地球科学进展 ›› 2003, Vol. 18 ›› Issue (2): 214 -220. doi: 10.11867/j.issn.1001-8166.2003.02.0214

研究论文 上一篇    下一篇

煤中砷的赋存状态
赵峰华 1,任德贻 1,彭苏萍 1,王运泉 2,张军营 3,丁振华 4,丛志远 1   
  1. 1.中国矿业大学资源与地球科学系,北京 100083;2.广州大学理学院,广东 广州 510405;3.华中科技大学煤燃烧重点实验室,湖北 武汉 430074;4.中国科学院地球化学研究所,贵州 贵阳 550002
  • 收稿日期:2002-04-04 修回日期:2002-11-11 出版日期:2003-04-10
  • 通讯作者: 赵峰华 E-mail:fenghuazhao@hotmail.com
  • 基金资助:

    国家重点基础研究发展规划项目“煤中有害重金属赋存特征及其侵入环境的动态规律”(编号: G199902221201);国家自然科学基金项目“鄂尔多斯北部侏罗纪煤中有害微量元素的变异研究”(编号: 49902013)共同资助.

THE MODES OF OCCURRENCE OF ARSENIC IN COAL

Zhao Fenghua 1,Ren Deyi 1,Peng Suping 1,Wang Yunquan 2,Zhang Junying 3,Ding Zhenhua 4,Cong Zhiyuan 1   

  1. 1. Department of Resource and Earth Science, China University of Mining & Technology,Beijing 100083,China; 2. School of Science, Guangzhou University, Guangzhou 510405,China;3. National Laboratory of Coal Combustion, Huazhong University of Science & Technology, Wuhan 430074,China;4. The Institute of Geochemistry, Chinese Academy of Science, Guiyang 550002,China
  • Received:2002-04-04 Revised:2002-11-11 Online:2003-04-10 Published:2003-04-01

砷是煤中常见的有害微量元素,由于其丰度较低,定量研究其赋存状态一直很困难。近年来,采用逐级化学提取实验方法对煤中不同赋存状态的砷进行了定量研究,综合分析这些研究可得出以下结论:①煤中砷的赋存状态包括硫化物态砷、有机态砷、砷酸盐态砷、硅酸盐态砷、水溶态和可交换态砷。总体上,硫化物态砷>有机态砷>砷酸盐态砷>硅酸盐态砷>水溶态和可交换态砷,但在不同的煤样品中,也表现出较大的差异性。②一般而言,煤中大部分砷存在于含砷黄铁矿中,含砷黄铁矿中的砷含量与黄铁矿的成因或类型有关。煤中的砷酸盐态砷主要与铁氧化物和氢氧化物共生;硅酸盐态砷主要进入粘土矿物晶格。③在砷含量较低的煤样品中,有机态砷含量较高,其中在褐煤和低煤级烟煤中,可提取出与腐殖酸和富里酸结合的砷。当前还难以确认有机态砷的化学结构。④贵州特高砷煤中砷的赋存状态较为复杂,在某些样品中与氧结合的有机态砷为主要的赋存状态。

Arsenic is a common hazardous element in coal. It is always difficultto characterize its modes of occurrence quantitatively because of its low concentration in coal. In recent years, sequential chemical extract experiments were employed to determine modes of occurrence of arsenic quantitatively. The following conclusions can be drawn from these experimental data: ①The modes of occurrence of arsenic in coal include sulfide arsenic, organic arsenic, arsenate arsenic, silicate arsenic, soluble and exchangeable arsenic. Generally, the percentage sequence of arsenic in different states are as follows: sulfide arsenic>organic arsenic>arsenate arsenic>silicate arsenic>soluble and exchangeable arsenic. However, modes of occurrence of arsenic in different coal samples show big difference. ②Generally speaking, most of arsenic in coal are associated with arsenic-bearing pyrite, and arsenic contents of pyrite are related to origin or genetic type of pyrite. Arsenic of arsenate in coal is mainly associated with Fe-oxides and Fe-hydroxide. Arsenic of silicate mainly comes into crystal lattice of clay minerals. ③Low-arsenic coals often have high organic arsenic. Humic acid and fulvic acid extracted from lignite and low rank bituminous coal also combine some of arsenic. However, chemical structure of organic arsenic in coal is still unclear currently. ④The modes of occurrence of arsenic in super-high arsenic coal from Guizhou province are so complicated, and organic arsenic combined with oxygen are dominant occurrence of arsenic in some of these high-arsenic coals.

