地球科学进展 ›› 2016, Vol. 31 ›› Issue (10): 1021 -1031. doi: 10.11867/j.issn.1001-8166.2016.10.1021

综述与评述 上一篇    下一篇

土壤风化速率测定方法及其影响因素研究进展
黄来明 1, 2, 4, 邵明安 1, 2, 4, 贾小旭 1, 4, 张甘霖 3, 4   
  1. 1.生态系统网络观测与模拟院重点实验室,中国科学院地理科学与资源研究所,北京 100101;
    2.黄土高原土壤侵蚀与旱地农业国家重点实验室,中国科学院水利部水土保持研究所,陕西 杨陵 712100;
    3.土壤与农业可持续发展国家重点实验室,中国科学院南京土壤研究所,江苏 南京 210008;
    4.中国学学院大学资源与环境学院,北京 100049
  • 收稿日期:2016-07-02 修回日期:2016-09-10 出版日期:2016-10-20
  • 基金资助:
    国家自然科学基金国际合作与交流项目“黄土高原关键带水循环过程与空间异质性” (编号:41571130081); 中国科学院水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室开放基金项目“退耕驱动地表特性变化对黄土高原半干旱区土壤水循环的影响”(编号:A314021402-1602)资助

A Review of the Methods and Controls of Soil Weathering Rates

Huang Laiming 1, 2, 4, Shao Ming’an 1, 2, 4, Jia Xiaoxu 1, 4, Zhang Ganlin 3, 4   

  1. 1.Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101,China;
    2.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation,Chinese Academy of Sciences & Ministry of Water Resources,Yangling 712100,China;
    3.State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China;
    4.College of Resources and Environment,University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-07-02 Revised:2016-09-10 Online:2016-10-20 Published:2016-10-20
  • About author:Huang Laiming (1984-), male, Anji County, Zhejiang Province, Assistant Professor. Research areas include soil genesis and geochemistry.E-mail:huanglm@igsnrr.ac.cn
  • Supported by:
    Project supported by the National Natural Science Foundation of China “Water cycle processes and their heterogeneities in the critical zone of the Loess Plateau”(No.41571130081); the State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences “Effect of changing soil properties induced by Grain-for-Green project on water cycle in the semi-arid region of Loess Plateau”(No; A314021402-1602)
明确土壤风化过程、速率及其影响因素是理解土壤与环境之间相互作用与反馈的基础,可为预测土壤在生态系统中的行为及其在自然和人为作用下的演变趋势、实现土壤资源有效管理提供科学依据。通过回顾土壤风化速率不同测定方法(实验室模拟研究、模型理论计算、同位素比值、元素损耗和元素输入输出平衡法)及其影响因素(气候、生物、母质、地形、时间和人为活动)研究所取得的进展,针对当前土壤资源退化严重的现状,提出了土壤风化研究面临的机遇和挑战。未来土壤风化研究应重点关注变化中的自然条件和强烈的人为干扰下土壤风化的关键过程、速率及其环境阈值,包括建立风化速率不同测定方法所得结果之间的定量转换关系、揭示风化速率多个影响因素之间的协同效应、模拟和预测气候变化和人类活动双重影响下土壤风化速率的演变趋势,以期为土壤资源的可持续管理和应对全球变化提供理论依据。
The study of soil weathering processes College of Resources and Environment, rates and the associated influencing factors is crucial for understanding of the feedbacks between soil and environment, which will provide a basis for predicting soil behavior and evolution trend in the ecosystem under natural and anthropogenic forcings. This is also important for the effective management of soil resources. This article reviewed the methods for measuring soil weathering rates (including simulating leaching experiment, model calculation, isotope technique, element depletion and geochemical mass balance) and the influencing factors (including climate, organism, parent material, relief, time and human activities). In view of the serious degradation of soil resources, we proposed the challenge and opportunity of the research of soil weathering. The future study should focus on the critical processes, rates and the associated environmental thresholds of soil weathering under varying natural conditions and intensive human perturbations, including the establishment of the quantitative relationship between the weathering rates calculated by different methods, the analysis and interpretation of synergistic effects among multiple influencing factors, and the modeling and prediction of changing tendency of weathering rates under the impacts of both climatic changes and human activities, in order to guide the sustainable management of soil resource and mitigation of global change.

中图分类号: 

[1] Hartmann J, West A J, Renforth P, et al . Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification[J]. Reviews of Geophysics ,2013, 51(2): 113-149.
