地球科学进展 ›› 2018, Vol. 33 ›› Issue (9): 933 -944. doi: 10.11867/j.issn.1001-8166.2018.09.0933

研究论文 上一篇    下一篇

NEX-BCC模式对秦岭及周边地区气候变化的模拟及预估
潘留杰 1( ), 张宏芳 2   
  1. 1.陕西省气象台, 陕西 西安 710014
    2.陕西省气象服务中心, 陕西 西安 710014
  • 出版日期:2018-10-20
  • 基金资助:
    ?中国气象局预报专项“陕北17.7特大暴雨的模式预报偏差定量化分析”(编号: No.CMAYBY2018-075)资助.

Simulation and Projection of Climate Change in Qinling and Surrounding Areas with NEX-BCC Model

Liujie Pan 1( ), Hongfang Zhang 2   

  1. 1.Shaanxi Meteorological Observatory, Xi'an 710014, China
    2.Shaanxi Meteorological Service Centre, Xi'an 710014, China
  • Online:2018-10-20 Published:2018-10-24
  • About author:

    First author:Pan Liujie(1978-), male, Shiquan County, Shaanxi Province, Senior engineer. Research areas include weather forecast.E-mail:pljmtgh57245@sina.com

  • Supported by:
    * Foundation item:Project supported by the the China Meteorological Administration's Forecast Special Fund "Quantitative analysis of model forecast deviation of 17.7 heavy rainfall in Northern Shaanxi" (No.CMAYBY2018-075).

基于美国国家航空航天局(NASA)最新发布的具有代表性浓度途径的全球逐日统计降尺度NEX-BCC_CGM1.1气候数据集,采用线性拟合、EOF分析等方法,评估其对秦岭及周边地区降水、温度的模拟能力,并分析中浓度(Rcp4.5)和高浓度(Rcp8.5) 2种情景下未来阶段秦岭及周边地区降水、日最高温度和日最低温度的可能变化,主要结论如下:① NEX-BCC_CGM1.1对秦岭及周边地区日平均降水量、最高温度和最低温度的年际变化趋势模拟较好,要素的空间分布和观测整体吻合,存在的不足在于要素值大小和极值频率与观测存在系统性的偏差。②Rcp4.5和Rcp8.5 2种情景下未来秦岭及周边地区日平均降水量呈增加的趋势;从不同量级降水频次来看,未来小雨发生频次减少,暴雨频次增加;2种情景下未来降水的空间模态均表现为全区一致降水增加型EOF1和秦岭南北反位相变化型EOF2,其中EOF1在21世纪中期处于正位相,降水显著偏多。③2种情景下,温度增温趋势十分明显,其中日平均最高温度增幅大于日平均最低温度,Rcp8.5情景增温幅度高于Rcp4.5。未来日最高温度大于36 ℃的高温频次增加,小于-15 ℃的低温频次减少,且Rcp8.5情景下高温(低温)频次增加(减少)幅度更加显著。2种情景下,日平均最高和最低温度均表现为全区一致性增温和南北反位相2种空间模态,但模态的空间分布存在较大差异。

Based on NEX-BCC_CGM1.1 global daily statistics downscaling climate data set, the latest release by American National Aeronautics and Space Administration (NASA), which has representative concentration path, by using linear fitting and empirical orthogonal function (EOF) analysis methods, the simulation capacity on precipitation and temperature in Qinling and its surrounding areas of this data sets was estimated and the possible changes of the precipitation, daily maximum and minimum temperature in the next stage under the two scenarios of Rcp4.5 and Rcp8.5 were analyzed. Results showed that: ①The inter-annual trend of average daily precipitation, maximum temperature, minimum temperature is simulated well by NEX-BCC_CGM1.1. The spatial distribution was in accordance with the observations. The deficiency is that the elements value and extreme frequency have systemic bias compared with the observations. ②Average daily precipitation will have increasing trend in the future in Qinling and its surrounding areas under the two scenarios of Rcp4.5 and Rcp8.5. For different level precipitation frequency, light rains will reduce and rainstorms will increase in the future. The spatial modes of precipitation in the future are shown as the variation of the uniform increase in the whole region (EOF1) and anti-phase change in northern and southern Qinling (EOF2). EOF1 will be positive phase in medium-term in the Mid-21st century, where there will be significantly more means precipitation. ③Under the two scenarios, temperature warming trend is obvious, daily maximum temperature increasing trend is greater than minimum temperature, and the amplitude of temperature increase under Rcp8.5 is higher than Rcp4.5. The frequency of daily maximum temperatures greater than 36 ℃ will increase and low temperature less than -15 ℃ will reduce in the future, at the same time, high temperature (low temperature) increase (decrease) rate is more pronounced under Rcp8.5. Average daily maximum and minimum temperatures are shown uniform warming in the whole region (EOF1) and anti-phase change in northern and southern Qinling under two scenarios, but the spatial distribution has great difference.

