地球科学进展 ›› 2017, Vol. 32 ›› Issue (2): 174 -186. doi: 10.11867/j.issn.1001-8166.2017.02.0174

研究论文 上一篇    下一篇

基于有效温度指数的云南舒适度变化分析
吴佳 1, 高学杰 2, 3, *, 韩振宇 1, 徐影 1   
  1. 1.中国气象局国家气候中心,北京 100081;
    2.中国科学院大气物理研究所气候变化研究中心, 北京 100029;
    3.中国科学院大学,北京 100049
  • 收稿日期:2016-10-12 修回日期:2017-01-02 出版日期:2017-02-20
  • 通讯作者: 高学杰(1966-),男,河北石家庄人,研究员,主要从事区域气候模拟和气候变化研究.E-mail:gaoxuejie@mail.iap.ac.cn
  • 基金资助:

    中国气象局气候变化专项“中国地区高分辨率极端气候事件和风险预估研究”(编号: CCSF201626)和“云南气候容量定量评估研究”(编号:CCSF201508)资助

Analysis of the Change of Comfort Index over Yunnan Province Based on Effective Temperature

Wu Jia 1, Gao Xuejie 2, 3, *, Han Zhenyu 1, Xu Ying 1   

  1. 1.National Climate Center, China Meteorological Administration, Beijing 100081, China;
    2.Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China;
    3.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-10-12 Revised:2017-01-02 Online:2017-02-20 Published:2017-02-20
  • Contact: Gao Xuejie (1966-),male, Shijiazhuang City, Hebei Province, Professor. Research areas include regional climate modeling and climate change studies.E-mail:gaoxuejie@mail.iap.ac.cn
  • About author:First author:Wu Jia(1984-), female, Huaihua City, Hu’nan Province, Associate professor. Research areas include regional climate modeling and climate change studies.E-mail:wujia@cma.gov.cn
  • Supported by:

    Project supported by the Climate Change Foundation of China Meteorological Administration “Research on the high resolution projection of climate extremes and risks over China”(No.CCSF201626) and “Quantitative assessment of climate capacity in Yunnan”(No.CCSF201508)

使用高分辨率的格点化观测资料CN05.1,基于考虑了气温、相对湿度和风速影响的有效温度指数ET,进行了云南省1961—2014年气候舒适度变化的研究。结果表明,云南省地形高的北部地区气温低、相对湿度小、风速大、ET小,地形低的区域则相反。近几十年云南全境均表现出气温升高、相对湿度和风速减小、ET升高的变化趋势。对ET不同分级日数的分析指出:云南省北部冷—寒冷日和凉爽日较多,南部则主要为凉爽日和舒适日,并且全省冷—寒冷日呈明显减少趋势,凉爽日在北部增加、南部减少,舒适日显著增加,温暖及热—炎热日在南部个别地方增加,气候适宜日在4个季节均增加。在全球变暖背景下,冷—寒冷日的大幅度减少和气候适宜日的增加均表明,云南省目前的气候适宜程度有所提高。

The Effective Temperature (ET), which considers the aggregate effects of temperature, relative humidity and wind speed to describe the human thermal sensitivity, was employed to investigate the change of thermal conditions over Yunnan Province in China during the period of 1961-2014. The observation data used in the study is the high resolution gridded daily scale dataset CN05.1. The results show that over the northern part of the Province with high elevation mountains, colder temperature, lower relative humidity and stronger wind speed prevail, which leads to the lower ET values there. Opposite conditions are found over the low elevation areas in the south. An overall warming and decrease of both relative humidity and wind speed are observed in the latest decades in the whole Province, resulting in the general increase of ET over the region. Analysis based on the different assessment scales of ET shows that, more cold/extreme cold days and cool days exist in the north, while the cool days and comfortable days are mainly distributed in the south. General decrease of cold/extreme cold days is found over the region. An increase of the cool days in the north and decrease of it in the south, significant increase of the comfortable days, and increase of warm and hot/extreme hot days over portions in the south are reported. More climatic favorable days are found in all of the four seasons. Within the climate change context, the significant reduction of cold/extreme cold days and increase of climatic favorable days indicate that the climate in Yunnan Province so far tends to be more favorable for the human beings.

