Please wait a minute...
img img
高级检索
地球科学进展  2015, Vol. 30 Issue (9): 985-995    DOI: 10.11867/ j.issn.1001-8166.2015.09.0985
综述与评述     
北极海冰减退引起的北极放大机理与全球气候效应
赵进平1, 史久新1, 王召民2, 李志军3, 黄菲1
1. 中国海洋大学,青岛,266100; 2.南京信息工程大学,南京,210044; 3. 大连理工大学,大连,116024
Arctic Amplification Produced by Sea Ice Retreat and Its Global Climate Effects
Zhao Jinping1, Shi Jiuxin1, Wang Zhaomin2, Li Zhijun3, Huang Fei1
1. Ocean University of China, Qingdao, 266100; 2. Nanjing University of Information engineering, Nanjing, 210044; Dalian University of Science and Technology, Dalian, 116024
 全文: PDF(1139 KB)  
摘要:

自20世纪70年代以来,全球气温持续增高,对北极产生了深刻的影响。21世纪以来,北极的气温变化是全球平均水平的2倍,被称为“北极放大”现象。北极海冰覆盖范围呈不断减小的趋势,2012年北极海冰已经不足原来的40%,如此大幅度的减退是过去1 450年以来独有的现象。科学家预测,不久的将来,将会出现夏季无冰的北冰洋。全球变暖背景下北极内部发生的正反馈过程是北极放大现象的关键,不仅使极区的气候发生显著变化,而且对全球气候产生非常显著的影响,导致很多极端天气气候现象的发生。北极科学的重要使命之一是揭示这些正反馈过程背后的机理。北极放大有关的重大科学问题主要与气—冰—海相互作用有关,海冰是北极放大中最活跃的因素,要明确海冰结构的变化,充分考虑融池、侧向融化、积雪和海冰漂移等因素,将海冰热力学特性的改变定量表达出来。海洋是北极变化获取能量的关键因素,是太阳能的转换器和储存器,要认识海洋热通量背后的能量分配问题,即能量储存与释放的联系机理,认识淡水和跃层结构变化对海气耦合的影响。全面认识北极气候系统的变化是研究北极放大的最终目的,要揭示气—冰—海相互作用过程、北极海洋与大气之间反馈的机理、北极变化过程中的气旋和阻塞过程、北极云雾对北极变化的影响。在对北极海冰、海洋和气候深入研究的基础上,重点研究极地涡旋罗斯贝波的核心作用,以及罗斯贝波变异的物理过程,深入研究北极变化对我国气候影响的主要渠道、关键过程和机理。

关键词: 气候变化冰&#x02014北极放大海冰气&#x02014海相互作用海洋强迫    
Abstract:

Since the 1970s, the continuous global warming has impacted the Arctic environment. The temperature increasing rate of Arctic during this century is nearly twice that of the global average, which is named as Arctic Amplification phenomena. Sea ice coverage of Arctic Ocean varied in a declined trend. Summer sea ice extent in 2012 was less than 40% of that in last century. The serious retreat of Arctic sea ice coverage is a unique phenomenon during the past 1 450 years. It is projected that an ice-free summer Arctic will happen in the near future. The positive feedback processes inside the Arctic are considered to be the key factors to drive the Arctic amplification under the background of global warming, which result in the Arctic and global climate changes, and drive many extreme meteorological and climatological events. An important mission of Arctic science is to reveal the physical mechanisms that drive these positive feedbacks. The main scientific issues of Arctic amplification are all related to the air-ice-sea interaction. Sea ice is the most active factor of Arctic amplification. The variations of sea ice microstructure and the thermal dynamical features need to be clarified quantitatively by considering the melt pond, lateral melting, snow cover, and ice drifting. Ocean is the key factor to acquire and store the solar energy for Arctic change. Oceanic heat flux is very important for the energy reallocation (energy storage and release), which is influenced by fresh water content and pycnocline structure to form the air-sea coupling. The main goal of researches for the Arctic Amplification is to understand the variation of Arctic climate system, the air-ice-sea interaction, feedback between ocean and atmosphere, variation in cyclones and blocks, influence of cloud and fog on Arctic change. On the basis of better understanding of variation of sea ice, ocean, and climate Arctic, the dominant function and physical processes of the vortex Rossby-waves will be the main issue to reveal the gateways and processes for the influence of Arctic change on China’s climate.