中图分类号: 

图1 1961—2005 年秦岭地区日平均降水(单位:mm/d)和最高、最低温度演变特征(单位:℃)
(a),(b),(c)为观测;(d),(e),(f)为模式模拟;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
Fig.1 Daily average precipitation (unit: mm/d),the evolvement of maximum temperature and minimum temperature (unit: ℃) from 1961 to 2005 in Qinling and surrounding areas
(a), (b), (c) are observation value; (d), (e), (f) are simulated value. Dotted line for inter-annual variability, straight line for linear fitting, thick solid lines for moving average of 11 years
图1 1961—2005 年秦岭地区日平均降水(单位:mm/d)和最高、最低温度演变特征(单位:℃)
(a),(b),(c)为观测;(d),(e),(f)为模式模拟;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
Fig.1 Daily average precipitation (unit: mm/d),the evolvement of maximum temperature and minimum temperature (unit: ℃) from 1961 to 2005 in Qinling and surrounding areas
(a), (b), (c) are observation value; (d), (e), (f) are simulated value. Dotted line for inter-annual variability, straight line for linear fitting, thick solid lines for moving average of 11 years
图2 NEX-BCC模拟降水、最高温度、最低温度和对应时段观测数据的均值和方差
(a),(b),(c)为观测;(d),(e),(f)为模式模拟;填色为均值,等值线为方差
Fig.2 Mean and variance of precipitation, maximum temperature and minimum temperature of observation and NEX-BCC model simulation
(a),(b),(c) are observation;(d),(e),(f) are NEX-BCC model simulation; The shaded and contour is for mean and variance respectivl respectively
图2 NEX-BCC模拟降水、最高温度、最低温度和对应时段观测数据的均值和方差
(a),(b),(c)为观测;(d),(e),(f)为模式模拟;填色为均值,等值线为方差
Fig.2 Mean and variance of precipitation, maximum temperature and minimum temperature of observation and NEX-BCC model simulation
(a),(b),(c) are observation;(d),(e),(f) are NEX-BCC model simulation; The shaded and contour is for mean and variance respectivl respectively
图3 1961—2005 年秦岭地区NEX-BCC模拟小雨、暴雨以上量级降水和最高温度、最低温度发生频率与观测的对比
(a),(b),(c),(d)为观测;(e),(f),(g),(h) 为NEX-BCC模式模拟;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
Fig.3 Frequency of light rain and above magnitude precipitation, torrential rain and above magnitude precipitation,maximum temperature and minimum temperature from 1961 to 2005 in Qinling and surrounding areas
(a), (b), (c) ,(d) are observation frequency; (e), (f), (g), (h) are NEX-BCC simulated value. Dotted line for inter-annual variability, straight line for linear fitting, thick solid lines for moving average of 11 years
图3 1961—2005 年秦岭地区NEX-BCC模拟小雨、暴雨以上量级降水和最高温度、最低温度发生频率与观测的对比
(a),(b),(c),(d)为观测;(e),(f),(g),(h) 为NEX-BCC模式模拟;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
Fig.3 Frequency of light rain and above magnitude precipitation, torrential rain and above magnitude precipitation,maximum temperature and minimum temperature from 1961 to 2005 in Qinling and surrounding areas
(a), (b), (c) ,(d) are observation frequency; (e), (f), (g), (h) are NEX-BCC simulated value. Dotted line for inter-annual variability, straight line for linear fitting, thick solid lines for moving average of 11 years
图4 1961—2005 年秦岭地区NEX-BCC历史模拟场的泰勒分析
(a)降水、最高温度和最低温度的泰勒分析;(b)小雨以上、暴雨以上、高温、低温发生频率的泰勒分析
Fig.4 The Taylor diagrams of NEX-BCC model historical simulation fields from 1961 to 2005 in Qingling and surrounding areas
(a)Taylor analysis of precipitation, maximum temperature and minimum temperature;(b)Taylor analysis of the frequency for light rain, maximum temperature and minimum temperature
图4 1961—2005 年秦岭地区NEX-BCC历史模拟场的泰勒分析
