Please wait a minute...
img img
高级检索
地球科学进展  2018, Vol. 33 Issue (9): 933-944    DOI: 10.11867/j.issn.1001-8166.2018.09.0933
研究论文     
NEX-BCC模式对秦岭及周边地区气候变化的模拟及预估
潘留杰1(), 张宏芳2
1.陕西省气象台, 陕西 西安 710014
2.陕西省气象服务中心, 陕西 西安 710014
Simulation and Projection of Climate Change in Qinling and Surrounding Areas with NEX-BCC Model
Liujie Pan1(), Hongfang Zhang2
1.Shaanxi Meteorological Observatory, Xi'an 710014, China
2.Shaanxi Meteorological Service Centre, Xi'an 710014, China
 全文: PDF(12484 KB)   HTML
摘要:

基于美国国家航空航天局(NASA)最新发布的具有代表性浓度途径的全球逐日统计降尺度NEX-BCC_CGM1.1气候数据集,采用线性拟合、EOF分析等方法,评估其对秦岭及周边地区降水、温度的模拟能力,并分析中浓度(Rcp4.5)和高浓度(Rcp8.5) 2种情景下未来阶段秦岭及周边地区降水、日最高温度和日最低温度的可能变化,主要结论如下:① NEX-BCC_CGM1.1对秦岭及周边地区日平均降水量、最高温度和最低温度的年际变化趋势模拟较好,要素的空间分布和观测整体吻合,存在的不足在于要素值大小和极值频率与观测存在系统性的偏差。②Rcp4.5和Rcp8.5 2种情景下未来秦岭及周边地区日平均降水量呈增加的趋势;从不同量级降水频次来看,未来小雨发生频次减少,暴雨频次增加;2种情景下未来降水的空间模态均表现为全区一致降水增加型EOF1和秦岭南北反位相变化型EOF2,其中EOF1在21世纪中期处于正位相,降水显著偏多。③2种情景下,温度增温趋势十分明显,其中日平均最高温度增幅大于日平均最低温度,Rcp8.5情景增温幅度高于Rcp4.5。未来日最高温度大于36 ℃的高温频次增加,小于-15 ℃的低温频次减少,且Rcp8.5情景下高温(低温)频次增加(减少)幅度更加显著。2种情景下,日平均最高和最低温度均表现为全区一致性增温和南北反位相2种空间模态,但模态的空间分布存在较大差异。

关键词: NEX-BCC美国国家航空航天局气候变化秦岭地区预估    
Abstract:

Based on NEX-BCC_CGM1.1 global daily statistics downscaling climate data set, the latest release by American National Aeronautics and Space Administration (NASA), which has representative concentration path, by using linear fitting and empirical orthogonal function (EOF) analysis methods, the simulation capacity on precipitation and temperature in Qinling and its surrounding areas of this data sets was estimated and the possible changes of the precipitation, daily maximum and minimum temperature in the next stage under the two scenarios of Rcp4.5 and Rcp8.5 were analyzed. Results showed that: ①The inter-annual trend of average daily precipitation, maximum temperature, minimum temperature is simulated well by NEX-BCC_CGM1.1. The spatial distribution was in accordance with the observations. The deficiency is that the elements value and extreme frequency have systemic bias compared with the observations. ②Average daily precipitation will have increasing trend in the future in Qinling and its surrounding areas under the two scenarios of Rcp4.5 and Rcp8.5. For different level precipitation frequency, light rains will reduce and rainstorms will increase in the future. The spatial modes of precipitation in the future are shown as the variation of the uniform increase in the whole region (EOF1) and anti-phase change in northern and southern Qinling (EOF2). EOF1 will be positive phase in medium-term in the Mid-21st century, where there will be significantly more means precipitation. ③Under the two scenarios, temperature warming trend is obvious, daily maximum temperature increasing trend is greater than minimum temperature, and the amplitude of temperature increase under Rcp8.5 is higher than Rcp4.5. The frequency of daily maximum temperatures greater than 36 ℃ will increase and low temperature less than -15 ℃ will reduce in the future, at the same time, high temperature (low temperature) increase (decrease) rate is more pronounced under Rcp8.5. Average daily maximum and minimum temperatures are shown uniform warming in the whole region (EOF1) and anti-phase change in northern and southern Qinling under two scenarios, but the spatial distribution has great difference.

