地球科学进展 ›› 2006, Vol. 21 ›› Issue (12): 1237 -1243. doi: 10.11867/j.issn.1001-8166.2006.12.1237

研究论文 上一篇    下一篇

利用场地观测计算地表通量
H. Ishikawa 1,K. Tanaka 2,Y. Oku 1,马耀明 3,胡泽勇 4,李茂善 4,马伟强 4   
  1. 1.Disaster Prevention Research Institute, Kyoto University,Kyoto Japan; 2.Kumamoto University,Kumamoto Japan;3.中国科学院青藏高原研究所,北京 100085; 4.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2006-10-23 修回日期:2006-10-23 出版日期:2006-12-15
  • 通讯作者: H. Ishikawa E-mail:ishikawa@storm.dpri.kyoto-u.ac.jp

Surface Flux Estimation Using in Situ Measurement

H. Ishikawa 1,K. Tanaka 2,Y. Oku 1,Ma Yaoming 3,Hu Zeyong 4,Li Maoshan 4,Ma Weiqiang 4   

  1. 1.Disaster Prevention Research Institute, Kyoto University,Kyoto Japan; 2.Kumamoto University,Kumamoto Japan; 3.Institute of Tibetan Plateau, CAS,Beijing 100085,China; 4.Cold and Arid Regions Environmental and Engineering Research Institute, CAS,Lanzhou 730000,China
  • Received:2006-10-23 Revised:2006-10-23 Online:2006-12-15 Published:2006-12-15

    高原地表的感热和潜热通量在亚洲季风系统中有很重要的作用。由于高原地域辽阔,且自然环境较严酷,不利于建立完善的地面观测系统。因此,卫星遥感观测就成为测算高原整体感热和潜热通量的有效工具。地面场地的观测结果作为地表通量的真实值,对于卫星遥感测算是非常重要的。它也为构建陆面—大气模型提供了科学依据,是卫星资料的资料同化系统中的重要组成部分。
    计算场地热量通量有几种不同的处理方法。最简单的方法利用有效的观测和试验的参数,可以给出稳定连续的估计。愈精确的Bowen比或者廓线的观测能给出愈精确的信息。综合了湍流测量及辐射测量、土壤热通量的观测结果的估计对陆面—大气相互作用进行了详细的描述,以适应模式的发展。从1998年开始,这些方法联合应用到青藏高原;场地通量观测方面的成果以及目前对其理解将在本文中做一概述。

 

Sensible and latent heat fluxes from the plateau surface are of great importance in the Asian monsoon system. Since the plateau occupies a wide area and the environmental conditions are severe to perform surface observation, the satellite remote sensing is inevitably a practical tool to estimate these fluxes from whole plateau surface. The in situ flux estimation is, however, necessary as a ground truth for the satellite remote sensing. It also gives scientific information in constructing land surface-atmosphere model, which shares an important part of data assimilation system using satellite data. There are several different approaches in estimating in situ heat fluxes. The simplest method uses operational observation and experimental parameters, and it gives steady continuous estimation. The more sophisticated Bowen ratio or profile observation gives the more precise information. The estimation with turbulence measurement together with the measurement of radiation and soil heat fluxes give detailed description of land surfaceatmosphere interaction suitable to model development. Since 1998, a combination of these methods has been applied to the Tibetan plateau. The efforts of these in situ flux observation and the current understandings are summarized in this presentation.

中图分类号: 

[1] Manabe, Terpsta. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments[J]. Journal of Atmospheric Science,1974,31:3-42.

[2] Flohn H. Bemerkungen zur Kimatologic von Hochasian[J]. Abhandlungen der Mathematisch-naturwissenschaftlichen Klasse, 1959,14:1 409-1 431.

[3] Gao G, Liu Y. A study of the radiation balance, heat balance and heat and cold sources on the earth's surface in eastern Asia[J]. Scientia Atmospheric Sinica,1979,3:12-20[in Chinese]

[4] Johnson D R, Yanai M, Schaak T K. Global and regional distributions of atmospheric heat sources and sinks during the GWE[C]Chang C P, Krishnamurt T N, eds. Monsoon Meteorology. Oxford:Oxford University Press, 1987:271-297.

[5] Yeh T-C (Ye D). The thermal structure, convective activity and associated large-scale circulation over the Tibetan plateau during summer[J]. Scientia Atmospheric Sinica(Special issue),1988:1-12. [In Chinese].

[6] Ji G, Zhong Q, Shen Z. Advances in observation and research of the surface heat source over the Qinghai-Xizang plateau[J]. Plateau Meteorology,1989,5:127-132.

[7] Yanai M, Li C, Song Z. Seasonal heating of the Tibetan plateau and its effect on the evolution of the summer monsoon[J]. Journal of Meteorology Society Japan,1992,70:319-351.

[8] Tanaka K, Ishikawa H, Hayashi T, et al. Surface energy budget at Amdo on Tibetan plateau using GAME/Tibet IOP98 data[J]. Journal of Meteorology Society of Japan, 2001,79(1B):505-517.

[9] Tanaka K, Tamagawa I, Ishikawa H, Ma Y, et al. Surface energy budget and closure of the eastern Tibetan plateau during the GAME-Tibet IOP 1998[J]. Journal of Hydrology, 2003,1/4:169-183.

[10] Ma Yaoming, Tsukamoto O, Wu X. Characteristics of energy transfer and micrometeorology in the surface layer of the atmosphere above grassy marshland of the Tibetan plateau[J]. Chinese Journal of Atmospheric Sciences, 2000, 14(5):715-722.

[11] Ma Y, Ishikawa H, Tsukamoto O. Regionalization of surface fluxes over heterogeneous landscape of Tibetan Plateau by using satellite remote sensing data[J]. Journal of Meteorological Society of Japan,2003,81(2):277-293.

[12] Ma Yaomimg, Su Z, Koike T, Yao T, et al. On measuring and remote sensing surface energy partitioning over the Tibetan Plateau from GAME/Tibet to CAMP/Tibet[J]. Physics and Chemistry of the Earth,2003,28:63-74.

[13] Oku Y,Ishikawa H. Estimation of land surface temperature over the Tibetan plateau using GMS data[J]. Journal of Applied Meteorology,2003,43(4):548-561.

[14] Oku Y, Ishikawa H, Su Z. Estimation of land surface energy fluxes over the Tibetan plateau using GMS data[J]. Journal of Applied Meteorology,2006,46(in press).

[15] Tanaka K. PhD Thesis[D]. School of Science, Kyoto University,2005.

[16] Su Z. The Surface Energy Balance SystermSEBS forestim ation of turbu lentheatf lure[sJ].Hydrology and Earth System Science, 2002, 6(1):85 -99.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[10] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[11] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[12] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[13] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[14] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[15] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
阅读次数
全文


摘要