(a)降水、最高温度和最低温度的泰勒分析;(b)小雨以上、暴雨以上、高温、低温发生频率的泰勒分析
Fig.4 The Taylor diagrams of NEX-BCC model historical simulation fields from 1961 to 2005 in Qingling and surrounding areas
(a)Taylor analysis of precipitation, maximum temperature and minimum temperature;(b)Taylor analysis of the frequency for light rain, maximum temperature and minimum temperature
图5 Rcp4.5和Rcp8.5情景下秦岭地区未来降水量(a,d)、最高温度(b,e)和最低温度(c,f)的时间演变
(a), (b),(c)为Rcp4.5情景的时间演变;(d),(e),(f)为Rcp8.5情景的时间演变;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
Fig.5 Time evolution of future precipitation(a,d), maximum temperature(b,e) and minimum temperature (c,f) under the scenarios Rcp4.5 and Rcp8.5 in Qinling and surrounding areas
(a),(b) and (c) are for Rcp4.5; (d),(e),(f) are for Rcp8.5; Dotted line for inter-annual variability, straight line for linear fitting, thick solid lines for moving average of 11 years
图5 Rcp4.5和Rcp8.5情景下秦岭地区未来降水量(a,d)、最高温度(b,e)和最低温度(c,f)的时间演变
(a), (b),(c)为Rcp4.5情景的时间演变;(d),(e),(f)为Rcp8.5情景的时间演变;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
Fig.5 Time evolution of future precipitation(a,d), maximum temperature(b,e) and minimum temperature (c,f) under the scenarios Rcp4.5 and Rcp8.5 in Qinling and surrounding areas
(a),(b) and (c) are for Rcp4.5; (d),(e),(f) are for Rcp8.5; Dotted line for inter-annual variability, straight line for linear fitting, thick solid lines for moving average of 11 years
表1 不同情景下温度、降水未来的变化值
Table 1 The magnitude change of maximum temperature,minimum temperature and precipitation under different scenarios
表1 不同情景下温度、降水未来的变化值
Table 1 The magnitude change of maximum temperature,minimum temperature and precipitation under different scenarios
图6 Rcp4.5和Rcp8.5情景下秦岭地区未来小雨以上量级降水频率(a,e)、暴雨以上量级降水频率(b,f)、高温频率(c,g)、低温频率(d,h)的时间演变
(a)~(d)为Rcp4.5情景; (e)~(h) 为Rcp8.5情景;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
Fig.6 Future frequency evolution of light rain and above magnitude precipitation (a,e), torrential rain and above magnitude precipitation (b,f), maximum temperature (c,g) and minimum temperature (d,h) in Qinling and surrounding areas
(a)~(d) are observation frequency; (e)~(h) are NEX-BCC simulated value. Dotted line for inter-annual variability,straight line for linear fitting, thick solid lines for moving average of 11 years
图6 Rcp4.5和Rcp8.5情景下秦岭地区未来小雨以上量级降水频率(a,e)、暴雨以上量级降水频率(b,f)、高温频率(c,g)、低温频率(d,h)的时间演变
(a)~(d)为Rcp4.5情景; (e)~(h) 为Rcp8.5情景;图中虚线为要素的年际变化,直线为线性拟合,实线为11 年滑动平均
Fig.6 Future frequency evolution of light rain and above magnitude precipitation (a,e), torrential rain and above magnitude precipitation (b,f), maximum temperature (c,g) and minimum temperature (d,h) in Qinling and surrounding areas
(a)~(d) are observation frequency; (e)~(h) are NEX-BCC simulated value. Dotted line for inter-annual variability,straight line for linear fitting, thick solid lines for moving average of 11 years
图7 Rcp4.5和Rcp8.5情景下秦岭地区未来降水量、最高温度和最低温度的空间模态
(a)~(c)为第一空间模态EOF1;(d)~(f)为第二空间模态EOF2;色斑图Rcp4.5,等值线Rcp8.5
Fig.7 Spatial modes of precipitation, maximum temperature and minimum temperature in Qinling and surrounding areas under the scenarios Rcp4.5 and Rcp8.5
(a),(b) and (c) are for EOF1;(d),(e) and (f) are for EOF2. Shaded is for Rcp4.5 and contour is for Rcp8.5
图7 Rcp4.5和Rcp8.5情景下秦岭地区未来降水量、最高温度和最低温度的空间模态
(a)~(c)为第一空间模态EOF1;(d)~(f)为第二空间模态EOF2;色斑图Rcp4.5,等值线Rcp8.5