Key words: Arctic amplification    Ocean forcing    Climate change    Sea ice    Air-Ice-Ocean interaction.
收稿日期: 2015-06-16 出版日期: 2015-09-20
:  P343.6+3  
基金资助:

全球变化研究国家重大科学研究计划“北极海水减退引起的北极放大机理与全球气候效应”(编号:2015CB953900); 国家自然科学基金重点项目“北极海冰与上层海洋环流耦合变化及其气候效应”(编号:41330960)资助

作者简介: 赵进平(1954-),男,吉林省吉林人,研究员,主要从事北极海洋学研究.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵进平
李志军
史久新
王召民
黄菲

引用本文:

赵进平, 史久新, 王召民, 李志军, 黄菲. 北极海冰减退引起的北极放大机理与全球气候效应[J]. 地球科学进展, 2015, 30(9): 985-995.

Zhao Jinping, Shi Jiuxin, Wang Zhaomin, Li Zhijun, Huang Fei. Arctic Amplification Produced by Sea Ice Retreat and Its Global Climate Effects. Advances in Earth Science, 2015, 30(9): 985-995.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/ j.issn.1001-8166.2015.09.0985        http://www.adearth.ac.cn/CN/Y2015/V30/I9/985

[1] Deser C, Walsh J E, Timlin M S. Arctic sea ice variability in the context of recent atmospheric circulation trends[J]. Journal of Climate, 2000, 13(3): 617-633.
[2] Pachauri R K, Allen M R, Barros V R, et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M].Geneva, Switzerland: IPCC, 2014: 151.
[3] Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification[J].Nature, 2010, 464(7 293): 1 334-1 337.
[4] Holland M M, Bitz C M, Tremblay B. Future abrupt reductions in the summer Arctic sea ice[J]. Geophysical Research Letters, 2006, 33(23), doi:10.1029/2006GL028024.
[5] Kumar A, Perlwitz J, Eischeid J, et al. Contribution of sea ice loss to Arctic amplification[J]. Geophysical Research Letters, 2010, 37(21), doi:10.1029/2010GL045022.
[6] Overland J E, Wood K R, Wang M. Warm Arctic-cold continents: Climate impacts of the newly open Arctic Sea[J]. Polar Research, 2011, 30, doi:10.3402/polar.v30i0.15787.
[7] Lenton T M. Arctic climate tipping points[J]. Ambio, 2012, 41(1): 10-22.
[8] Deser C, Teng H. Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979-2007[J]. Geophysical Research Letters, 2008, 35(2), doi:10.1029/2007gl032023.
[9] Wadhams P. Arctic ice cover, ice thickness and tipping points[J]. Ambio, 2012, 41(1): 23-33.
[10] Comiso J C. A rapidly declining perennial sea ice cover in the Arctic[J]. Geophysical Research Letters, 2002, 29(20): 17-11-17-14, doi:10.1029/2002GL015650.
[11] Meier W N, Stroeve J, Fetterer F. Whither Arctic sea ice? A clear signal of decline regionally, seasonally and extending beyond the satellite record[J]. Annals of Glaciology, 2007, 46(1): 428-434.
[12] Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9), doi:10.1029/2007GL029703.
[13] Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35(1), doi:10.1029/2007GL031972.
[14] Maslanik J, Fowler C, Stroeve J, et al. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss[J]. Geophysical Research Letters, 2007, 34(24), doi:10.1029/2007GL032043.
[15] Kwok R, Cunningham G F, Wensnahan M, et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7), doi:10.1029/2009jc005312.