中图分类号: 

[1] Zheng Baoshan, Ding Zhenghua, Zhu Jianming, et al. Issues of health and disease relating to coal use in southwestern China[J]. International Journal of Coal Geology, 1999, 40: 119-132.

[2] Finkelman R B. Trace elements in coal: Environmental and health significance[J]. Biological Trace Element Research, 1999, 67:2-9.

[3] Mackowsky M-Th. Minerals and trace elements occurring in coal[A]. In: Stach E, et al eds. Stach’s Textbook of Coal Petrology[C]. Berlin: Gebruder Borntraeger, 1982. 153-171.

[4] Minkin J A, Finkelman R B, Thompson C L, et al. Microcharacterization of arsenic- and selenium-bearing pyrite in upper freeport coal, Indiana county, Pennsyvania[J]. Scanning Electron Microsc, 1984, 4: 1 515-1 524.

[5] Bouska V, Pesek J, Sykorova I. Probable models of occurrence of chemical elements in coal[J]. Fuel, Carbon, Mineral Processing Acta Montana, 2000, 117(10): 53-90.

[6] Bouska V. Geochemistry of Coal[M]. Prague: Academia Press, 1981.

[7] Finkelman R B. Modes of occurrence of environmentally-sensitive trace elements in coal[A]. In: Swaine D J, Goodarzi F, eds. Environmental Aspects of Trace Elements in Coal[C]. Dordrecht/Boston/London: Kluwer Academic Publisher, 1995. 24-50.

[8] Huggins F E, Shah N, Zhao J, et al. Nondestructive determination of trace elements speciation in coal and coal ash by XAFS spectroscopy[J]. Energy Fuels, 1993, 7: 482-489.

[9] White R N, Smith J V, Spears D A, et al. Analysis of iron sulfides from UK coal by synchrotron radiation X-ray fluorescence[J]. Fuel, 1989, 68:1 480-1 486.

[10] Evans B J, Johnson R G, Sentfle F E, et al. The 57Fe Mossbauer parameters of pyrite and marcasite with different provenances[J]. Geochime Cosmochime Acta, 1982, 46: 761-775.

[11] Κлер B P идр. Метамогения и Геохимия Угленосны и Сланцесодержащих Толщ CCCP[M]. Москова Наука: Геохимия Злементов, 1987.

[12] Noble E A. Metalliferous lignite in North Dakota[A]. In: University of North Dakota Guidebook No. 3, North Dak Geological Survey Misc[C]. 1972, 50: 133-134.

[13] Finkelman R B. Modes of occurrence of trace elements in coal[A]. In: US Geological Survey Open-file Report[C]. 1981. 81-99.

[14] Coleman S L, Bragg L J. Distribution and mode of occurrence of arsenic in coal[A]. In: Chyi L L, Chou C L, eds. Recent Advances in Coal Geochemistry[C]. Special Paper of Geological Society of America, 1990, 248: 13-26.

[15] Zhao Fenghua, Ren Deyi, Yin Jinshuang, et al. The study on the occurrence of arsenic in coal by sequential chemical extract[J]. Environmental Science, 1999, 20(2): 79-81. [赵峰华, 任德贻, 尹金双, . 煤中砷赋存状态的逐级化学提取研究[J]. 环境科学, 1999, 20(2): 79-81.]

[16] Palmer C A, Mroczkowski S J, Finkelman R B, et al. The use of sequential leaching to quantify the modes of occurrence of elements in coal[A]. In: Proceedings of the 15th Annual International Pittsburgh Coal Conference & Workshop[C]. Sept 14-18, 1998. Pittsburgh, USA. CD-ROM ISBN 1-890977-15-2, recorded in USA, 1998.

[17] Ding Zhenhua, Zheng Baoshan, Zhang Jie, et al. Preliminary study on the mode of occurrence of arsenic in high arsenic coals from southwest Guizhou province[J]. Science in China, 1999, 42(6): 655-661.

[18] Zhang Zhenfu, Fan Jinchuan. The modes of occurrence of arsenic, lead, chromium in Xiaolongtan coal[J]. Coal Conversion, 1993, 16: 86-88. [张振桴,樊金串. 小龙潭煤中砷、铅、铬等元素的结合状态[J]. 煤炭转化, 1993, 16: 86-88.]