Fig.7 Spatial modes of precipitation, maximum temperature and minimum temperature in Qinling and surrounding areas under the scenarios Rcp4.5 and Rcp8.5
(a),(b) and (c) are for EOF1;(d),(e) and (f) are for EOF2. Shaded is for Rcp4.5 and contour is for Rcp8.5
图8 Rcp4.5情景下未来降水、日平均最高、最低温度EOF空间模态的标准化序列时间系数
(a)~(c)分别为降水,日平均最高、最低温度第一空间模态的时间系数;(d)~(f)分别为降水、日平均较高、最低温度第二空间模态的时间系数第二模态;图中曲线为7年滑动平均,柱状图为标准化时间序列
Fig.8 Normalized time series and its 11-year running mean of precipitation, maximum temperature and minimum temperature under the scenarios Rcp4.5
(a)~(c) are precipitation, maximum temperature and minimum temperature for EOF1; (d)~(f) are precipitation, maximum temperature and minimum temperature for EOF2; The bars and curve is for normalzed time series and 7-years running mean respectivhy
图8 Rcp4.5情景下未来降水、日平均最高、最低温度EOF空间模态的标准化序列时间系数
(a)~(c)分别为降水,日平均最高、最低温度第一空间模态的时间系数;(d)~(f)分别为降水、日平均较高、最低温度第二空间模态的时间系数第二模态;图中曲线为7年滑动平均,柱状图为标准化时间序列
Fig.8 Normalized time series and its 11-year running mean of precipitation, maximum temperature and minimum temperature under the scenarios Rcp4.5
(a)~(c) are precipitation, maximum temperature and minimum temperature for EOF1; (d)~(f) are precipitation, maximum temperature and minimum temperature for EOF2; The bars and curve is for normalzed time series and 7-years running mean respectivhy
图9 Rcp8.5情景下未来降水、日平均最高、最低温度EOF空间模态的标准化序列时间系数
(a)~(c)分别为降水,日平均最高、最低温度第一空间模态的时间系数;(d)~(f)分别为降水,日平均最高、最低温度第二空间模态的时间系数但为第二模态;图中曲线为7年滑动平均,柱状图为标准化时间序列
Fig.9 Normalized time series and its 11-year running mean of precipitation, maximum temperature and minimum temperature under the scenarios Rcp8.5
(a)~(c) are precipitation, maximum temperature and minimum temperature for EOF1;(d)~(f) are precipitation, maximum temperature and minimum temperature for EOF2; The bars and curve is for normalzed time series and 7-years running mean respectivhy
图9 Rcp8.5情景下未来降水、日平均最高、最低温度EOF空间模态的标准化序列时间系数
(a)~(c)分别为降水,日平均最高、最低温度第一空间模态的时间系数;(d)~(f)分别为降水,日平均最高、最低温度第二空间模态的时间系数但为第二模态;图中曲线为7年滑动平均,柱状图为标准化时间序列
Fig.9 Normalized time series and its 11-year running mean of precipitation, maximum temperature and minimum temperature under the scenarios Rcp8.5
(a)~(c) are precipitation, maximum temperature and minimum temperature for EOF1;(d)~(f) are precipitation, maximum temperature and minimum temperature for EOF2; The bars and curve is for normalzed time series and 7-years running mean respectivhy
[1] Wu Qing, Jiang Xingwen, Xie Jie.Evaluation of surface air temperature in Southwestern China simulated by the CMIP5 models[J]. Plateau Meteorology, 2017, 36(2): 358-370.
Wu Qing, Jiang Xingwen, Xie Jie.Evaluation of surface air temperature in Southwestern China simulated by the CMIP5 models[J]. Plateau Meteorology, 2017, 36(2): 358-370.
[伍清, 蒋兴文, 谢洁. CMIP5模式对西南地区气温的模拟能力评估[J].高原气象, 2017, 36(2): 358-370.]
[伍清, 蒋兴文, 谢洁. CMIP5模式对西南地区气温的模拟能力评估[J].高原气象, 2017, 36(2): 358-370.]
[2] Hu Boyan, Tang Jianping, Wang Shuyu.Evaluation and projection of extreme events over China under IPCC A1B cenario by MM5V3 model[J]. Chinese Journal of Geophysics,2013,56(7): 2 195-2 206.DOI: 10.6038/cjg20130707.
Hu Boyan, Tang Jianping, Wang Shuyu.Evaluation and projection of extreme events over China under IPCC A1B cenario by MM5V3 model[J]. Chinese Journal of Geophysics,2013,56(7): 2 195-2 206.DOI: 10.6038/cjg20130707.
