19(1): 43-52.
51 TELOGLOU I S, BANSAL R K. Transient solution for stream-unconfined aquifer interaction due to time varying stream head and in the presence of leakage[J]. Journal of Hydrology, 2012, 428/429: 68-79.
52 LIANG D F, LIN B L, FALCONER R A. Simulation of rapidly varying flow using an efficient TVD-MacCormack scheme[J]. International Journal for Numerical Methods in Fluids, 2007, 53(5): 811-826.
53 NGONDIEP E. Long time stability and convergence rate of MacCormack rapid solver method for nonstationary Stokes-Darcy problem[J]. Computer and Mathematics with Application, 2018, 75(10):3 663-3 684.
54 Geological and Survey of China. Handbook of hydrogeology [M]. 2nd ed. Beijing: Geological Publishing House, 2012.
中国地质调查局. 水文地质手册(第二版)[M]. 北京:地质出版社,2012.
55 WANG Youzhen, YE Naijie. Drainage of farmland in Huaibei Plain of Anhui Province[J]. China Rural Water and Hydropower, 2008(2):5-7, 13.
王友贞,叶乃杰. 安徽淮北平原农田排水问题[J]. 中国农村水利水电,2008(2):5-7, 13.
[1] 魏瑞江, 王鑫, 康西言. 国内气候适宜度模型中水分适宜度模型的改进与应用[J]. 地球科学进展, 2022, 37(5): 496-504.
[2] 焦其顺,朱忠礼,刘绍民,晋锐,杜帆. 宇宙射线快中子法在农田土壤水分测量中的研究与应用[J]. 地球科学进展, 2013, 28(10): 1136-1143.
阅读次数
全文


摘要