Key words: NEX-BCC    NASA    Climate change    Qingling Mountain area    Projection.
出版日期: 2018-10-24
ZTFLH:  P467  
基金资助: ?中国气象局预报专项“陕北17.7特大暴雨的模式预报偏差定量化分析”(编号: No.CMAYBY2018-075)资助.
作者简介: 作者简介:潘留杰(1978),男,高级工程师,陕西石泉人,主要从事天气预报与研究工作. E-mail:pljmtgh57245@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
潘留杰
张宏芳

引用本文:

潘留杰, 张宏芳. NEX-BCC模式对秦岭及周边地区气候变化的模拟及预估[J]. 地球科学进展, 2018, 33(9): 933-944.

Liujie Pan, Hongfang Zhang. Simulation and Projection of Climate Change in Qinling and Surrounding Areas with NEX-BCC Model. Advances in Earth Science, 2018, 33(9): 933-944.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2018.09.0933        http://www.adearth.ac.cn/CN/Y2018/V33/I9/933

图1  1961—2005 年秦岭地区日平均降水(单位:mm/d)和最高、最低温度演变特征(单位:℃) (a),(b),(c)为观测;(d),(e),(f)为模式模拟;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
图2  NEX-BCC模拟降水、最高温度、最低温度和对应时段观测数据的均值和方差(a),(b),(c)为观测;(d),(e),(f)为模式模拟;填色为均值,等值线为方差
图3  1961—2005 年秦岭地区NEX-BCC模拟小雨、暴雨以上量级降水和最高温度、最低温度发生频率与观测的对比(a),(b),(c),(d)为观测;(e),(f),(g),(h) 为NEX-BCC模式模拟;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
图4  1961—2005 年秦岭地区NEX-BCC历史模拟场的泰勒分析(a)降水、最高温度和最低温度的泰勒分析;(b)小雨以上、暴雨以上、高温、低温发生频率的泰勒分析
图5  Rcp4.5和Rcp8.5情景下秦岭地区未来降水量(a,d)、最高温度(b,e)和最低温度(c,f)的时间演变(a), (b),(c)为Rcp4.5情景的时间演变;(d),(e),(f)为Rcp8.5情景的时间演变;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
要素 Rcp4.5情景 Rcp8.5情景
量值/10a 频次/10a 量值/10a 频次/10a
降水 0.005 0.751(0.009) 0.006 -0.666(0.008)
最高温度 0.38 ℃ 0.82 0.71 ℃ 3.13
最低温度 0.318 ℃ -0.77 0.519 ℃ -0.96
表1  不同情景下温度、降水未来的变化值
图6  Rcp4.5和Rcp8.5情景下秦岭地区未来小雨以上量级降水频率(a,e)、暴雨以上量级降水频率(b,f)、高温频率(c,g)、低温频率(d,h)的时间演变(a)~(d)为Rcp4.5情景; (e)~(h) 为Rcp8.5情景;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
图7  Rcp4.5和Rcp8.5情景下秦岭地区未来降水量、最高温度和最低温度的空间模态(a)~(c)为第一空间模态EOF1;(d)~(f)为第二空间模态EOF2;色斑图Rcp4.5,等值线Rcp8.5
图8  Rcp4.5情景下未来降水、日平均最高、最低温度EOF空间模态的标准化序列时间系数(a)~(c)分别为降水,日平均最高、最低温度第一空间模态的时间系数;(d)~(f)分别为降水、日平均较高、最低温度第二空间模态的时间系数第二模态;图中曲线为7年滑动平均,柱状图为标准化时间序列
图9  Rcp8.5情景下未来降水、日平均最高、最低温度EOF空间模态的标准化序列时间系数(a)~(c)分别为降水,日平均最高、最低温度第一空间模态的时间系数;(d)~(f)分别为降水,日平均最高、最低温度第二空间模态的时间系数但为第二模态;图中曲线为7年滑动平均,柱状图为标准化时间序列
[1] Wu Qing, Jiang Xingwen, Xie Jie.Evaluation of surface air temperature in Southwestern China simulated by the CMIP5 models[J]. Plateau Meteorology, 2017, 36(2): 358-370.