[胡伯彦,汤剑平,王淑瑜.MM5V3模式对IPCC A1B情景下中国地区极端事件的模拟和预估[J].地球物理学报,2013,56(7):2 195-2 206.DOI:10.6038/cjg20130707.]
[胡伯彦,汤剑平,王淑瑜.MM5V3模式对IPCC A1B情景下中国地区极端事件的模拟和预估[J].地球物理学报,2013,56(7):2 195-2 206.DOI:10.6038/cjg20130707.]
[3] Li Donghuan, Zou Liwei, Zhou Tianjun.Changes of extreme indices over China in response to 1.5℃ global warming projected by a regional climate model[J]. Advances in Earth Science, 2017, 32(4): 446-457.
URL    
Li Donghuan, Zou Liwei, Zhou Tianjun.Changes of extreme indices over China in response to 1.5℃ global warming projected by a regional climate model[J]. Advances in Earth Science, 2017, 32(4): 446-457.
[李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.]
URL    
[李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.]
URL    
[4] Chen Xiaolong, Zhou Tianjun.Surface air temperature projection under 1.5 ℃ warming threshold based on corrected pattern scaling technique[J]. Advances in Earth Science, 2017, 32(4): 435-445.
doi: 10.11867/j.issn.1001-8166.2017.04.0435     URL    
Chen Xiaolong, Zhou Tianjun.Surface air temperature projection under 1.5 ℃ warming threshold based on corrected pattern scaling technique[J]. Advances in Earth Science, 2017, 32(4): 435-445.
[陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.]
doi: 10.11867/j.issn.1001-8166.2017.04.0435     URL    
[陈晓龙, 周天军. 使用订正的“空间型标度”法预估1.5 ℃温升阈值下地表气温变化[J]. 地球科学进展, 2017, 32(4): 435-445.]
doi: 10.11867/j.issn.1001-8166.2017.04.0435     URL    
[5] Li Weiping, Liu Xin, Nie Suping, et al. Comparative studies of snow cover parameterization schemes used in climate models[J]. Advances in Earth Science, 2009, 24(5): 512-522.
Li Weiping, Liu Xin, Nie Suping, et al. Comparative studies of snow cover parameterization schemes used in climate models[J]. Advances in Earth Science, 2009, 24(5): 512-522.
[李伟平,刘新,聂肃平, 等. 气候模式中积雪覆盖率参数化方案的对比研究[J]. 地球科学进展, 2009, 24(5): 512-522.]
[李伟平,刘新,聂肃平, 等. 气候模式中积雪覆盖率参数化方案的对比研究[J]. 地球科学进展, 2009, 24(5): 512-522.]
[6] Wang Chenghai.Evaluating the progress of the CMIP and its application prospect in China[J]. Advances in Earth Science, 2009, 24(5): 461-468.
doi: 10.3321/j.issn:1001-8166.2009.05.001     URL    
Wang Chenghai.Evaluating the progress of the CMIP and its application prospect in China[J]. Advances in Earth Science, 2009, 24(5): 461-468.
[王澄海. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.]
doi: 10.3321/j.issn:1001-8166.2009.05.001     URL    
[王澄海. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.]
doi: 10.3321/j.issn:1001-8166.2009.05.001     URL    
[7] Chen Liang, Duan Jianping, Ma Zhuguo.Objective analysis on large-scale circulation type and its links to precipitation over China[J]. Advances in Earth Science, 2018, 33(4): 396-403.
URL    
Chen Liang, Duan Jianping, Ma Zhuguo.Objective analysis on large-scale circulation type and its links to precipitation over China[J]. Advances in Earth Science, 2018, 33(4): 396-403.
[陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.]
URL    
[陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.]
URL    
[8] Kuang Xueyuan, Liu Jian, Wang Hongli, et al. Comparison of simulated and reconstructed precipitation in China during the Last Millennium[J]. Advances in Earth Science, 2009, 24(2): 159-171.
doi: 10.3321/j.issn:1001-8166.2009.02.006     URL    
Kuang Xueyuan, Liu Jian, Wang Hongli, et al. Comparison of simulated and reconstructed precipitation in China during the Last Millennium[J]. Advances in Earth Science, 2009, 24(2): 159-171.
