Please wait a minute...
img img
高级检索
地球科学进展  2016, Vol. 31 Issue (1): 59-65    
研究论文     
张渤地震带高光谱气体地球化学特征
崔月菊1, 杜建国1, 李营1, 刘雷1, 周晓成1, 陈扬2, 陈志1, 韩晓昆3
1.中国地震局地震预测重点实验室(中国地震局地震预测研究所),北京 100036;
2.中国国土资源航空物探遥感中心,北京 100083;
3.中国科学院地理科学与资源研究所 北京 100101
Gas Geochemical Characteristics of the Zhang-Bo Seismic Zone Extracted from Hyper-spectral Data
Cui Yueju1, Du Jianguo1, Li Ying1, Liu Lei1, Zhou Xiaocheng1, Chen Yang2, Chen Zhi1, Han Xiaokun3
1. CEA Key Laboratory of Earthquake Prediction (Institute of Earthquake Science), China Earthquake Administration, Beijing 100036, China;
2. China Aero Geophysical Survey & Remote Sensing Center for Land and Resources, Beijing 100083, China;
3. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
 全文: PDF(9096 KB)   HTML
摘要:

利用卫星高光谱数据分析了张家口--渤海(张渤)地震带CO和CH4总量的时,空变化特征及其影响因素.时间上,该地区CO总量存在明显的周期性季节变化,但是CH4总量的周期性季节变化不明显.空间上,研究区南部CO和CH4总量高于北部地区;由西向东气体总量增大,在平原和山区交界的地方变化明显.CO和CH4总量背景趋势时间上受气候和气象变化影响,空间上主要受控于区域地形地貌,地质背景,构造和地震活动及地壳厚度等.研究结果不仅为研究区地震地球化学测量提供了新的科学资料,而且对地震异常判识,断裂带分段活动性研究具有重要意义.

关键词: COCH4地球化学卫星高光谱遥感地震活动性    
Abstract:

The affecting factors on gas geochemical characteristics extracted from hyper-spectral data in the Zhangjiakou-Bohai seismic zone were discussed. Temporal and spatial variations of total column CO and CH4 were analyzed based on the satellite hyper-spectral data. Temporally, the total column CO in the study area showed obviously seasonal variation, while CH4 didn't. Spatially, values of total column CO and CH4 in the southern part of the study area were higher than thoes in the northern part. Both total column CO and CH4 increased from western to eastern, and showed the largest changing rate over the piedmont fault zone at the junction of plain and mountains. The temporal variations of total CO and CH4 backgrounds could be attributed to the effects of climate and weather. The spatial variations of total CO and CH4 backgrounds may be controlled by the regional topography, geology, seismic activities, crustal thickness and so on. The results not only provide new scientific data for monitoring earthquake, but also have an important significance to the study of earthquake anomaly identification and segmentation seismic activity of fault zone.

Key words: Geochemistry.    CH4    Satellite hyper-spectral remote sensing    Seismic activity    CO
出版日期: 2016-01-10
:  P59  
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
崔月菊
刘雷
陈扬
周晓成
杜建国
陈志
李营
韩晓昆

引用本文:

崔月菊, 杜建国, 李营, 刘雷, 周晓成, 陈扬, 陈志, 韩晓昆. 张渤地震带高光谱气体地球化学特征[J]. 地球科学进展, 2016, 31(1): 59-65.

Cui Yueju, Du Jianguo, Li Ying, Liu Lei, Zhou Xiaocheng, Chen Yang, Chen Zhi, Han Xiaokun. Gas Geochemical Characteristics of the Zhang-Bo Seismic Zone Extracted from Hyper-spectral Data. Advances in Earth Science, 2016, 31(1): 59-65.

链接本文:

http://www.adearth.ac.cn/CN/        http://www.adearth.ac.cn/CN/Y2016/V31/I1/59

[1] Ma Wentao, Xu Xiwei, Yu Guihua, et al. The relationship between seismic activity and fault activity in Beijing region[J]. Seismology and Geology, 2004, 26(2): 293-304. [马文涛,徐锡伟,于贵华,等. 首都圈地区的地震活动性与断裂的关系[J]. 地震地质,2004,26(2): 293-304.]
[2] Li Layue, Xing Chengqi, Wu Anxu, et al. Fault activities based on fault fault-crossing observation in the capital circle region of China and its relationship with earthquakes[J]. Earthquake Research in China, 2012, 28(2): 167-178. [李腊月,邢成起,武安绪,等.首都圈断层活动及其与地震关系探讨[J]. 中国地震,2012,28(2): 167-178.]
[3] Zhang Wei, Wang Jiyi, E Xiuman. Hydrochemical Principles and Methods of Earthquake Prediction[M]. Beijing: Seismological Press, 1988. [张炜,王吉易,鄂秀满. 水文地球化学预报地震的原理与方法[M]. 北京: 地震出版社,1988.]
[4] Du J, Si X, Chen Y, et al. Geochemical anomalies connected with great earthquakes in China[G]∥Stefánssonó, ed. Geochemistry Research Advances. New York: Nova Science Publishers, Inc., 2008: 57-92.
[5] Zhou Xiaocheng, Du Jianguo, Chen Zhi, et al. Advance review of seismic geochemistry[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31(4):340-346. [周晓成,杜建国,陈志,等. 地震地球化学研究进展[J]. 矿物岩石地球化学通报,2012,31(4): 340-346.]
[6] Cui Y J, Du J G, Zhang D H, et al. Anomalies of total column CO and O 3 associated with great earthquakes in recent years[J]. Natural Hazards and Earth System Sciences, 2013, 13(10): 2 513-2 519.
[7] Cui Yueju, Li Jing, Wang Yanyan, et al. Application of gas remote sensing technique in earthquake monitoring[J]. Advances in Earth Science,2015, 30(2): 284-294. [崔月菊,李静,王燕艳,等. 遥感气体探测技术在地震监测中的应用[J]. 地球科学进展,2015,30(2): 284-294.]
[8] Wang Chengmin. Well-Network for Earthquake Prediction in China[M]. Beijing: Seismological Press, 1990. [汪成民.中国地震地下水动态观测网[M]. 北京: 地震出版社,1990.]
[9] Che Yongtai, Liu Chenglong, Yu Jinzi, et al. Underground fluid anomaly and macro anomaly of Ms 8.0 Wenchuan Earthquake and opinions about earthquake prediction[J]. Seismology and Geology,2008, 30(4): 828-838. [车用太,刘成龙,鱼金子,等. 汶川Ms 8.0地震的地下流体与宏观异常及地震预测问题的思考[J]. 地震地质,2008,30(4):828-838.]
[10] Liu Yaowei, Ren Hongwei. Preliminary analysis of the characteristics of post-seismic effect of radon after the Wenchuan 8.0 earthquake[J]. Earthquake, 2009, 29(1): 121-131. [刘耀炜,任宏微.汶川8.0级地震氡观测值震后效应特征初步分析[J].地震,2009,29(1):121-131.]
[11] Tronin A A. Remote sensing and earthquakes: A review[J]. Physics and Chemistry of the Earth,2006, 31(4/9): 138-142.
[12] Singh R P, Kumar S J, Zlotnicki J, et al. Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001[J]. Applied Geochemistry, 2010, 25(4): 580-585.
[13] Cui Yueju, Du Jianguo, Zhou Xiaocheng, et al. Geochemical anomaly of CO remote sensing associated with Baja California Mw 7.2 earthquake in Mexico[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2011,30(4):458-464. [崔月菊,杜建国,周晓成,等.墨西哥下加利福尼亚Mw 7.2地震前后CO遥感地球化学异常[J]. 矿物岩石地球化学通报,2011,30(4):458-464.]
[14] Barnet C D, Goldberg M, McMillin L, et al. Remote sounding of trace gases with the EOS/AIRS instrument[C]∥Huang H L A, Bloom H J, eds. Atmospheric and Environmental Remote Sensing Data Processing and Utilization: An End-to-End System Perspective. Bellingham, WA: Proceeding of SPIE, 2004, 5548: 300-312.
[15] Aumann H H, Chahine M T, Gautier C, et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 253-264.
[16] Pagano T S, Aumann H H, Hagan D E, et al. Prelaunch and in-flight radiometric calibration of the Atmospheric Infrared Sounder (AIRS)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 265-273.
[17] Susskind J, Barnet C D, Blaisdell J M. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds[J]. IEEE Transactions on Geoscience and Remote Sensing,2003, 41(2): 390-409.
[18] Qin Yu, Zhao Chunsheng. Principle of Atmospheric Chemistry[M]. Beijing: China Meteorological Press, 2003:168-170. [秦瑜,赵春生.大气化学基础[M]. 北京:气象出版社,2003:168-170.]
[19] Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change(IPCC) Working Group I Third Assessment Report[R]. New York: Cambridge University Press, 2001.
[20] Lin Y, Zhao C, Peng L, et al. A new method to calculate monthly CO emissions using MOPITT satellite data[J]. Chinese Science Bulletin, 2007, 52(18): 2 551-2 558.
[21] Weinstock B, Niki H. Carbon monoxide balance in nature[J].Science, 1972, 176(32): 290-292.
[22] Zhou Lingxi, Tang Jie, Ernst M, et al. Continuous measurement of baseline atmospheric carbon monoxide in western China[J]. Environmental Science, 2001, 22(3): 1-5. [周凌晞,汤洁,Ernst M,等.中国西部本底大气中CO的连续测量[J]. 环境科学,2001,22(3): 1-5.]
[23] Klussman R W. Soil Gas and Related Methods for Natural Resource Exploration [M]. New York: John Wiley, 1993.
[24] Wang Yongxian. Carbon monoxide pollution in Tongling City in 2010[J]. Technology Information, 2011,(24):371. [王永贤.2010年铜陵市一氧化碳污染状况[J]. 科技信息,2011,(24): 371.]
[25] Li Desheng. Geological and technical features of Bo-Hai oil and gas-bearing basin[J]. Acta Petrolei Sinica, 1980,1(1): 6-18. [李德生.渤海湾含油气盆地的地质和构造特征[J]. 石油学报,1980,1(1): 6-18.]
[26] Toutain J P, Baubron J C. Gas geochemistry and seismtectonics: A review[J]. Tectonophysics, 1999, 304(1): 12 227.
[27] Luo Yan, Chong Jiajun, Ni Sidao, et al. Molo depth and sedimentary thickness in Capital region[J]. Chinese Journal of Geophysics, 2008, 51(4): 1 135-1 145. [罗艳,崇加军,倪四道,等. 首都圈莫霍面起伏及沉积厚度[J]. 地球物理学报,2008,51(4): 1 135-1 145.]
[28] Wang Jun, Liu Qiyuan, Chen Jiuhui, et al. The crustal thickness and Poisson's ratio beneath the Capital Circle region[J].Chinese Journal of Geophysics, 2009, 52(1):57-66. [王竣,刘启元,陈九辉,等. 首都圈地区的地壳厚度及泊松比[J]. 地球物理学报,2009,52(1):57-66.]