[1] [伍清, 蒋兴文, 谢洁. CMIP5模式对西南地区气温的模拟能力评估[J].高原气象, 2017, 36(2): 358-370.]
[2] Hu Boyan, Tang Jianping, Wang Shuyu.Evaluation and projection of extreme events over China under IPCC A1B cenario by MM5V3 model[J]. Chinese Journal of Geophysics,2013,56(7): 2 195-2 206.DOI: 10.6038/cjg20130707.
[2] [胡伯彦,汤剑平,王淑瑜.MM5V3模式对IPCC A1B情景下中国地区极端事件的模拟和预估[J].地球物理学报,2013,56(7):2 195-2 206.DOI:10.6038/cjg20130707.]
[3] Li Donghuan, Zou Liwei, Zhou Tianjun.Changes of extreme indices over China in response to 1.5℃ global warming projected by a regional climate model[J]. Advances in Earth Science, 2017, 32(4): 446-457.
[3] [李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.]
[4] Chen Xiaolong, Zhou Tianjun.Surface air temperature projection under 1.5 ℃ warming threshold based on corrected pattern scaling technique[J]. Advances in Earth Science, 2017, 32(4): 435-445.
doi: 10.11867/j.issn.1001-8166.2017.04.0435
[4] [陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.]
doi: 10.11867/j.issn.1001-8166.2017.04.0435
[5] Li Weiping, Liu Xin, Nie Suping, et al. Comparative studies of snow cover parameterization schemes used in climate models[J]. Advances in Earth Science, 2009, 24(5): 512-522.
[5] [李伟平,刘新,聂肃平, 等. 气候模式中积雪覆盖率参数化方案的对比研究[J]. 地球科学进展, 2009, 24(5): 512-522.]
[6] Wang Chenghai.Evaluating the progress of the CMIP and its application prospect in China[J]. Advances in Earth Science, 2009, 24(5): 461-468.
doi: 10.3321/j.issn:1001-8166.2009.05.001
[6] [王澄海. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.]
doi: 10.3321/j.issn:1001-8166.2009.05.001
[7] Chen Liang, Duan Jianping, Ma Zhuguo.Objective analysis on large-scale circulation type and its links to precipitation over China[J]. Advances in Earth Science, 2018, 33(4): 396-403.
[7] [陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.]
[8] Kuang Xueyuan, Liu Jian, Wang Hongli, et al. Comparison of simulated and reconstructed precipitation in China during the Last Millennium[J]. Advances in Earth Science, 2009, 24(2): 159-171.
doi: 10.3321/j.issn:1001-8166.2009.02.006
[8] [况雪源,刘健,王红丽,等. 近千年来中国区域降水模拟与重建资料的对比分析[J]. 地球科学进展, 2009, 24(2): 159-171.]
doi: 10.3321/j.issn:1001-8166.2009.02.006
[9] Chen Zhikun, Zhang Shuyu, Luo Jiali, et al. A climatic analysis on the precipitation features and anomaly in Northwest China[J]. Journal of Desert Research, 2013,33(6):1 874-1 883.
[9] [陈志昆,张书余,雒佳丽,等.中国西北地区降水异常的气候分析[J].中国沙漠,2013, 33(6):1 874-1 883.]
[10] Gao Feng, Wu Tongwen, Xin Xiaoge.Study of systematic bias corrected method in CMIP5 decadal experiments of BCC_CSM1.1 climate model on tropical SST[J]. Plateau Meteorology, 2016,35(5): 1 364-1 375.