[况雪源,刘健,王红丽,等. 近千年来中国区域降水模拟与重建资料的对比分析[J]. 地球科学进展, 2009, 24(2): 159-171.]
doi: 10.3321/j.issn:1001-8166.2009.02.006     URL    
[况雪源,刘健,王红丽,等. 近千年来中国区域降水模拟与重建资料的对比分析[J]. 地球科学进展, 2009, 24(2): 159-171.]
doi: 10.3321/j.issn:1001-8166.2009.02.006     URL    
[9] Chen Zhikun, Zhang Shuyu, Luo Jiali, et al. A climatic analysis on the precipitation features and anomaly in Northwest China[J]. Journal of Desert Research, 2013,33(6):1 874-1 883.
Chen Zhikun, Zhang Shuyu, Luo Jiali, et al. A climatic analysis on the precipitation features and anomaly in Northwest China[J]. Journal of Desert Research, 2013,33(6):1 874-1 883.
[陈志昆,张书余,雒佳丽,等.中国西北地区降水异常的气候分析[J].中国沙漠,2013, 33(6):1 874-1 883.]
[陈志昆,张书余,雒佳丽,等.中国西北地区降水异常的气候分析[J].中国沙漠,2013, 33(6):1 874-1 883.]
[10] Gao Feng, Wu Tongwen, Xin Xiaoge.Study of systematic bias corrected method in CMIP5 decadal experiments of BCC_CSM1.1 climate model on tropical SST[J]. Plateau Meteorology, 2016,35(5): 1 364-1 375.
URL    
Gao Feng, Wu Tongwen, Xin Xiaoge.Study of systematic bias corrected method in CMIP5 decadal experiments of BCC_CSM1.1 climate model on tropical SST[J]. Plateau Meteorology, 2016,35(5): 1 364-1 375.
[高峰,吴统文,辛晓歌.系统误差订正方法在热带海温年代际试验中的应用研究[J].高原气象, 2016,35(5): 1 364-1 375.]
URL    
[高峰,吴统文,辛晓歌.系统误差订正方法在热带海温年代际试验中的应用研究[J].高原气象, 2016,35(5): 1 364-1 375.]
URL    
[11] Li Shubo, Wu Tongwen, Zhang jie, et al. Simulation study about climatological basic state and seasonal variations of global O3 in the 20th century[J]. Plateau Meteorology, 2015,34(6): 1 601-1 615.
doi: 10.7522/j.issn.1000-0534.2014.00119     URL    
Li Shubo, Wu Tongwen, Zhang jie, et al. Simulation study about climatological basic state and seasonal variations of global O3 in the 20th century[J]. Plateau Meteorology, 2015,34(6): 1 601-1 615.
[李书博, 吴统文, 张洁,等. BCC-AGCM-Chem0模式对20世纪全球O3气候平均态及季节变化特征的模拟研究[J].高原气象, 2015,34(6): 1 601-1 615.]
doi: 10.7522/j.issn.1000-0534.2014.00119     URL    
[李书博, 吴统文, 张洁,等. BCC-AGCM-Chem0模式对20世纪全球O3气候平均态及季节变化特征的模拟研究[J].高原气象, 2015,34(6): 1 601-1 615.]
doi: 10.7522/j.issn.1000-0534.2014.00119     URL    
[12] Wang Xujia, Zheng Zhihai, Gu Bohui, et al. Summer prediction of moisture transport in the middle and lower reaches of the Yangtze River in BCC_CSM Mode[J]. Plateau Meteorology,2016,35(5): 1 270-1 279.
doi: 10.7522/j.issn.1000-0534.2015.00092     URL    
Wang Xujia, Zheng Zhihai, Gu Bohui, et al. Summer prediction of moisture transport in the middle and lower reaches of the Yangtze River in BCC_CSM Mode[J]. Plateau Meteorology,2016,35(5): 1 270-1 279.
[汪栩加, 郑志海, 顾伯辉,等. BCC_CSM模式夏季长江中下游水汽输送评估[J].高原气象, 2016,35(5): 1 270-1 279.]
doi: 10.7522/j.issn.1000-0534.2015.00092     URL    
[汪栩加, 郑志海, 顾伯辉,等. BCC_CSM模式夏季长江中下游水汽输送评估[J].高原气象, 2016,35(5): 1 270-1 279.]
doi: 10.7522/j.issn.1000-0534.2015.00092     URL    
[13] Liu Yanhua, Zhang Shuwen, Mao Lu, et al. An evaluation of simulated and estimated land surface states with two different models[J]. Advances in Earth Science,2013,28(8):913-922.
Liu Yanhua, Zhang Shuwen, Mao Lu, et al. An evaluation of simulated and estimated land surface states with two different models[J]. Advances in Earth Science,2013,28(8):913-922.
