地球科学进展 doi: 10.11867/j.issn.1001-8166.2024.044.

   

水诱导的地幔反转与大陆起源
吴忠庆1,2,3   
  1. (1. 中国科学技术大学地球和空间科学学院,地震与地球内部物理实验室,安徽 合肥230026;2. 中国科学院 比较行星学卓越创新中心,安徽 合肥 230026;3. 深空探测实验室,安徽 合肥 230026)
  • 基金资助:
    国家自然科学基金项目(编号:41925017,42350004)资助.

Water Induced Mantle Overturn and Origin of the Archean Crust

WU Zhongqing1, 2, 3   

  1. (1. Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; 2. Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei 230026, China; 3. Deep Space Exploration Laboratory, Hefei 230026, China)
  • About author:WU Zhongqing, Professor, research areas include first-principles calculations of mineral properties at high pressure and temperature.E-mail: wuzq10@ustc.edu.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China (Grant No. 41925017, 442350004).
岛弧模型和地幔柱的海底高原模型是大陆起源的两个主流模型。相较于岛弧模型,地幔 柱模型能更好地解释太古宙大陆的特征,但在解释太古宙陆壳源区富水这一关键特征时遇到了困 难。最近提出的水诱导的地幔反转模型比较好地解决了这个一问题,同时还能解释太古宙多个令 人困惑的现象。该模型指出,在地幔发生整体熔融的情况下,岩浆洋在中地幔深度开始结晶,形成 外层和基底两个岩浆洋。由于下地幔矿物含水能力低,随着岩浆的结晶,最初含一定量水的基底 岩浆洋将逐渐富水。水降低基底岩浆洋的密度。当水富集到一定程度时,基底岩浆洋的密度将不 再高于上覆地幔,从而导致重力失稳,形成地幔反转。这种反转将水带到地球浅部,促进了大陆和 克拉通岩石圈地幔等的形成。因此,太古宙大陆是基底岩浆洋演化的产物。当地幔反转耗尽基底 岩浆洋后,太古宙型的大陆不再形成。太古宙末期对应着大陆形成机制的转变期,而水诱导的地 幔反转可以自然地解释为什么太古宙前后的大陆具有完全不同的特性。类似地,水诱导的地幔反 转还可以解释其他多个长期困扰的现象,如:为什么几乎没有冥古宙的大陆,为什么太古宙的镁铁 质岩石的源区具有原始地幔的组分且在整个太古宙几乎不变,为什么内太阳系只有地球具有大陆 等。形成全地幔岩浆洋和岩浆洋含水是水诱导的地幔反转的两个前提。由于大撞击在基底岩浆 洋形成中扮演了关键角色,月球远比我们想象的重要。
The island arc model and the oceanic plateau model of mantle plume are two popular models for the origin of crust. In contrast to the island arc model, the oceanic plateau model can well account for most of features of the Archean crust but meets fundamental challenge in explaining the water-rich feature of the magma source of the Archean crust. The recent water-induced mantle overturn model can well account for not only the water-rich feature but also several puzzling phenomena in the Archean. The whole-mantle magma ocean (MO) will separate into an outer MO and a basal MO because the crystalized mantles float at the middle mantle. The water-induced mantle overturn model shows that with the crystallization, the basal MO becomes increasingly enriched in water because the lower-mantle minerals can only contain very limited water. Since water reduces the density of the basal MO. The basal MO will eventually become less dense than the overlying solid mantle and become gravitationally unstable because of the enrichment of water. The triggered mantle overturns transport a large amount of water to the shallow part of the Earth and result in large pulses of the crust and thick subcontinental lithospheric mantle (SCLM) generations. Therefore, the Archean crust is the result of the evolution of the basal MO. Once the mantle overturns run out of the basal MO, the Archean-type crust will no longer form. Thus the water-induced mantle overturn model can well account for the global change at the end of the Archean. Similarly, the water-induced mantle overturn model can also explain other puzzling phenomena. For example, why are tonalite-trondhjemite-granodiorite (TTG) and thick SCLM rare in Hadean, why does the source of Archean basalts remain to be the primitive mantle from ca 4.0 to 2.5 Ga, and why does only Earth have continental crust ?

中图分类号: 

[1] 吴忠庆. 水诱导的地幔反转与大陆起源[J]. 地球科学进展, 2024, 39(6): 551-564.
[2] 杨建锋, 左力艳, 余韵, 张翠光, 徐犇研. 行星边界框架下水资源治理理念与转型方向[J]. 地球科学进展, 2024, 39(11): 1123-1135.
[3] 黄春林, 侯金亮, 李维德, 顾娟, 张莹, 韩伟孝, 王维真, 温小虎, 朱高峰. 深度学习融合遥感大数据的陆地水文数据同化:进展与关键科学问题[J]. 地球科学进展, 2023, 38(5): 441-452.
[4] 李育, 段俊杰, 李海烨, 高铭君, 张宇欣, 薛雅欣. 全新世青藏高原及周边典型湖泊演化模拟[J]. 地球科学进展, 2023, 38(4): 388-400.
[5] 杨晓新. 水体稳定同位素在青藏高原大气环流研究中的应用[J]. 地球科学进展, 2022, 37(1): 87-98.
[6] 黄婉彬,鄢春华,张晓楠,邱国玉. 城市化对地下水水量、水质与水热变化的影响及其对策分析[J]. 地球科学进展, 2020, 35(5): 497-512.
[7] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[8] 李浩杰,李弘毅,王建,郝晓华. 河冰遥感监测研究进展[J]. 地球科学进展, 2020, 35(10): 1041-1051.
[9] 谢正辉,陈思,秦佩华,贾炳浩,谢瑾博. 人类用水活动的气候反馈及其对陆地水循环的影响研究——进展与挑战[J]. 地球科学进展, 2019, 34(8): 801-813.
[10] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[11] 马忠, 苏守娟, 龙爱华, 张晓霞. 塔里木河流域社会经济系统水循环分析[J]. 地球科学进展, 2018, 33(8): 833-841.
[12] 李育, 刘媛. 干旱区内流河流域长时间尺度水循环重建与模拟——以石羊河流域为例[J]. 地球科学进展, 2017, 32(7): 731-743.
[13] 廖一帆, 孙宁宇, 毛竹. 地球下地幔矿物结构和热力学参数的研究进展与展望[J]. 地球科学进展, 2017, 32(5): 465-480.
[14] 汤秋鸿, 黄忠伟, 刘星才, 韩松俊, 冷国勇, 张学君, 穆梦斐. 人类用水活动对大尺度陆地水循环的影响[J]. 地球科学进展, 2015, 30(10): 1091-1099.
[15] 王连喜, 吴建生, 李琪, 顾嘉熠, 薛红喜. AquaCrop作物模型应用研究进展[J]. 地球科学进展, 2015, 30(10): 1100-1106.
阅读次数
全文


摘要