[10] [高峰,吴统文,辛晓歌.系统误差订正方法在热带海温年代际试验中的应用研究[J].高原气象, 2016,35(5): 1 364-1 375.]
[11] Li Shubo, Wu Tongwen, Zhang jie, et al. Simulation study about climatological basic state and seasonal variations of global O3 in the 20th century[J]. Plateau Meteorology, 2015,34(6): 1 601-1 615.
doi: 10.7522/j.issn.1000-0534.2014.00119
[11] [李书博, 吴统文, 张洁,等. BCC-AGCM-Chem0模式对20世纪全球O3气候平均态及季节变化特征的模拟研究[J].高原气象, 2015,34(6): 1 601-1 615.]
doi: 10.7522/j.issn.1000-0534.2014.00119
[12] Wang Xujia, Zheng Zhihai, Gu Bohui, et al. Summer prediction of moisture transport in the middle and lower reaches of the Yangtze River in BCC_CSM Mode[J]. Plateau Meteorology,2016,35(5): 1 270-1 279.
doi: 10.7522/j.issn.1000-0534.2015.00092
[12] [汪栩加, 郑志海, 顾伯辉,等. BCC_CSM模式夏季长江中下游水汽输送评估[J].高原气象, 2016,35(5): 1 270-1 279.]
doi: 10.7522/j.issn.1000-0534.2015.00092
[13] Liu Yanhua, Zhang Shuwen, Mao Lu, et al. An evaluation of simulated and estimated land surface states with two different models[J]. Advances in Earth Science,2013,28(8):913-922.
[13] [刘彦华,张述文,毛璐,等. 评估两类模式对陆面状态的模拟和估算[J].地球科学进展,2013,28(8):913-922.]
[14] Wu T W.A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations[J]. Climate Dynamics, 2012, 38(3/4): 725-744.
[15] Wu T W, Song L C, Li W P, et al. An overview of BCC climate system model development and application for climate change studies[J]. Journal of Meteorological Research, 2014, 28(1): 34-56.
doi: 10.1007/s13351-014-3041-7
[16] Xin X G, Wu T W, Li J L, et al. How well does BCC_CSM1.1 reproduce the 20th century climate change over China?[J]. Atmospheric and Oceanic Science Letters,2013, 6(1): 21-26.
[17] Wei Linxiao, Xin Xiaoge, Cheng Bingyan, et al. Hindcast of China climate with decadal experiment by BCC_CSM1.1 climate model[J]. Advances in Climate Change Research, 2016, 12(4): 294-302.
doi: 10.12006/j.issn.1673-1719.2015.196
[17] [魏麟骁, 辛晓歌, 程炳岩,等.BCC_CSM1.1气候模式年代际试验对中国气候的回报能力评估[J].气候变化研究进展, 2016, 12(4): 294-302.]
doi: 10.12006/j.issn.1673-1719.2015.196
[18] Zhou Xin, Li Qingquan,Sun Xiubo, et al. Simulation and projection of temperature in China with BCC_CSM1.1 Model[J].Journal of Applied Meterological Science,2014,25(1):95-106.
[18] [周鑫,李清泉,孙秀博,等. BCC_CSM1.1模式对我国气温的模拟和预估[J].应用气象学报,2014,25(1):95-106.]
[19] Jiang Yanmin,Huang Anning,Wu Haomin.Evaluation of the performance of Beijing climate center climate system model with different horizontal resolution in simulating the annual surface temperature over Central Asia[J]. Chinese Journal of Atmospheric Sciences,2015,39(3):535-547.DOI:10.3878/j. issn.1006-9895.1408.14133.
doi: 10.3878/j.issn.1006-9895.1408.14133
[19] [姜燕敏,黄安宁, 吴昊旻.不同水平分辨率BCC_CSM 模式对中亚地面气温模拟能力评估[J].大气科学,2015, 39(3): 535-547. DOI:10.3878/j.issn.1006-9895.1408.14133.]
doi: 10.3878/j.issn.1006-9895.1408.14133
[20] Xu Y, Gao X J, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advance in Atmospheric Sciences, 2009,26(4):763-772. DOI:10.1007/s00376-009-9029-z.