[16] Wadhams P, Hughes N, Rodrigues J. Arctic sea ice thickness characteristics in winter 2004 and 2007 from submarine sonar transects[J]. Journal of Geophysical Research: Oceans, 2011, 116(C8), doi:10.1029/2011jc006982.
[17] Perovich D K, Richter-Menge J A, Jones K F, et al. Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007[J]. Geophysical Research Letters, 2008, 35(11): L11501, doi:10.1029/2008GL034007.
[18] Zhang J, Lindsay R, Steele M, et al. What drove the dramatic retreat of arctic sea ice during summer 2007?[J]. Geophysical Research Letters, 2008, 35(11), doi:10.1029/2008gl034005.
[19] Kinnard C, Zdanowicz C M, Fisher D A, et al. Reconstructed changes in Arctic sea ice over the past 1,450 years[J]. Nature, 2011, 479(7 374): 509-512.
[20] Wang M, Overland J E. A sea ice free summer Arctic within 30 years?[J]. Geophysical Research Letters, 2009, 36(7), doi:10.1029/2009gl037820.
[21] Koenigk T, Brodeau L, Graversen R G, et al. Arctic climate change in 21st century CMIP5 simulations with EC-Earth[J]. Climate Dynamics, 2013, 40(11/12): 2 719-2 743.
[22] Liu J, Song M, Horton R M, et al. Reducing spread in climate model projections of a September ice-free Arctic[J]. Proceedings of the National Academy of Sciences, 2013, 110(31): 12 571-12 576.
[23] Hunke E, Notz D, Turner A, et al. The multiphase physics of sea ice: A review for model developers[J]. The Cryosphere, 2011, 5(4): 989-1 009.
[24] Zhang S, Zhao J, Shi J, et al. Surface heat budget and solar radiation allocation at a melt pond during summer in the central Arctic Ocean[J]. Journal of Ocean University of China, 2014, 13(1): 45-50.
[25] Polashenski C, Perovich D, Courville Z. The mechanisms of sea ice melt pond formation and evolution[J]. Journal of Geophysical Research:Oceans,2012,117(C1),doi:10.1029/2011jc007231.
[26] Perovich D K, Richter-Menge J A. Loss of sea ice in the arctic[J]. Annual Review of Marine Science, 2009, 1: 417-441.
[27] Serreze M C, Barry R G. Processes and impacts of Arctic amplification: A research synthesis[J]. Global and Planetary Change, 2011, 77(1): 85-96.
[28] Holland M M, Bailey D A, Briegleb B P, et al. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice[J]. Journal of Climate, 2012, 25(5): 1 413-1 430.
[29] Hopkins M A, Thorndike A S. Floe formation in Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2006, 111(C11), doi:10.1029/2005JC003352.
[30] Webster M A, Rigor I G, Nghiem S V, et al. Interdecadal changes in snow depth on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2014, 119(8): 5 395-5 406.
[31] Wu Yang, Zhang Jiahua, Xu Haiming, et al. Advances in study of snow cover from remote sensing data[J]. Meteorologic Monthly, 2007, 33(6): 3-10. [吴杨, 张佳华, 徐海明, 等. 卫星反演积雪信息的研究进展[J]. 气象, 2007, 33(6): 3-10.]
[32] Comiso J C, Cavalieri D J, Markus T. Sea ice concentration, ice temperature, and snow depth using AMSR-E data[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(2): 243-252.
[33] Markus T, Cavalieri D J. Snow depth distribution over sea ice in the southern ocean from satellite passive microwave data[M]∥Jeffries M O, ed. Antarctic Sea Ice: Physical Processes, Interactions and Variability. Washington DC: American Geophysical Union, 2013: 19-39.
[34] Worby A P, Markus T, Steer A D, et al. Evaluation of AMSR-E snow depth product over East Antarctic sea ice using in situ measurements and aerial photography[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5), doi:10.1029/2007jc004181.