[19] Huggins F E, Haffman G P. Modes of occurrence of trace elements in coal from XAFS spectroscopy[J]. International Journal of Coal Geology, 1996, 32: 31-53.

[20] Haffman G P, Huggins F E, Shah N, et al. Speciation of arsenic and chromium in coal and combustion ash by XAFS spectroscopy[J]. Fuel Processing Technology, 1994, 39: 47-62.

[21] Zhao Fenghua, Ren Deyi, Zheng Baoshan, et al. Modes of occurrence of arsenic in high arsenic coal by extended X-ray absorption fine structure spectroscopy[J]. Chinese Science Bulletin, 1998, 43(19): 1 660-1 663.

[22] Belkin H E, Zheng Baoshan, Zhou Daixing, et al. Preliminary results on the geochemistry and mineralogy of arsenic in mineralized coals from endemic arsenosis area in Guizhou province, China[A]. In: Proceedings of the 14th Annual International Pittsburgh Coal Conference & Workshop[C]. Sept 23-27, 1997. Taiyuan, Shanxi, People’s Republic China. CD-ROM ISBN 1-890977-14-4, recorded in USA, 1997.

[1] 殷怡童,罗锡明. 含铁介质稳定砷与根际微生物的相互作用[J]. 地球科学进展, 2020, 35(10): 1052-1063.
[2] 杨建,刘基,黄浩,梁向阳. 鄂尔多斯盆地北部深埋区“地貌—沉积”控水关键要素研究[J]. 地球科学进展, 2019, 34(5): 523-530.
[3] 潘敖然, 单慧媚, 彭三曦, 赵超然, 黄健, 闫志为. 基于热力学模拟河套平原高砷地下水中硫代砷形态分布特征 *[J]. 地球科学进展, 2018, 33(11): 1169-1180.
[4] 王的, 冯海艳, 景慧敏. 北京市冬季、春季PM 10和PM 2.5中元素地球化学特征[J]. 地球科学进展, 2017, 32(8): 850-858.
[5] 姜波, 李明, 屈争辉, 刘杰刚, 李伍. 构造煤研究现状及展望[J]. 地球科学进展, 2016, 31(4): 335-346.
[6] 张莉, 王金满, 刘涛. 露天煤矿区受损土地景观重塑与再造的研究进展[J]. 地球科学进展, 2016, 31(12): 1235-1246.
[7] 郭晨, 秦勇, 卢玲玲. 黔西红梅井田煤层气有序开发的水文地质条件[J]. 地球科学进展, 2015, 30(4): 456-464.
[8] 简阔, 傅雪海, 王可新, 张玉贵. 中国长焰煤物性特征及其煤层气资源潜力[J]. 地球科学进展, 2014, 29(9): 1065-1074.
[9] 张林晔, 李钜源, 李政, 张金功, 朱日房, 包友书. 北美页岩油气研究进展及对中国陆相页岩油气勘探的思考 *[J]. 地球科学进展, 2014, 29(6): 700-711.
[10] 贾永锋,郭华明. 高砷地下水研究的热点及发展趋势[J]. 地球科学进展, 2013, 28(1): 51-61.
[11] 姚素平,焦堃,李苗春,吴浩. 煤和干酪根纳米结构的研究进展[J]. 地球科学进展, 2012, 27(4): 367-378.
[12] 段利江,唐书恒,夏朝辉,张铭. 煤吸附气体诱导的基质膨胀研究进展[J]. 地球科学进展, 2012, 27(3): 262-267.
[13] 徐少琨,张峰 向文洲,吴园涛,任小波. 微藻应用于煤炭烟气减排的研究进展[J]. 地球科学进展, 2011, 26(9): 944-953.
[14] 朱炎铭,陈尚斌,王道华,曹新款,李伍. 煤中金的研究现状及其展望[J]. 地球科学进展, 2010, 25(8): 794-799.
[15] 张泓,张群,曹代勇,李小彦,李贵红,黄文辉,冯宏,靳德武,张子敏,贾建称,石智军,邵龙义,程建远,汤达祯,姜在炳. 中国煤田地质学的现状与发展战略[J]. 地球科学进展, 2010, 25(4): 343-352.
阅读次数
全文


摘要