[2] Schnoor J L, Stumm W. The role of chemical weathering in the neutralization of acidic deposition[J]. Swiss Journal of Hydrology ,1986, 48(2): 171-195.
[3] Johansson M, Tarvainen T. Estimation of weathering rates for critical load calculations in Finland[J]. Environmental Geology ,1997, 29(3/4): 158-164.
[4] Li L, Du S, Wu L, et al . An overview of soil loss tolerance[J]. Catena ,2009, 78(2): 93-99.
[5] Goudie A S, Viles H A. Weathering and the global carbon cycle: Geomorphological perspectives[J]. Earth-Science Reviews ,2012, 113(1): 59-71.
[6] Xu Haijin, Ma Changqian. Review on weathering rates in the crust weathering system[J]. Advances in Earth Science , 2002, 17(5): 670-678.
. 地球科学进展, 2002, 17(5): 670-678.]
[7] Lasaga A C. Kinetic Theory in the Earth Sciences[M]. New York: Princeton University Press,1998: 781-785.
[8] Fan Houbao, Lin Dexi. Leaching and weathering effects of simulated acid rain on four types of mountain soils in Fujian, China[J]. Journal of Mountain Science ,2002, 20(5): 570-577.
. 山地学报, 2002, 20(5): 570-577.]
[9] Feng Zhigang, Ma Qiang, Li Shipeng, et al . Leaching experiment for the weathering of carbonate rocks by simulating different climates[J]. Carsologica Sinica ,2013, 31(4): 361-376.
. 中国岩溶, 2013, 31(4): 361-376.]
[10] Guicharnaud R, Paton G I. An evaluation of acid deposition on cation leaching and weathering rates of an Andosol and a Cambisol[J]. Journal of Geochemical Exploration ,2006, 88(1): 279-283.
[11] Zhang J E, Ouyang Y, Ling D J. Impacts of simulated acid rain on cation leaching from the Latosol in south China[J]. Chemosphere ,2007, 67(11): 2 131-2 137.
[12] Swoboda-Colberg N G, Drever J I. Mineral dissolution rates in plot-scale field and laboratory experiments[J]. Chemical Geology ,1993, 105(1/3): 51-69.
[13] Velbel M A. Constancy of silicate-mineral weathering-rate ratios between natural and experimental weathering: Implications for hydrologic control of differences in absolute rates[J]. Chemical Geology , 1993, 105(1): 89-99.
[14] Duan Lei, Hao Jiming, Ye Xuemei, et al . Study on weathering rate of soil in China[J]. Acta Scientiae Circumstantiae , 2000, (Suppl.1): 1-7.
. 环境科学学报, 2000,(增刊1): 1-7.]
[15] White A F, Brantley S L. The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field?[J]. Chemical Geology ,2003, 202(3): 479-506.
[16] Yang Jinling, Zhang Ganlin. Soil weathering rate and its applications: A review[J]. Soil , 2010 (6): 882-888.
. 土壤, 2010,(6): 882-888.]
[17] Bain D C, Langan S J. Weathering rates in catchments calculated by different methods and their relationship to acidic inputs[J]. Water , Air , and Soil Pollution ,1995, 85(3): 1 051-1 056.
[18] Langan S J, Hodson M E, Bain D C, et al . A preliminary review of weathering rates in relation to their method of calculation for acid sensitive soil parent materials[J]. Water , Air , and Soil Pollution ,1995, 85(3): 1 075-1 081.
[19] Sverdrup H, Warfvinge P. Calculating field weathering rates using a mechanistic geochemical model PROFILE[J]. Applied Geochemistry ,1993, 8(3): 273-283.
[20] Stendahl J, Akselsson C, Melkerud P A, et al . Pedon-scale silicate weathering: Comparison of the PROFILE model and the depletion method at 16 forest sites in Sweden[J]. Geoderma ,2013, 211/212(1): 65-74.
[21] Cosby B J, Hornberger G M, Galloway J N, et al . Modeling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry[J]. Water Resources Research ,1985, 21(1): 51-63.
[22] Capo R C, Stewart B W, Chadwick O A. Strontium isotopes as tracers of ecosystem processes: Theory and methods[J]. Geoderma , 1998, 82(1): 197-225.
[23] Stevenson E I, Aciego S M, Chutcharavan P, et al . Insights into combined radiogenic and stable strontium isotopes as tracers for weathering processes in subglacial environments[J]. Chemical Geology , 2016, 429: 33-43,doi: 10.1016/j.chemgeo.2016.03.008.