[35] Hakkinen S, Proshutinsky A, Ashik I. Sea ice drift in the Arctic since the 1950s[J]. Geophysical Research Letters, 2008, 35(19), doi:10.1029/2008gl034791.
[36] Rampal P, Weiss J, Marsan D. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979-2007[J]. Journal of Geophysical Research: Oceans, 2009, 114(C5), doi:10.1029/2008jc005066.
[37] Spreen G, Kwok R, Menemenlis D. Trends in Arctic sea ice drift and role of wind forcing: 1992-2009[J]. Geophysical Research Letters, 2011, 38(19), doi:10.1029/2011gl048970.
[38] Wang X, Zhao J. Seasonal and inter-annual variations of the primary types of the Arctic sea-ice drifting patterns[J]. Advances in Polar Science, 2012, 23: 72-81.
[39] Massonnet F, Goosse H, Fichefet T, et al. Calibration of sea ice dynamic parameters in an ocean-sea ice model using an ensemble Kalman filter[J]. Journal of Geophysical Research: Oceans, 2014, 119(7): 4 168-4 184.
[40] Steele M, Morison J, Ermold W, et al. Circulation of summer Pacific halocline water in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 2004, 109(C2), doi:10.1029/2003jc002009.
[41] Perovich D K, Light B, Eicken H, et al. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979-2005: Attribution and role in the ice-albedo feedback[J]. Geophysical Research Letters, 2007, 34(19): L19505, doi:10.1029/2007GL031480.
[42] Steele M, Zhang J, Ermold W. Mechanisms of summertime upper Arctic Ocean warming and the effect on sea ice melt[J]. Journal of Geophysical Research: Oceans,2010, 115(C11), doi:10.1029/2009jc005849.
[43] Steele M, Ermold W, Zhang J. Arctic Ocean surface warming trends over the past 100 years[J]. Geophysical Research Letters, 2008, 35(2), doi:10.1029/2007gl031651.
[44] Maykut G, McPhee M G. Solar heating of the Arctic mixed layer[J]. Journal of Geophysical Research: Oceans (1978-2012), 1995, 100(C12): 24 691-24 703.
[45] Lique C, Steele M. Seasonal to decadal variability of Arctic Ocean heat content: A model-based analysis and implications for autonomous observing systems[J]. Journal of Geophysical Research: Oceans, 2013, 118(4): 1 673-1 695.
[46] Zhao Jinping, Shi Jiuxin, Jiao Yutian. Temperature and salinity structures in summer marginal ice zone of Arctic Ocean and an analytical study on their thermodynamics[J]. Oceanologia et Limnologia Sinica, 2003, 34: 375-388. [赵进平, 史久新, 矫玉田. 夏季北冰洋海冰边缘区海水温盐结构及其形成机理的理论研究[J]. 海洋与湖沼, 2003, 34: 375-388.]
[47] Chen Zhihua, Zhao Jinping. The thermodynamics of subsurface warm water in the Arctic Ocean[J]. Oceanologia et Limnologia Sinica, 2010,(2):167-174. [陈志华, 赵进平. 北冰洋次表层暖水形成机制的研究[J]. 海洋与湖沼, 2010,(2): 167-174.]
[48] Cao Yong, Zhao Jinping. Study on the fine structure of near surface temperature maximum in the Canada Basin in 2008[J]. Acta Oceanologica Sinica, 2011, 33(2):11-19. [曹勇, 赵进平. 2008年加拿大海盆次表层暖水的精细结构的研究[J]. 海洋学报, 2011, 33(2): 11-19.]
[49] Jackson J, Carmack E, McLaughlin F, et al. Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993-2008[J]. Journal of Geophysical Research: Oceans,2010, 115(C5), doi:10.1029/2009JC005265.
[50] Jackson J M, Allen S E, McLaughlin F A, et al. Changes to the near-surface waters in the Canada Basin, Arctic Ocean from 1993-2009: A basin in transition[J]. Journal of Geophysical Research: Oceans, 2011, 116(C10), doi:10.1029/2011jc007069.