[1] 董爱国, 韩贵琳. 镁同位素体系在河流中的研究进展[J]. 地球科学进展, 2017, 32(8): 800-809.
[2] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[3] 韩志轩, 廖建国, 张聿隆, 张必敏, 王学求. 穿透性地球化学勘查技术综述与展望[J]. 地球科学进展, 2017, 32(8): 828-838.
[4] 潘文杰, 杨孝民, 张晓东, 李自民, 杨石磊, 吴云涛, 郝倩, 宋照亮. 中国陆地生态系统植硅体碳汇研究进展[J]. 地球科学进展, 2017, 32(8): 859-866.
[5] 许子娟, 左昕昕, 范百龄, 丁新泉, 张晓东, 李子川, 闫翠香, 宋照亮. 植硅体圈闭碳地球化学研究进展[J]. 地球科学进展, 2017, 32(2): 151-159.
[6] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[7] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[8] 李琦, 宋然然, 匡冬琴, 卢绪涛, 李小春. 二氧化碳地质封存与利用工程废弃井技术的现状与进展[J]. 地球科学进展, 2016, 31(3): 225-235.
[9] 穆延宗, 乜 贞, 卜令忠, 王云生, 伍 倩. 我国油(气)田水钾资源研究进展[J]. 地球科学进展, 2016, 31(2): 147-160.
[10] 安培浚, 张志强, 王立伟. 地球关键带的研究进展[J]. 地球科学进展, 2016, 31(12): 1228-1234.
[11] 郭进义, 侯青叶. 2016年度地球化学领域项目评审与资助成果[J]. 地球科学进展, 2016, 31(12): 1275-1278.
[12] 黄来明, 邵明安, 贾小旭, 张甘霖. 土壤风化速率测定方法及其影响因素研究进展[J]. 地球科学进展, 2016, 31(10): 1021-1031.
[13] 药瑛, 孙樯. 应用于流体包裹体CO2碳同位素组成的拉曼光谱定量研究探讨[J]. 地球科学进展, 2016, 31(10): 1032-1040.
[14] 董爱国, 朱祥坤. 表生环境中镁同位素的地球化学循环[J]. 地球科学进展, 2016, 31(1): 43-58.
[15] 罗志波. 阿拉善地块早前寒武纪大陆地壳的形成与演化[J]. 地球科学进展, 2015, 30(8): 878-890.