[24] Åberg G, Jacks G, Hamilton P J. Weathering rates and 87 Sr/ 86 Sr ratios: An isotopic approach[J]. Journal of Hydrology ,1989, 109(1): 65-78.
[25] Miller E K, Blum J D, Friedland A J.Determination of soil exchangeable-cation loss and weathering rates using Sr isotopes[J]. Nature ,1993, 362: 438-441,doi: 10.1038/362438ao.
[26] Ma Yingjun, Liu Congqiang. Variations of Sr isotopes during chemical weathering of granitic rocks—Influence of relative mineral weathering rate[J]. Science in China ( Series D ), 2001, 31(8): 634-640.
. 中国科学: D 辑, 2001, 31(8): 634-640.]
[27] Moreira-Nordemann L M. Use of 234 U/ 238 U disequilibrium in measuring chemical weathering rate of rocks[J]. Geochimica et Cosmochimica Acta ,1980, 44(1): 103-108.
[28] Conceição F T, Bonotto D M. Use of U-isotope disequilibrium to evaluate the weathering rate and fertilizer-derived uranium in São Paulo state, Brazil[J]. Environmental Geology ,2003, 44(4): 408-418.
[29] Ma L, Chabaux F, Pelt E, et al . Regolith production rates calculated with uranium-series isotopes at Susquehanna/Shale Hills Critical Zone Observatory[J]. Earth and Planetary Science Letters ,2010, 297(1): 211-225.
[30] Taylor A, Blum J D. Relation between soil age and silicate weathering rates determined from the chemical evolution of a glacial chronosequence[J]. Geology ,1995, 23(11): 979-982.
[31] Land M, Ingri J, Öhlander B. Past and present weathering rates in northern Sweden[J]. Applied Geochemistry , 1999, 14(6): 761-774.
[32] Bain D C, Mellor A, Robertson-Rintoul M S E, et al . Variations in weathering processes and rates with time in a chronosequences of soils from Glen Feshie, Scotland[J]. Geoderma , 1993, 57: 275-293.
[33] Thompson A, Chadwick O A, Boman S, et al . Colloid mobilization during soil iron redox oscillations[J]. Environmental Science & Technology , 2006, 40(18): 5 743-5 749.
[34] Jenny H. Factors of Soil Formation[M]. New York: McGraw-Hill Book Company, Inc., 1941:52-80.
[35] Velbel M A, Price J R. Solute geochemical mass-balances and mineral weathering rates in small watersheds: Methodology, recent advances, and future directions[J]. Applied Geochemistry , 2007, 22(8): 1 682-1 700.
[36] Taylor A B, Velbel M A. Geochemical mass balances and weathering rates in forested watersheds of the southern Blue Ridge II. Effects of botanical uptake terms[J]. Geoderma , 1991, 51(1): 29-50.
[37] Wakatsuki T, Rasyidin A. Rates of weathering and soil formation[J]. Geoderma , 1992, 52(3/4): 251-263.
[38] Huang L, Zhang G, Yang J. Weathering and soil formation rates based on geochemical mass balances in a small forested watershed under acid precipitation in subtropical China[J]. Catena , 2013, 105: 11-20,doi: 10.1016/j.catena.2013.01.002.
[39] Augustin F, Houle D, Gagnon C, et al . Evaluation of three methods for estimating the weatheringrates of base cations in forested catchments[J]. Catena , 2016, 144:1-10,doi: 10.1016/j.catena.2016.04.022.
[40] White A F. Quantitative approaches to characterizing natural chemical weathering rates[M]∥Brantley S L, Kubicki J D, White A F, eds. Kinetics of Water-Rock Interaction. New York: Springer, 2008:512-531.
[41] Van’t Hoff J H. Etudes de Dynamique Chimique[M]. Amsterdam: Muller, 1884.
[42] Ramann E. Bodenkunde[M]. Berlin Heidelberg: Springer, 1911.
[43] White A F, Blum A E. Effects of climate on chemical weathering in watersheds[J]. Geochimica et Cosmochimica Acta ,1995, 59(9): 1 729-1 747.
[44] Stewart B W, Capo R C, Chadwick O A. Effects of rainfall on weathering rate, base cation provenance, and Sr isotope composition of Hawaiian soils[J]. Geochimica et Cosmochimica Acta ,2001, 65(7): 1 087-1 099.
[45] Schwartzman D W, Volk T. Biotic enhancement of weathering and the habitability of Earth[J]. Nature ,1989, 340:457-460,doi: 10.1038/340457ao.
