Please wait a minute...
img img
高级检索
地球科学进展  2006, Vol. 21 Issue (12): 1260-1267    DOI: 10.11867/j.issn.1001-8166.2006.12.1260
研究论文     
利用步长模拟对青藏高原涡度方差测量法的质量评价
S. Metzger1,马耀明2,T. Markkanen1,M. G ckede3,李茂善2,T.Foken1
1.University of Bayreuth, Department of Micrometeorology, Bayreuth, Germany;2.中国科学院青藏高原研究所,北京 100085;3.Oregon State University, Department of Forest Science, Corvallis, USA
Quality Assessment of Tibetan Plateau Eddy Covariance Measurements Utilizing Footprint Modeling
S. Metzger1,Ma Yaoming2,T.Markkanen1,M.G ckede3,Li Maoshan2,T.Foken1
1.University of Bayreuth, Department of Micrometeorology, Bayreuth, Germany;2.Chinese Academy of Sciences, Institute of Tibetan Plateau Research, Beijing 100085, China;3.Oregon State University, Department of Forest Science, Corvallis, USA
 全文: PDF(184 KB)  
摘要:

利用痕迹模拟方法对青藏高原两处地方涡度方差的测量数据进行了质量分析,揭示了其空间和时间结构。分析表明高达1/3的测量没有达到必要的数据正确假设。尽管这样对潜热、CO2、动量通量的测量基本通过测试,可以适用于基础研究,但是经常发现特定的风矢量违背基本假设条件。感热通量的测量允许使用不间断的连续测量法,然而由于局地地形的影响少量评估指数未能合理解释,但能够指示出组织结构及用于导出边界层中尺度流体模型假说。

关键词: 痕迹气候学质量评价质量控制青藏高原中尺度    
Abstract:

A quality analysis including footprint modelling has revealed spatial and temporal structures in the quality of Eddy Covariance measurements for two highland sites located on the Tibetan plateau. Fetch analysis has shown, that up to 1/3 of the measurements do not fulfill assumptions necessary for a physically correct data processing. Despite this fact, measurements of latent heat-, CO2- and momentum flux in general fulfill the quality test criteria to an extend that the results can be regarded as suitable for fundamental research, whereby usually certain wind sectors have been found violating basic assumptions. Measurements of the sensible heat flux allow for the usage in continuously running measurement, while still few indications of the quality assessment can not be explained due to local topography, but indicate organized structures and lead to the hypothesis of mesoscale flow patterns in the boundary layer.

Key words: GCM    Alpine    EC    Footprint Climatology    Tibet    QA    QC    Mesoscale
收稿日期: 2006-10-11 出版日期: 2006-12-15
:  P412  
通讯作者: S.Metzger     E-mail: stefan.metzger@uni-bayreuth.de
作者简介: S.Metzger.E-mail:stefan.metzger@uni-bayreuth.de
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
S.Metzger
T.Markkanen
T.Foken
李茂善
M.Gckede
马耀明

引用本文:

S.Metzger,马耀明,T.Markkanen,M.Gckede,李茂善,T.Foken. 利用步长模拟对青藏高原涡度方差测量法的质量评价[J]. 地球科学进展, 2006, 21(12): 1260-1267.

S. Metzger,Ma Yaoming,T.Markkanen,M.G ckede,Li Maoshan,T.Foken. Quality Assessment of Tibetan Plateau Eddy Covariance Measurements Utilizing Footprint Modeling. Advances in Earth Science, 2006, 21(12): 1260-1267.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2006.12.1260        http://www.adearth.ac.cn/CN/Y2006/V21/I12/1260

[1] Baldocchi D, Falge E, Gu L, et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities[J]. Bulletin of American of the Meteorological Society, 2001,82:2 415-2 434.

[2] Göckede M, Markkanen T, Hasager C B, et al. Update of a footprint-based approach for the characterisation of complex measuring sites[J]. Boundary-Layer Meteorology,2006,118: 635-655.

[3] Rebmann C, Göckede M, Foken T, et al. Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modelling[J]. Theoretical and Applied Climatology,2005,80(2/4): 121-141.

[4] Foken T, Göckede M, Mauder M, et al. Post-field data quality control[C]//Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Kluwer,Dordrecht, 2004:181-208.

[5] Foken T, Wichura B. Tools for quality assessment of surface-based flux measurements[J]. Agricultural and Forest Meteorology,1996,78(1/2): 83-105.

[6] Rannik U, Aubiner M, Kurbanmuadov O, et al. Footprint analysis for measurements over a heterogeneous forest[J]. Boundary-Layer Meteorology,2000,97(1):137-166.

[7] Marcolla B, Alessandro Cescatti, Leonardo Montagnami, et al. Importance of advection in the atmospheric CO2 exchanges of an alpine forest[J]. Agricultural and Forest Meteorology,2005,130: 3-4.

[8] Turnipseed A A, Anderson D E, Blanken P D, et al. Airflows and turbulent flux measurements in mountainous terrain Part 1. Canopy and local effects[J]. Agricultural and Forest Meteorology, 2003,119(1/2): 1-21.