[51] Markus T, Stroeve J C, Miller J. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length[J]. Journal of Geophysical Research: Oceans, 2009, 114(C12), doi:10.1029/2009jc005436.
[52] Kinnard C, Zdanowicz C M, Koerner R M, et al. A changing Arctic seasonal ice zone: Observations from 1870-2003 and possible oceanographic consequences[J]. Geophysical Research Letters,2008, 35(2), doi:10.1029/2007GL032507.
[53] Haynes J E. Understanding the Importance of Oceanic Forcing on Sea Ice Variability[D]. Monterey CA: Naval Postgraduate School, 2010.
[54] Krishfield R A, Perovich D K. Spatial and temporal variability of oceanic heat flux to the Arctic ice pack[J]. Journal of Geophysical Research: Oceans,2005, 110(C7), doi:10.1029/2004JC002293.
[55] Zhao J, Wang W, Kang S H, et al. Optical properties in wsectaters around the Mendeleev ridge related to the physical features of water masses[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, doi:10.1016/j.dsr2.2015.04.011.
[56] Shimada K, Kamoshida T, Itoh M, et al. Pacific ocean inflow: Influence on catastrophic reduction of sea ice cover in the Arctic Ocean[J]. Geophysical Research Letters, 2006, 33(8): L08605, doi:10.1029/2005GL025624.
[57] Woodgate R A, Weingartner T, Lindsay R. The 2007 Bering Strait oceanic heat flux and anomalous Arctic sea-ice retreat[J]. Geophysical Research Letters, 2010, 37(1), doi:10.1029/2009GL041621.
[58] Rudels B, Friedrich H J, Quadfasel D. The Arctic circumpolar boundary current[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 1999, 46(6): 1 023-1 062.
[59] Zhao Jinping, Shi Jiuxin. Research progresses and main scientific issues in studies for Arctic circumpolar boundary current[J]. Chinese Journal of Polar Science, 2004, 16(3): 159-169. [赵进平, 史久新. 北极环极边界流研究及其主要科学问题[J]. 极地研究, 2004, 16(3): 159-169.]
[60] Woodgate R A, Aagaard K, Swift J H, et al. Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties[J]. Journal of Geophysical Research: Oceans, 2007, 112(C2), doi:10.1029/2005JC003416.
[61] Shao Qiuli, Zhao Jinping. On the deep water of the Nordic Seas[J]. Advances in Earth Science,2014, 29(1):42-55. [邵秋丽, 赵进平. 北欧海深层水的研究进展[J]. 地球科学进展, 2014, 29(1): 42-55.]
[62] Proshutinsky A Y, Johnson M A. Two circulation regimes of the wind-driven Arctic Ocean[J]. Journal of Geophysical Research: Oceans(1978-2012), 1997, 102(C6): 12 493-12 514.
[63] Polyakov I V, Alexeev V, Belchansky G, et al. Arctic Ocean freshwater changes over the past 100 years and their causes[J]. Journal of Climate, 2008, 21(2): 364-384.
[64] McPhee M, Proshutinsky A, Morison J H, et al. Rapid change in freshwater content of the Arctic Ocean[J]. Geophysical Research Letters,2009, 36(10): L10602, doi:10.1029/2009GL037525.
[65] Rabe B, Karcher M, Schauer U, et al. An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006-2008 period[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58(2): 173-185.
[66] Spall M A. On the circulation of Atlantic water in the Arctic Ocean[J]. Journal of Physical Oceanography, 2013, 43(11): 2 352-2 371.
[67] Guo Guijun, Shi Jiuxin, Zhao Jinping,et al. Summer freshwater content variability of the upper ocean in Canada Basin during recent sea ice rapid decline[J]. Chinese Journal of Polar Science, 2012, 24(1): 35-46. [郭桂军, 史久新, 赵进平, 等. 北极海冰快速减少期间加拿大海盆上层海洋夏季淡水含量变化[J]. 极地研究, 2012, 24(1): 35-46.]