[46] Müntz A. Sur la decomposition des roches et la formation de la terre arable[J]. Comptes Rendus del ’ Academie des Sciences ,1890, 110: 1 370-1 372.
[47] Lian Bin, Chen Ye, Zhu Lijun, et al . Progress in the study of the weathering of carbonate rock by microbes[J]. Earth Science Frontiers ,2008, 15(6): 90-99.
. 地學前緣, 2008, 15(6): 90-99.]
[48] Wu Tao, Chen Jun, Lian Bin. Advance in studies on the function of microbes to the weathering of silicate minerals[J]. Bulletin of Mineralogy , Petrology and Geochemistry ,2007, 26(3): 263-268.
. 矿物岩石地球化学通报, 2007, 26(3): 263-268.]
[49] Chen J, Blume H P, Beyer L. Weathering of rocks induced by lichen colonization—A review[J]. Catena , 2000, 39(2): 121-146.
[50] Drever J I. The effect of land plants on weathering rates of silicate minerals[J]. Geochimica et Cosmochimica Acta ,1994, 58(10): 2 325-2 332.
[51] Kelly E F, Chadwick O A, Hilinski T E. The effect of plants on mineral weathering[M]∥Plant-induced Soil Changes: Processes and Feedbacks. Netherlands:Springer Netherlands, 1998: 21-53.
[52] Drever J I, Zobrist J. Chemical weathering of silicate rocks as a function of elevation in the southern Swiss Alps[J]. Geochimica et Cosmochimica Acta ,1992, 56(8): 3 209-3 216.
[53] Bormann B T, Wang D, Snyder M C, et al . Rapid, plant-induced weathering in an aggrading experimental ecosystem[J]. Biogeochemistry ,1998, 43(2): 129-155.
[54] Moulton K L, West J, Berner R A. Solute flux and mineral mass balance approaches to the quantification of plant effects on silicate weathering[J]. American Journal of Science , 2000, 300(7): 539-570.
[55] Li Y, Zhang Q, Wan G, et al . Physical mechanisms of plant roots affecting weathering and leaching of loess soil[J]. Science in China ( Series D ),2006, 49(9): 1 002-1 008.
[56] Suzuki Y, Matsubara T, Hoshino M. Breakdown of mineral grains by earthworms and beetle larvae[J]. Geoderma , 2003, 112(1): 131-142.
[57] Carpenter D, Hodson M E, Eggleton P, et al . Earthworm induced mineral weathering: Preliminary results[J]. European Journal of Soil Biology ,2007, 43: S176-S183,doi: 10.1016/j.ejsobi.2007.08.053.
[58] Carpenter D, Hodson M E, Eggleton P, et al . The role of earthworm communities in soil mineral weathering: A field experiment[J]. Mineralogical Magazine ,2008, 72(1): 33-36.
[59] Jouquet P, Mamou L, Lepage M, et al . Effect of termites on clay minerals in tropical soils: Fungus-growing termites as weathering agents[J]. European Journal of Soil Science ,2002, 53(4): 521-528.
[60] Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science ,1987, 287(5): 401-428.
[61] Jackson M L, Tyler S A, Willis A L, et al . Weathering sequence of clay-size minerals in soils and sediments. I. Fundamental generalizations[J]. The Journal of Physical Chemistry ,1948, 52(7): 1 237-1 260.
[62] Veldkamp A, Feijtel T C. Parent material controlled subsoil weathering in a chronosequence, the Allier terraces, Limagne rift valley, France[J]. Catena , 1992, 19(5): 475-489.
[63] Muhs D R, Bettis E A, Been J, et al . Impact of climate and parent material on chemical weathering in loess-derived soils of the Mississippi River Valley[J]. Soil Science Society of America Journal , 2001, 65(6): 1 761-1 777.
[64] Johnson C E, Driscoll C T, Siccama T G, et al . Element fluxes and landscape position in a northern hardwood forest watershed ecosystem[J]. Ecosystems , 2000, 3(2): 159-184.
[65] Norton K P, Von Blanckenburg F. Silicate weathering of soil-mantled slopes in an active Alpine landscape[J]. Geochimica et Cosmochimica Acta , 2010, 74(18): 5 243-5 258.
[66] Nezat C A, Blum J D, Klaue A, et al . Influence of landscape position and vegetation on long-term weathering rates at the Hubbard Brook Experimental Forest, New Hampshire, USA[J]. Geochimica et Cosmochimica Acta ,2004, 68(14): 3 065-3 078.