[9] Mauder M, Foken T. Documentation and Instruction Manual of the Eddy Covariance Software Package TK2. 26[M]. Department of Micrometeorology, University of Bayreuth, Bayreuth, 2004.

[10] Vickers D, Mahrt L. Quality control and flux sampling problems for tower and aircraft data[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(3): 512-526.

[11] Moore C J. Frequency response corrections for eddy correlation systems[J]. Boundary-Layer Meteorology, 1986, 37:17-35.

[12] Liu H P, Peters G, Foken T. New equations for sonic temperature variance and buoyancy heat flux with an omnidirectional sonic anemometer[J]. Boundary-Layer Meteorology, 2001, 100(3): 459-468.

[13] Schotanus P, Nieuwstadt F T M, DeBruin H A R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations[J]. Boundary-Layer Meteorology, 1983, 26: 81-93.

[14] Fuehrer P L, Friehe C H. Flux corrections revisited[J]. Boundary-Layer Meteorology, 2002, 102:415-457.

[15] Liebethal C, Foken T. On the significance of the Webb correction to fluxes[J]. Boundary-Layer Meteorology, 2003,109: 99-106.

[16] Liebethal C, Foken T. On the significance of the Webb correction to fluxes[J]. Boundary-Layer Meteorology, 2004,301:113.

[17] Webb E K, Pearman G I, Leuning R. Correction of the flux measurements for density effects due to heat and water vapour transfer[J]. Quarterly Journal of The Royal Meteorological Society, 1980, 106: 85-100.

[18] Obukhov A M. O strukture temperaturnogo polja i polja skorostej v uslovijach konvekcii[M]. AN SSSR, ser. Geofiz. Izv: 1960:1 392-1 396.

[19] Thomas C, Foken T. Re-evaluation of integral turbulence characteristics and their parameterisations - 15th Conference on Turbulence and Boundary Layers, Wageningen, NL[J]. American Meteorological Society,2002:129-132.

[20] Wyngaard J C, Cote' O R,Y Y I. Local free convection, similarity and the budgets of shear stress and heat flux[J]. Journal of Atmospheric Science,1971,28:1 171-1 182.

[21] Wilczak J M, Oncley S P, Stage S A. Sonic anemometer tilt correction algorithms[J]. Boundary-Layer Meteorology, 2001, 99(1): 127-150.

[22] Schmid H P. Source areas for scalars and scalar fluxes[J]. Boundary- Layer Meteorology,1994,67: 293-318.

[23] Rannik, Markkanen T, J J R, et al. Turbulence statistics inside and over forest: Influence on footprint prediction[J]. Boundary-Layer Meteorol,2003,109:163-189.

[24] Thomson D J. Criteria for the selection of stochastic models of particle trajectories in turbulent flows[J]. Journal of Fluid Mechinery,1987,180: 529-556.

[25] Amiro B D. Footprint climatologies for evapotranspiration in a boreal catchment[J]. Agricultural and Forest Meteorology,1998,90:195.

[26] Lu L, Denning A Scott, du Silvadias, et al. Mesoscale circulations and atmospheric CO2 variations in the Tapajós Region, Pará, Brazil[J]. Journal of Geophysical Research,2005,110: 1-17.

[1] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[2] 王根, 张华, 杨寅. 高光谱大气红外探测器AIRS资料质量控制研究进展[J]. 地球科学进展, 2017, 32(2): 139-150.
[3] 黎伟标, 刘昊亚, 方容. 大气对海洋中尺度涡响应的研究进展[J]. 地球科学进展, 2017, 32(10): 1039-1049.
[4] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[5] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
[6] 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31(3): 258-268.
[7] 宋扬, 唐菊兴, 曲晓明, 王登红, 辛洪波, 杨超, 林彬, 范淑芳. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 2014, 29(7): 795-809.
[8] 游超, 姚檀栋, 邬光剑. 雪冰中生物质燃烧记录研究进展[J]. 地球科学进展, 2014, 29(6): 662-673.
[9] 段静, 陈朝晖, 吴立新. 黑潮源区海流季节内变化观测分析[J]. 地球科学进展, 2014, 29(4): 523-530.
[10] 马耀明, 胡泽勇, 田立德, 张凡, 段安民, 阳坤, 张镱锂, 杨永平. 青藏高原气候系统变化及其对东亚区域的影响与机制研究进展[J]. 地球科学进展, 2014, 29(2): 207-215.
[11] 尹金方, 王东海, 翟国庆. 区域中尺度模式云微物理参数化方案特征及其在中国的适用性[J]. 地球科学进展, 2014, 29(2): 238-249.
[12] 马巍,牛富俊,穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191.
[13] 王雪梅,李 新,马明国,张志强. 青藏高原科研文献地理信息空间分析研究[J]. 地球科学进展, 2012, 27(11): 1288-1294.
[14] 赵中阔,廖菲,刘春霞,毕雪岩,王介民,万齐林,黄建. 近岸海洋气象平台涡动相关数据处理与质量控制[J]. 地球科学进展, 2011, 26(9): 954-964.
[15] 白洁,刘绍民,丁晓萍,卢俐. 大孔径闪烁仪观测数据的处理方法研究[J]. 地球科学进展, 2010, 25(11): 1148-1165.