地球科学进展 ›› 2006, Vol. 21 ›› Issue (12): 1254 -1259. doi: 10.11867/j.issn.1001-8166.2006.12.1254

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

利用MODIS fAPAR傅立叶时间序列分析研究植被光合作用活动对净辐射和降雨的响应:青藏高原个例研究
贾立 1,M. Menenti 2,3   
  1. 1.Alterra, Wageningen University and Research(WUR) Centre, Wageningen, The Netherlands;2.Universit Louis Pasteur (ULP), Strasbourg, France;3.Istituto per i Sistemi Agricoli e Forestalidel Mediterraneo(ISAFOM), Naples, Italy
  • 收稿日期:2006-10-23 修回日期:2006-10-23 出版日期:2006-12-15
  • 通讯作者: Jia Li E-mail:li.jia@wur.nl

Response of Vegetation Photosynthetic Activity to Net Radiation and Rainfall: A Case Study on the Tibetan Plateau by Means of Fourier Analysis of MODIS fAPAR Time Series

Jia Li 1,M. Menenti 2,3   

  1. 1.Alterra, Wageningen University and Research(WUR) Centre, Wageningen, The Netherlands;2.Universit Louis Pasteur (ULP), Strasbourg, France;3.Istituto per i Sistemi Agricoli e Forestalidel Mediterraneo(ISAFOM), Naples, Italy
  • Received:2006-10-23 Revised:2006-10-23 Online:2006-12-15 Published:2006-12-15

气候变化对植被动力学有非常大的影响。为了定量描述气候变化对植被的影响,文章利用MODIS fAPAR 数据和NCEP 的净辐射和降雨再分析数据对青藏高原地区气候变化对植被的影响进行了时间序列分析。研究所用的数据时间跨度为2000年至2005年。首先利用NCEP 再分析数据建立了干旱度因子的时间序列,为了与MODIS fAPAR 具有相同的时间采样间隔,由NCEP的日净辐射和日降雨量得到每8天的平均净辐射和8日降雨的和。根据一定时间间隔的净辐射与降雨量的比可以用来衡量相对于可利用水分的剩余能量,因此该比值也是干旱灾害的度量。其次,对MODIS fAPAR 的傅立叶时间序列分析提供了两个植被光合作用对干旱相应的因子,即fAPAR的年平均值及其年振幅值。在时间和空间尺度上对植被光合作用活动与干旱指数之间的关系进行了定量分析。对湿年和干年之间的响应差异进行了比较。研究表明较干地区对气候变化的响应最为显著。分析应该扩展到更长的时间跨度以便更加有效地在时间和空间尺度上评估气候变化对植被动力学的影响。

Climate variability has a large impact on the vegetation dynamics. To quantify this impact in the Tibetan plateau a study was carried out using time-series of MODIS fAPAR satellite data products and NCEP net radiation and rainfall re-analysis data. The data set spanned over the years between 2000 and 2005. The NCEP data are used to construct a time series of a radiational indicator of drought: daily net radiation and rainfall data for each NCEP grid are integrated over a period of eight days to match the temporal sampling interval of MODIS data products. The ratio of net radiation over rainfall for a given period of time is a measure of excess energy relative to available water and is therefore a measure of drought hazard. Fourier analysis of time series of the MODIS fAPAR provides two indicators of the response of vegetation photosynthetic activity to drought, as measured by the indicator just described. The two indicators used in this study are the mean yearly fAPAR value and its annual amplitude. The algorithm used (HANTS) fits iteratively a Fourier series to a set of irregularly spaced observations, after elimination of outliers, such as due to cloud-contaminated observations. The relationships between photosynthetic activity of vegetation and the radiational drought hazard indicator are determined and quantified spatially and temporally. The response during the wettest respectively driest year during the period covered by available observations was compared. The drier areas prove to be the most sensitive to climate impact. The analysis should be extended over a longer period of time to obtain a more robust assessment of climate impact on vegetation dynamics, particularly as regards the response of vegetation to temporal respectively spatial variability of climate.

中图分类号: 

[1] Budyko M I. The Heat Balance of the Earth's Surface[M].Trs. Nina A Stepanova. Washington DC:US Department of Commerce, 1958.

[2] Budyko M I. Climate and Life[M]. New York: Academic Press,1974.

[3] Henning D, Flohn H. Climate aridity index map[C]//Explanatory Note of United Nations Conference on Desertification, Nairobi, 29 Aug-9 Sep 1977,A/Conf, 74/31:7-9.

[4] Azzali S, MenentiM. Mapping vegetation-soil-climate complexes in southern Africa using temporal fourier analysis of NOAA-AVHRR NDVI data[J]. International Journal of Remote Senssing,2000,21(5): 973-996

[5] Menenti M, Bastiaanssen W G M, Hefny K, et al. Mapping of groundwater losses by evaporation in the Western Desert of Egypt. Report 43[R]. DLO Winand Staring Centre,Wageningen, The Netherlands,1991:116.

[6] Menenti M, Azzali S, Verhoef W, et al. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images[J]. Advances in Space Research,1993,13(5):233-237.

[7] Menenti M, Azzali S, Verhoef W. Fourier analysis of time series of NOAA-AVHHR NDVI composites to map isogrowth zones[C]Zwerver S, et al, eds. Climate Change Research: Evaluation and Policy Implications. Amsterdam: Elsevier,1995:425-430.

[8] Verhoef W, Menenti M, Azzali S. A colour composite of NOAA-AVHRR-NDVI based on time series analysis 1981-1992[J]. International Journal of Remote Sensing, 1996, 17:231-235.

[9] Azzali S, Menenti M. Mapping iso-growth zones on continental scale using temporal Fourier Analysis of AVHRR-NDVI data[J]. International Journal of Applied Earth Observation and Geo-information,1999,1(1): 9-20

[10] Roerink G J, Menenti M, Verhoef W. Reconstructing cloud-free NDVI composites using Fourier analysis of time series[J]. International Journal of Remote Sensing,2000,21 (9):1 911-1 917.

[11] Roerink  G J, Menenti M, Soepboer W, et al. Assessment of climate impact on vegetation dynamics by using remote sensing[J]. Physical Chemical of Earth,2003,28:103-109.

[12] Goward S N, Tucker C J, Dye D C. North American vegetation patterns observed with the NOAA-7 Advanced Very High Resolution Radiometer[J]. Vegetatio,1985,64: 31-40.

[13] Spanner M A, Pierce L L, Running S W, et al. The seasonality of AVHRR data of temperate coniferous forests: Relationship with leaf area index[J]. Remote Sensing of Environment,1990,33: 97-112.

[14] Roerink G J, Menenti M, Su Z. A method for assessment of interannual climate variability by using Fourier components[C]// Proceedings International Geoscience and Remote Sensing Symposium (IGARSS). Hamburg, IGARSS'99,1999:681-693.

[15] Myneni R B, Knyazikhin Y, Zhang Y, et al. MODIS leaf area index (LAI) and fraction of photosynthetically active radiation absorbed by vegetation (FPAR) product (MOD15) Algorithm Theoretical Basis Document, Version 4.0,1999.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[3] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[7] 赵文玥,吉喜斌. 干旱区稀疏树木冠层降雨截留蒸发的研究进展与展望[J]. 地球科学进展, 2021, 36(8): 862-879.
[8] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[9] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[10] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[11] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[12] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[13] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[14] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[15] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
阅读次数
全文


摘要