地球科学进展 ›› 2006, Vol. 21 ›› Issue (12): 1260 -1267. doi: 10.11867/j.issn.1001-8166.2006.12.1260

所属专题: 青藏高原研究——青藏科考虚拟专刊

研究论文 上一篇    下一篇

利用步长模拟对青藏高原涡度方差测量法的质量评价
S. Metzger 1,马耀明 2,T. Markkanen 1,M. G ckede 3,李茂善 2,T.Foken 1   
  1. 1.University of Bayreuth, Department of Micrometeorology, Bayreuth, Germany;2.中国科学院青藏高原研究所,北京 100085;3.Oregon State University, Department of Forest Science, Corvallis, USA
  • 收稿日期:2006-10-11 修回日期:2006-10-11 出版日期:2006-12-15
  • 通讯作者: S.Metzger E-mail:stefan.metzger@uni-bayreuth.de

Quality Assessment of Tibetan Plateau Eddy Covariance Measurements Utilizing Footprint Modeling

S. Metzger 1,Ma Yaoming 2,T.Markkanen 1,M.G ckede 3,Li Maoshan 2,T.Foken 1   

  1. 1.University of Bayreuth, Department of Micrometeorology, Bayreuth, Germany;2.Chinese Academy of Sciences, Institute of Tibetan Plateau Research, Beijing 100085, China;3.Oregon State University, Department of Forest Science, Corvallis, USA
  • Received:2006-10-11 Revised:2006-10-11 Online:2006-12-15 Published:2006-12-15

利用痕迹模拟方法对青藏高原两处地方涡度方差的测量数据进行了质量分析,揭示了其空间和时间结构。分析表明高达1/3的测量没有达到必要的数据正确假设。尽管这样对潜热、CO2、动量通量的测量基本通过测试,可以适用于基础研究,但是经常发现特定的风矢量违背基本假设条件。感热通量的测量允许使用不间断的连续测量法,然而由于局地地形的影响少量评估指数未能合理解释,但能够指示出组织结构及用于导出边界层中尺度流体模型假说。

A quality analysis including footprint modelling has revealed spatial and temporal structures in the quality of Eddy Covariance measurements for two highland sites located on the Tibetan plateau. Fetch analysis has shown, that up to 1/3 of the measurements do not fulfill assumptions necessary for a physically correct data processing. Despite this fact, measurements of latent heat-, CO2- and momentum flux in general fulfill the quality test criteria to an extend that the results can be regarded as suitable for fundamental research, whereby usually certain wind sectors have been found violating basic assumptions. Measurements of the sensible heat flux allow for the usage in continuously running measurement, while still few indications of the quality assessment can not be explained due to local topography, but indicate organized structures and lead to the hypothesis of mesoscale flow patterns in the boundary layer.

中图分类号: 

[1] Baldocchi D, Falge E, Gu L, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of American of the Meteorological Society, 2001,82:2 415-2 434.

[2] Göckede M, Markkanen T, Hasager C B, et al. Update of a footprint-based approach for the characterisation of complex measuring sites[J]. Boundary-Layer Meteorology,2006,118: 635-655.

[3] Rebmann C, Göckede M, Foken T, et al. Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling[J]. Theoretical and Applied Climatology,2005,80(2/4): 121-141.

[4] Foken T, Göckede M, Mauder M, et al. Post-field data quality control[C]//Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Kluwer,Dordrecht, 2004:181-208.

[5] Foken T, Wichura B. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and Forest Meteorology,1996,78(1/2): 83-105.

[6] Rannik U, Aubiner M, Kurbanmuadov O, et al. Footprint analysis for measurements over a heterogeneous forest[J]. Boundary-Layer Meteorology,2000,97(1):137-166.

[7] Marcolla B, Alessandro Cescatti, Leonardo Montagnami, et al. Importance of advection in the atmospheric CO2 exchanges of an alpine forest[J]. Agricultural and Forest Meteorology,2005,130: 3-4.

[8] Turnipseed A A, Anderson D E, Blanken P D, et al. Airflows and turbulent flux measurements in mountainous terrain Part 1. Canopy and local effects[J]. Agricultural and Forest Meteorology, 2003,119(1/2): 1-21.

[9] Mauder M, Foken T. Documentation and Instruction Manual of the Eddy Covariance Software Package TK2. 26[M]. Department of Micrometeorology, University of Bayreuth, Bayreuth, 2004.

[10] Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(3): 512-526.

[11] Moore C J. Frequency response corrections for eddy correlation systems[J]. Boundary-Layer Meteorology, 1986, 37:17-35.

[12] Liu H P, Peters G, Foken T. New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer[J]. Boundary-Layer Meteorology, 2001, 100(3): 459-468.

[13] Schotanus P, Nieuwstadt F T M, DeBruin H A R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations[J]. Boundary-Layer Meteorology, 1983, 26: 81-93.

[14] Fuehrer P L, Friehe C H. Flux corrections revisited[J]. Boundary-Layer Meteorology, 2002, 102:415-457.

[15] Liebethal C, Foken T. On the significance of the Webb correction to fluxes[J]. Boundary-Layer Meteorology, 2003,109: 99-106.

[16] Liebethal C, Foken T. On the significance of the Webb correction to fluxes[J]. Boundary-Layer Meteorology, 2004,301:113.

[17] Webb E K, Pearman G I, Leuning R. Correction of the flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of The Royal Meteorological Society, 1980, 106: 85-100.

[18] Obukhov A M. O strukture temperaturnogo polja i polja skorostej v uslovijach konvekcii[M]. AN SSSR, ser. Geofiz. Izv: 1960:1 392-1 396.

[19] Thomas C, Foken T. Re-evaluation of integral turbulence characteristics and their parameterisations - 15th Conference on Turbulence and Boundary Layers, Wageningen, NL[J]. American Meteorological Society,2002:129-132.

[20] Wyngaard J C, Cote' O R,Y Y I. Local free convection, similarity and the budgets of shear stress and heat flux[J]. Journal of Atmospheric Science,1971,28:1 171-1 182.

[21] Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms[J]. Boundary-Layer Meteorology, 2001, 99(1): 127-150.

[22] Schmid H P. Source areas for scalars and scalar fluxes[J]. Boundary- Layer Meteorology,1994,67: 293-318.

[23] Rannik, Markkanen T, J J R, et al. Turbulence statistics inside and over forest: Influence on footprint prediction[J]. Boundary-Layer Meteorol,2003,109:163-189.

[24] Thomson D J. Criteria for the selection of stochastic models of particle trajectories in turbulent flows[J]. Journal of Fluid Mechinery,1987,180: 529-556.

[25] Amiro B D. Footprint climatologies for evapotranspiration in a boreal catchment[J]. Agricultural and Forest Meteorology,1998,90:195.

[26] Lu L, Denning A Scott, du Silvadias, et al. Mesoscale circulations and atmospheric CO2 variations in the Tapajós Region, Pará, Brazil[J]. Journal of Geophysical Research,2005,110: 1-17.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 张永垂, 王宁, 周林, 刘科峰, 汪浩笛. 海洋中尺度涡旋表面特征和三维结构研究进展[J]. 地球科学进展, 2020, 35(6): 568-580.
[11] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[12] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[13] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[14] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[15] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
阅读次数
全文


摘要