[68] Zhong W, Zhao J. Deepening of the atlantic water core in the Canada Basin in 2003-11[J]. Journal of Physical Oceanography, 2014, 44(9): 2 353-2 369.
[69] Aagaard K, Coachman L, Carmack E. On the halocline of the Arctic Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 1981, 28(6): 529-545.
[70] Rudels B, Anderson L, Jones E. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean[J]. Journal of Geophysical Research: Oceans(1978-2012), 1996, 101(C4): 8 807-8 821.
[71] Shi Jiuxin, Zhao Jinping. Advances in studies on the Arctic halocline[J]. Advances in Earth Science, 2003, 18(3): 351-357. [史久新, 赵进平. 北冰洋盐跃层研究进展[J]. 地球科学进展, 2003, 18(3): 351-357.]
[72] Steele M, Boyd T. Retreat of the cold halocline layer in the Arctic Ocean[J]. Journal of Geophysical Research: Oceans,1998, 103(C5): 10 419-10 435.
[73] Boyd T J, Steele M, Muench R D, et al. Partial recovery of the Arctic Ocean halocline[J]. Geophysical Research Letters, 2002, 29(14): 2-1-2-4, doi:10.1029/2001gl014047.
[74] Shimada K, Itoh M, Nishino S, et al. Halocline structure in the Canada Basin of the Arctic Ocean[J]. Geophysical Research Letters, 2005, 32(3), doi:10.1029/2004gl021358.
[75] Shi J, Zhao J, Li S, et al. A double-halocline structure in the Canada Basin of the Arctic Ocean[J]. Acta Oceanologica Sinica,2005, 24(6): 25-35.
[76] Yang X Y, Fyfe J C, Flato G M. The role of poleward energy transport in Arctic temperature evolution[J]. Geophysical Research Letters, 2010, 37(14), doi:10.1029/2010gl043934.
[77] Serreze M C, Rehder M C, Barry R G, et al. The distribution and transport of atmospheric water vapour over the Arctic Basin[J]. International Journal of Climatology, 1995, 15(7): 709-727.
[78] Curry J A, Schramm J L, Rossow W B, et al. Overview of Arctic cloud and radiation characteristics[J]. Journal of Climate, 1996, 9(8): 1 731-1 764.
[79] Wang X, Key J R. Recent trends in Arctic surface, cloud, and radiation properties from space[J]. Science, 2003, 299(5 613): 1 725-1 728.
[80] Wang X, Key J R. Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part II: Recent trends[J]. Journal of Climate, 2005, 18(14): 2 575-2 593.
[81] Kay J E, Gettelman A. Cloud influence on and response to seasonal Arctic sea ice loss[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D18), doi:10.1029/2009jd011773.
[82] Zhao J, Cao Y, Shi J. Spatial variation of the Arctic Oscillation and its long-term change[J]. Tellus A, 2010, 62(5): 661-672.
[83] Wang J, Zhang J, Watanabe E, et al. Is the Dipole Anomaly a major driver to record lows in Arctic summer sea ice extent?[J]. Geophysical Research Letters, 2009, 36(5), doi:10.1029/2008gl036706.
[84] Fan Tingting, Huang Fei, Su Jie. The seasonal march of dominate mode of the mid-high latitude atmosphere circulation in northern hemisphere and the associated arctic sea Ice[J]. Periodical of Ocean University of China, 2012, 42(7/8): 19-25. [樊婷婷, 黄菲, 苏洁. 北半球中高纬度大气环流主模态的季节演变及其与北极海冰变化的联系[J]. 中国海洋大学学报:自然科学版, 2012, 42(7/8): 19-25.]
[85] Liu J, Curry J A, Wang H, et al. Impact of declining Arctic sea ice on winter snowfall[J]. Proceedings of the National Academy of Sciences, 2012, 109(11): 4 074-4 079.
[86] Overland J E, Wang M. The Arctic climate paradox: The recent decrease of the Arctic Oscillation[J]. Geophysical Research Letters, 2005, 32(6), doi:10.1029/2004gl021752.