[刘彦华,张述文,毛璐,等. 评估两类模式对陆面状态的模拟和估算[J].地球科学进展,2013,28(8):913-922.]
[刘彦华,张述文,毛璐,等. 评估两类模式对陆面状态的模拟和估算[J].地球科学进展,2013,28(8):913-922.]
[14] Wu T W.A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations[J]. Climate Dynamics, 2012, 38(3/4): 725-744.
Wu T W.A mass-flux cumulus parameterization scheme for large-scale models: Description and test with observations[J]. Climate Dynamics, 2012, 38(3/4): 725-744.
[15] Wu T W, Song L C, Li W P, et al. An overview of BCC climate system model development and application for climate change studies[J]. Journal of Meteorological Research, 2014, 28(1): 34-56.
doi: 10.1007/s13351-014-3041-7     URL    
Wu T W, Song L C, Li W P, et al. An overview of BCC climate system model development and application for climate change studies[J]. Journal of Meteorological Research, 2014, 28(1): 34-56.
doi: 10.1007/s13351-014-3041-7     URL    
[16] Xin X G, Wu T W, Li J L, et al. How well does BCC_CSM1.1 reproduce the 20th century climate change over China?[J]. Atmospheric and Oceanic Science Letters,2013, 6(1): 21-26.
URL    
Xin X G, Wu T W, Li J L, et al. How well does BCC_CSM1.1 reproduce the 20th century climate change over China?[J]. Atmospheric and Oceanic Science Letters,2013, 6(1): 21-26.
URL    
[17] Wei Linxiao, Xin Xiaoge, Cheng Bingyan, et al. Hindcast of China climate with decadal experiment by BCC_CSM1.1 climate model[J]. Advances in Climate Change Research, 2016, 12(4): 294-302.
doi: 10.12006/j.issn.1673-1719.2015.196     URL    
Wei Linxiao, Xin Xiaoge, Cheng Bingyan, et al. Hindcast of China climate with decadal experiment by BCC_CSM1.1 climate model[J]. Advances in Climate Change Research, 2016, 12(4): 294-302.
[魏麟骁, 辛晓歌, 程炳岩,等.BCC_CSM1.1气候模式年代际试验对中国气候的回报能力评估[J].气候变化研究进展, 2016, 12(4): 294-302.]
doi: 10.12006/j.issn.1673-1719.2015.196     URL    
[魏麟骁, 辛晓歌, 程炳岩,等.BCC_CSM1.1气候模式年代际试验对中国气候的回报能力评估[J].气候变化研究进展, 2016, 12(4): 294-302.]
doi: 10.12006/j.issn.1673-1719.2015.196     URL    
[18] Zhou Xin, Li Qingquan,Sun Xiubo, et al. Simulation and projection of temperature in China with BCC_CSM1.1 Model[J].Journal of Applied Meterological Science,2014,25(1):95-106.
Zhou Xin, Li Qingquan,Sun Xiubo, et al. Simulation and projection of temperature in China with BCC_CSM1.1 Model[J].Journal of Applied Meterological Science,2014,25(1):95-106.
[周鑫,李清泉,孙秀博,等. BCC_CSM1.1模式对我国气温的模拟和预估[J].应用气象学报,2014,25(1):95-106.]
[周鑫,李清泉,孙秀博,等. BCC_CSM1.1模式对我国气温的模拟和预估[J].应用气象学报,2014,25(1):95-106.]
[19] Jiang Yanmin,Huang Anning,Wu Haomin.Evaluation of the performance of Beijing climate center climate system model with different horizontal resolution in simulating the annual surface temperature over Central Asia[J]. Chinese Journal of Atmospheric Sciences,2015,39(3):535-547.DOI:10.3878/j. issn.1006-9895.1408.14133.
doi: 10.3878/j.issn.1006-9895.1408.14133    
Jiang Yanmin,Huang Anning,Wu Haomin.Evaluation of the performance of Beijing climate center climate system model with different horizontal resolution in simulating the annual surface temperature over Central Asia[J]. Chinese Journal of Atmospheric Sciences,2015,39(3):535-547.DOI:10.3878/j. issn.1006-9895.1408.14133.