doi: 10.1007/s00376-009-9029-z
[21] Wu Jia, Gao Xuejie.A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1 102-1 111. DOI: 10.6038/cjg20130406.
doi: 10.6038/cjg20130406
[21] [吴佳,高学杰.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报, 2013, 56(4): 1 102-1 111. DOI:10.603 8/cjg20130406.]
doi: 10.6038/cjg20130406
[22] Pan Liujie, Zhang Hongfang, Wang Jianpeng, et al. An objective verification of forecasting ability of Japan High-Resolution Model precipitation in China[J]. Plateau Meteorology, 2014,33(2): 483-494.
doi: 10.7522/j.issn.1000-0534.2012.00188
[22] [潘留杰,张宏芳,王建鹏,等.日本高分辨率模式对中国降水预报能力的客观检验[J].高原气象, 2014,33(2): 483-494.]
doi: 10.7522/j.issn.1000-0534.2012.00188
[23] Pan Liujie, Zhang Hongfang, Zhou Yuquan, et al. Spatial-temporal distribution of summer cloud water resources over the Loess Plateau from 1979 to 2012[J]. Journal of Desert Research, 2015,35(2): 456-463.
doi: 10.7522/j.issn.1000-694X.2014.00034
[23] [潘留杰, 张宏芳, 周毓荃,等.1979—2012年夏季黄土高原空中云水资源时空分布[J].中国沙漠, 2015,35(2): 456-463.]
doi: 10.7522/j.issn.1000-694X.2014.00034
[24] Zhang Hongfang, Gao Hongyan, Yang Xin, et al. Comparing CCSM3 and CCSM4 simulations of summer atmospheric circulation over East Asia[J]. Resources Science, 2014,36(9):1 852-1 859.
[24] [ 张宏芳,高红艳,杨新,等.东亚夏季大气环流模拟的对比分析:CCSM3 和CCSM4[J]. 资源科学,2014,36(9):1 852-1 859.]
[25] North G R, Bell T L,Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal function[J]. Monthly Weather Review, 1982,110(7):699-706.
[1] 刘鸣彦,孙凤华,侯依玲,赵春雨,周晓宇. 基于HBV模型的太子河流域径流变化情景预估[J]. 地球科学进展, 2019, 34(6): 650-659.
[2] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[3] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[4] 宁晓菊,张丽君,秦耀辰,刘凯. 60年来我国主要粮食作物适宜生长区的时空分布[J]. 地球科学进展, 2019, 34(2): 191-201.
[5] 张晓闻, 臧淑英, 孙丽. 近40年东北地区积雪日数时空变化特征及其与气候要素的关系[J]. 地球科学进展, 2018, 33(9): 958-968.
[6] 李宁, 刘丽, 张正涛, 冯介玲, 陈曦, 白扣. 气候变化经济影响研究热点的足迹可视化:整合被引文献和突现词[J]. 地球科学进展, 2018, 33(8): 865-873.
[7] 刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750.
[8] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[9] 黄存瑞, 王琼. 气候变化健康风险评估、早期信号捕捉及应对策略研究[J]. 地球科学进展, 2018, 33(11): 1105-1111.
[10] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战*[J]. 地球科学进展, 2018, 33(11): 1181-1192.
[11] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析*[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[12] 管晓丹, 石瑞, 孔祥宁, 刘婧晨, 甘泽文, 马洁茹, 罗雯, 曹陈宇. 全球变化背景下半干旱区陆气机制研究综述[J]. 地球科学进展, 2018, 33(10): 995-1004.
[13] 周洪建. 当前全球减轻灾害风险平台的前沿话题与展望——基于2017年全球减灾平台大会的综述与思考[J]. 地球科学进展, 2017, 32(7): 688-695.
[14] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[15] 何霄嘉, 王敏, 冯相昭. 生态系统服务纳入应对气候变化的可行性与途径探讨[J]. 地球科学进展, 2017, 32(5): 560-567.