[87] Zhang X, Sorteberg A, Zhang J, et al. Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system[J]. Geophysical Research Letters, 2008, 35(22), doi:10.1029/2008GL035607.
[88] Honda M, Inoue J, Yamane S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters[J]. Geophysical Research Letters, 2009, 36(8), doi:10.1029/2008gl037079.
[89] Petoukhov V, Semenov V A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents[J]. Journal of Geophysical Research: Atmospheres(1984-2012), 2010, 115(D21), doi:10.1029/2009JD013568.
[90] Blüthgen J, Gerdes R, Werner M. Atmospheric response to the extreme Arctic sea ice conditions in 2007[J]. Geophysical Research Letters, 2012, 39(2), doi:10.1029/2011GL050486.
[91] Francis J A, Vavrus S J. Evidence linking Arctic amplification to extreme weather in mid-latitudes[J]. Geophysical Research Letters, 2012, 39(6), doi:10.1029/2012gl051000.
[92] McCabe G J, Clark M P, Serreze M C. Trends in northern hemisphere surface cyclone frequency and intensity[J]. Journal of Climate, 2001, 14(12): 2 763-2 768.
[93] Zhang X, Walsh J E, Zhang J, et al. Climatology and interannual variability of Arctic cyclone activity: 1948-2002[J]. Journal of Climate, 2004, 17(12): 2 300-2 317.
[94] Wang X L, Swail V R, Zwiers F W. Climatology and changes of extratropical cyclone activity: Comparison of ERA-40 with NCEP-NCAR reanalysis for 1958-2001[J]. Journal of Climate, 2006, 19(13): 3 145-3 166.
[95] Sepp M, Jaagus J. Changes in the activity and tracks of Arctic cyclones[J]. Climatic Change, 2011, 105(3/4): 577-595.
[96] Vermaire J C, Pisaric M F, Thienpont J R, et al. Arctic climate warming and sea ice declines lead to increased storm surge activity[J]. Geophysical Research Letters, 2013, 40(7): 1 386-1 390.
[97] Screen J A, Simmonds I. Exploring links between Arctic amplification and mid-latitude weather[J]. Geophysical Research Letters, 2013, 40(5): 959-964, doi:10.1002/grl.50174.
[98] Cohen J, Screen J A, Furtado J C, et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014, 7(9): 627-637, doi:10.1038/ngeo2234.
[99] Deser C, Magnusdottir G, Saravanan R, et al. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response[J]. Journal of Climate, 2004, 17(5): 877-889.
[100] Matsumura S, Zhang X, Yamazaki K. Summer Arctic atmospheric circulation response to spring Eurasian snow cover and its possible linkage to accelerated sea ice decrease[J]. Journal of Climate, 2014, 27(17): 6 551-6 558, doi:http:∥dx.doi.org/10.1175/JCLI-D-13-00549.1.
[101] Screen J A, Simmonds I. Amplified mid-latitude planetary waves favour particular regional weather extremes[J]. Nature Climate Change, 2014, 4(8): 704-709, doi:10.1038/nclimate2271.
[102] Francis J A, Vavrus S J. Evidence for a wavier jet stream in response to rapid Arctic warming[J]. Environmental Research Letters, 2015, 10(1), doi:10.1088/1748-9326/10/1/014005.
[103] Hoskins B J, James I N, White G H. The shape, propagation and mean-flow interaction of large-scale weather systems[J]. Journal of the Atmospheric Sciences, 1983, 40(7): 1 595-1 612.
[104] Tung K K, Lindzen R. A theory of stationary long waves. Part I: A simple theory of blocking[J]. Monthly Weather Review, 1979, 107(6): 714-734.
[105] Charney J G, DeVore J G. Multiple flow equilibria in the atmosphere and blocking[J]. Journal of the Atmospheric Sciences, 1979, 36(7): 1 205-1 216.