[67] Jin L, Ravella R, Ketchum B, et al . Mineral weathering and elemental transport during hillslope evolution at the Susquehanna/Shale Hills critical zone observatory[J]. Geochimica et Cosmochimica Acta , 2010, 74(13): 3 669-3 691.
[68] Burke B C, Heimsath A M, White A F. Coupling chemical weathering with soil production across soil-mantled landscapes[J]. Earth Surface Processes and Landforms ,2007, 32(6): 853-873.
[69] Colman S M. Rock-weathering rates as functions of time[J]. Quaternary Research ,1981, 15(3): 250-264.
[70] Bain D C, Mellor A, Robertson-Rintoul M S E, et al . Variations in weathering processes and rates with time in a chronosequence of soils from Glen Feshie, Scotland[J]. Geoderma ,1993, 57(3): 275-293.
[71] Taylor A, Blum J D. Relation between soil age and silicate weathering rates determined from the chemical evolution of a glacial chronosequence[J]. Geology ,1995, 23(11): 979-982.
[72] White A F, Brantley S L. The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field?[J]. Chemical Geology ,2003, 202(3): 479-506.
[73] Dudal R. The sixth factor of soil formation[J]. Eurasian Soil Science , 2005, 38(Suppl.1): S60-S65.
[74] Yaalon D H, Yaron B. Framework for man-made soil changes-an outline of metapedogenesis[J]. Soil Science ,1966, 102(4): 272-277.
[75] Huang L M, Yang J L, Thompson A, et al . Proton production from nitrogen transformation drives stream export of base cations in acid-sensitive forested watersheds[J]. Ecological Indicators ,2015, 48: 348-357,doi: 10.1016/j.ecolind.2014.08.028.
[76] Paces T. Rate constants of dissolution derived from the measurements of mass balance in hydrological catchments[J]. Geochimica et Cosmochimica Acta ,1983, 47(11): 1 855-1 863.
[77] Bayon G, Dennielou B, Etoubleau J, et al . Intensifying weathering and land use in Iron Age Central Africa[J]. Science ,2012, 335(6 073): 1 219-1 222.
[78] Brady P V, Dorn R I, Brazel A J, et al . Direct measurement of the combined effects of lichen, rainfall, and temperature onsilicate weathering[J]. Geochimica et Cosmochimica Acta , 1999, 63(19): 3 293-3 300.
[79] Gordon S J. Effect of environmental factors on the chemical weathering of plagioclase in Hawaiian basalt[J]. Physical Geography ,2005, 26(1): 69-84.
[1] 陈璐,孙若愚,刘羿,徐海. 海洋铜锌同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(6): 592-603.
[2] 储著银, 许继峰. 铼—锇同位素和铂族元素分析方法及地学应用进展[J]. 地球科学进展, 2021, 36(3): 245-264.
[3] 闫雅妮, 张伟, 张俊文, 任亚雄, 赵志琦. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展[J]. 地球科学进展, 2021, 36(3): 325-334.
[4] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[5] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[6] 单森,齐远志,罗春乐,付文静,薛跃君,王旭晨. 中国主要河流输送陆源碳的同位素特征及影响因素[J]. 地球科学进展, 2020, 35(9): 948-961.
[7] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[8] 赖正,苏妮,吴舟扬,连尔刚,杨承帆,李芳亮,杨守业. 流域风化过程稳定锶同位素的分馏与示踪[J]. 地球科学进展, 2020, 35(7): 691-703.
[9] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[10] 朱艳宸,李丽,王鹏,贺娟,贾国东. 海洋氮循环中稳定氮同位素变化与地质记录研究进展[J]. 地球科学进展, 2020, 35(2): 167-179.
[11] 常鑫,张明宇,谷玉,王厚杰,刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素[J]. 地球科学进展, 2020, 35(12): 1306-1320.
[12] 周涛, 蒋壮, 耿雷. 大气氧化态活性氮循环与稳定同位素过程:问题与展望[J]. 地球科学进展, 2019, 34(9): 922-935.
[13] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[14] 马晓旭,刘传联,金晓波,张洪瑞,马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用[J]. 地球科学进展, 2019, 34(3): 265-274.
[15] 秦瑞,史贵涛,陈振楼. 大气硝酸盐中氮氧稳定同位素研究进展[J]. 地球科学进展, 2019, 34(2): 124-139.
阅读次数
全文


摘要