[姜燕敏,黄安宁, 吴昊旻.不同水平分辨率BCC_CSM 模式对中亚地面气温模拟能力评估[J].大气科学,2015, 39(3): 535-547. DOI:10.3878/j.issn.1006-9895.1408.14133.]
doi: 10.3878/j.issn.1006-9895.1408.14133    
[姜燕敏,黄安宁, 吴昊旻.不同水平分辨率BCC_CSM 模式对中亚地面气温模拟能力评估[J].大气科学,2015, 39(3): 535-547. DOI:10.3878/j.issn.1006-9895.1408.14133.]
doi: 10.3878/j.issn.1006-9895.1408.14133    
[20] Xu Y, Gao X J, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advance in Atmospheric Sciences, 2009,26(4):763-772. DOI:10.1007/s00376-009-9029-z.
doi: 10.1007/s00376-009-9029-z     URL    
Xu Y, Gao X J, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advance in Atmospheric Sciences, 2009,26(4):763-772. DOI:10.1007/s00376-009-9029-z.
doi: 10.1007/s00376-009-9029-z     URL    
[21] Wu Jia, Gao Xuejie.A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1 102-1 111. DOI: 10.6038/cjg20130406.
doi: 10.6038/cjg20130406     URL    
Wu Jia, Gao Xuejie.A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4): 1 102-1 111. DOI: 10.6038/cjg20130406.
[吴佳,高学杰.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报, 2013, 56(4): 1 102-1 111. DOI:10.603 8/cjg20130406.]
doi: 10.6038/cjg20130406     URL    
[吴佳,高学杰.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报, 2013, 56(4): 1 102-1 111. DOI:10.603 8/cjg20130406.]
doi: 10.6038/cjg20130406     URL    
[22] Pan Liujie, Zhang Hongfang, Wang Jianpeng, et al. An objective verification of forecasting ability of Japan High-Resolution Model precipitation in China[J]. Plateau Meteorology, 2014,33(2): 483-494.
doi: 10.7522/j.issn.1000-0534.2012.00188    
Pan Liujie, Zhang Hongfang, Wang Jianpeng, et al. An objective verification of forecasting ability of Japan High-Resolution Model precipitation in China[J]. Plateau Meteorology, 2014,33(2): 483-494.
[潘留杰,张宏芳,王建鹏,等.日本高分辨率模式对中国降水预报能力的客观检验[J].高原气象, 2014,33(2): 483-494.]
doi: 10.7522/j.issn.1000-0534.2012.00188    
[潘留杰,张宏芳,王建鹏,等.日本高分辨率模式对中国降水预报能力的客观检验[J].高原气象, 2014,33(2): 483-494.]
doi: 10.7522/j.issn.1000-0534.2012.00188    
[23] Pan Liujie, Zhang Hongfang, Zhou Yuquan, et al. Spatial-temporal distribution of summer cloud water resources over the Loess Plateau from 1979 to 2012[J]. Journal of Desert Research, 2015,35(2): 456-463.
doi: 10.7522/j.issn.1000-694X.2014.00034     URL    
Pan Liujie, Zhang Hongfang, Zhou Yuquan, et al. Spatial-temporal distribution of summer cloud water resources over the Loess Plateau from 1979 to 2012[J]. Journal of Desert Research, 2015,35(2): 456-463.
[潘留杰, 张宏芳, 周毓荃,等.1979—2012年夏季黄土高原空中云水资源时空分布[J].中国沙漠, 2015,35(2): 456-463.]
doi: 10.7522/j.issn.1000-694X.2014.00034     URL    
[潘留杰, 张宏芳, 周毓荃,等.1979—2012年夏季黄土高原空中云水资源时空分布[J].中国沙漠, 2015,35(2): 456-463.]
doi: 10.7522/j.issn.1000-694X.2014.00034     URL    
[24] Zhang Hongfang, Gao Hongyan, Yang Xin, et al. Comparing CCSM3 and CCSM4 simulations of summer atmospheric circulation over East Asia[J]. Resources Science, 2014,36(9):1 852-1 859.
URL    
Zhang Hongfang, Gao Hongyan, Yang Xin, et al. Comparing CCSM3 and CCSM4 simulations of summer atmospheric circulation over East Asia[J]. Resources Science, 2014,36(9):1 852-1 859.
[ 张宏芳,高红艳,杨新,等.东亚夏季大气环流模拟的对比分析:CCSM3 和CCSM4[J]. 资源科学,2014,36(9):1 852-1 859.]
URL    
[ 张宏芳,高红艳,杨新,等.东亚夏季大气环流模拟的对比分析:CCSM3 和CCSM4[J]. 资源科学,2014,36(9):1 852-1 859.]
URL    
[25] North G R, Bell T L,Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal function[J]. Monthly Weather Review, 1982,110(7):699-706.
North G R, Bell T L,Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal function[J]. Monthly Weather Review, 1982,110(7):699-706.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要