[106] Long R R. Solitary waves in the westerlies[J]. Journal of the Atmospheric Sciences, 1964, 21(2): 197-200.
[107] Haines K, Marshall J. Eddy-forced coherent structures as a prototype of atmospheric blocking[J]. Quarterly Journal of the Royal Meteorological Society, 1987, 113(476): 681-704.
[108] Shutts G. A case study of eddy forcing during an Atlantic blocking episode[J]. Advances in Geophysics, 1986, 29: 135-162.
[109]Luo D. A barotropic envelope Rossby soliton model for block-eddy interaction. Part IV: Block activity and its linkage with a sheared environment[J]. Journal of the Atmospheric Sciences, 2005, 62(11): 3 860-3 884.
[110] Montgomery M T, Kallenbach R J. A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes[J]. Quarterly Journal of the Royal Meteorological Society, 1997, 123(538): 435-465.
[111] Wu B, Wang J. Possible impacts of winter Arctic Oscillation on Siberian High, the East Asian winter monsoon and sea-ice extent[J]. Advances in Atmospheric Sciences, 2002, 19(2): 297-320.
[112] Wu B, Zhang R, Wang B. On the association between spring Arctic sea ice concentration and Chinese summer rainfall: A further study[J]. Advances in Atmospheric Sciences,2009, 26(4): 666-678, doi:10.1007/s00376-009-9009-3.
[113] Wu B, Su J, Zhang R. Effects of autumn-winter Arctic sea ice on winter Siberian High[J]. Chinese Science Bulletin, 2011, 56(30): 3 220-3 228.
[114] Wu Z, Li J, Jiang Z, et al. Predictable climate dynamics of abnormal East Asian winter monsoon: Once-in-a-century snowstorms in 2007/2008 winter[J]. Climate Dynamics, 2011, 37(7/8): 1 661-1 669.
[115] Li J, Wu Z. Importance of autumn Arctic sea ice to northern winter snowfall[J]. Proceedings of the National Academy of Sciences, 2012, 109(28): E1898.
[116] Zhang X, Lu C, Guan Z. Weakened cyclones, intensified anticyclones and recent extreme cold winter weather events in Eurasia[J]. Environmental Research Letters,2012, 7(4), doi:10.1088/1748-9326/7/4/044044.
[117] Wu Bingyi, Bian Lin’gen, Zhang Renhe. Effects of the winter AO and the Arctic sea ice variations on climate variation over east Asia[J]. Chinese Journal of Polar Science, 2004, 16(3): 211-220. [武炳义, 卞林根, 张人禾. 冬季北极涛动和北极海冰变化对东亚气候变化的影响[J]. 极地研究, 2004, 16(3): 211-220.]

[1] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[2] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[3] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.
[4] 吴佳, 高学杰, 韩振宇, 徐影. 基于有效温度指数的云南舒适度变化分析[J]. 地球科学进展, 2017, 32(2): 174-186.
[5] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[6] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[7] 王聪强, 杨太保, 许艾文, 冀琴, MihretabG.Ghebrezgabher. 近25年唐古拉山西段冰川变化遥感监测[J]. 地球科学进展, 2017, 32(1): 101-109.
[8] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[9] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[10] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[11] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[12] 董文杰, 袁文平, 滕飞, 郝志新, 郑景云, 韦志刚, 丑洁明, 刘昌新, 齐天宇, 杨世莉, 阎东东, 张婧. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016, 31(12): 1215-1219.
[13] 裴巧敏, 马玉贞, 胡彩莉, 李丹丹, 郭超, 刘杰瑞. 全球典型地区MIS 5e阶段气候特征研究进展[J]. 地球科学进展, 2016, 31(11): 1182-1196.
[14] 何志斌, 杜军, 陈龙飞, 朱喜, 赵敏敏. 干旱区山地森林生态水文研究进展[J]. 地球科学进展, 2016, 31(10): 1078-1089.
[15] 李育, 朱耿睿. 三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应[J]. 地球科学进展, 2015, 30(7): 791-801.