中图分类号: 

[1] Editorial Committee of the Climate Change Projection and Its Impact Assessment Report on Climate Change over Yunnan in the Next 10-30 Years. Climate Change Projection and Its Impact Assessment Report on Climate Change over Yunnan in the Next 10-30 Years[M]. Beijing: Meteorological Press, 2014.
[云南未来10~30年气候变化预估及其影响评估报告编写委员会. 云南未来10~30年气候变化预估及其影响评估报告[M]. 北京: 气象出版社, 2014.]
[2] Epstein Y, Moran D S. Thermal comfort and heat stress indices[J]. Industrial Health, 2006, 44(3): 388-398.
[3] Blazejczyk K, Epstein Y, Jendritzky G,et al. Comparison of UTCI to selected thermal indices[J]. International Journal of Biometeorology, 2012, 56: 515-535, doi: 10.1007/s00484-011-0453-2.
[4] Freitas C R, Grigorieva E A. A comprehensive catalogue and classification of human thermal climate indices[J]. International Journal of Biometeorology, 2015, 59(1): 109-120.
[5] Diffenbaugh N S, Pal J S, Giorgi F, et al. Heat stress intensification in the Mediterranean climate change hotspot[J]. Geophysical Research Letters, 2007, 34: L11706, doi: 10.1029/2007GL030000.
[6] Perch-Nielsen S L, Amelung B, Knutti R. Future climate resources for tourism in Europe based on the daily tourism climatic index[J]. Climatic Change, 2010, 103(3/4): 363-381, doi: 10.1007/s10584-009-9772-2.
[7] Fischer E M, Oleson K W, Lawrence D M. Contrasting urban and rural heat stress responses to climate change[J]. Geophysical Research Letters, 2012, 39: L03705,doi:10.1029/2011 GL050576.
[8] Pal J S, Eltahir E A B. Future temperatures in southwest Asia projected to exceed a threshold for human adaptability[J]. Nature Climate Change, 2015, 6: 197-200, doi: 10.1038/nclimate2833.
[9] Fan Zhengye, Guo Laixi. The climate suitability of tourism at the coastline destinations of China[J]. Journal of Natural Resources, 1998, 13(4): 304-311.
[范正业, 郭来喜.中国海滨旅游地气候适宜性评价[J]. 自然资源学报, 1998,13(4): 304-311.]
[10] Ren Jianmei, Niu Junjie, Hu Caihong, et al. Tourism climate and evaluation of comfortableness in Wutai Mountain[J]. Geographical Research, 2004, 23(6): 856-862.
[任健美, 牛俊杰, 胡彩虹, 等. 五台山旅游气候及其舒适度评价[J]. 地理研究, 2004, 23(6): 856-862.]
[11] Ma Lijun, Sun Gennian, Wang Jiejie. Evaluation of tourism climate comfortableness of coastal cities in the Eastern China[J].Progress in Geography, 2009, 28(5): 713-722.
[马丽君, 孙根年, 王洁洁. 中国东部沿海沿边城市旅游气候舒适度评价[J]. 地理科学进展, 2009, 28(5): 713-722.]
[12] Chen Yongtao. Evaluation of tourism climate comfort index in Yunnan Province[J]. Ecological Economy, 2013,(2): 305-310.
[陈永涛.云南省旅游气候舒适度评价[J]. 生态经济: 学术版, 2013,(2): 305-310.]
[13] Dang Bing, Wang Shigong, Shang Kezheng. Evaluation of tourism climate comfort level in Pingliang of Gansu Province[J].Journal of Arid Meteorology, 2013, 31(4): 684-689.
[党冰, 王式功, 尚可政. 甘肃平凉市的旅游气候舒适度评价[J]. 干旱气象, 2013, 31(4): 684-689.]
[14] Zhu Xueling, Ren Jian. Analysis and forecast of human comfort[J]. Meteorological and Environmental Sciences, 2011, 34(Suppl.): 131-134.
[朱学玲, 任健. 人体舒适度的分析与预报[J]. 气象与环境科学, 2011, 34(增刊):131-134.]
[15] Yan Yechao, Yue Shuping, Liu Xuehua, et al. Advances in assessment of bioclimatic comfort conditions at home and abroad[J]. Advances in Earth Science, 2013, 28 (10): 1 119-1 125.
[闫业超, 岳书平, 刘学华, 等.国内外气候舒适度评价研究进展[J]. 地球科学进展, 2013, 28(10): 1 119-1 125.]
[16] Wang Zunya, Ding Yihui, He Jinhai, et al. An updating analysis of the climate change in China in recent 50 years[J]. Acta Meteorologica Sinica, 2004, 62(2): 228-236.
[王遵娅, 丁一汇, 何金海, 等. 近50年来中国气候变化特征的再分析[J]. 气象学报, 2004, 62(2): 228-236.]
[17] Ren Guoyu, Guo Jun, Xu Mingzhi, et al. Climate changes of China’s mainland over the past half century[J]. Acta Meteorologica Sinica, 2005, 63(6): 942-956.
[任国玉, 郭军, 徐铭志, 等. 近50年中国地面气候变化基本特征[J]. 气象学报, 2005, 63(6): 942-956.]
[18] Li Yu, Zhu Gengrui. Changes of climate zones in the transition area of three natural zones during the past 50 years and their responses to climate change[J]. Advances in Earth Science, 2015, 30(7):791-801, doi:10.11867/j.issn.1001-8166.2015.07.0791.
[李育,朱耿睿. 三大自然区过渡地带近50年来气候类型变化及其对气候变化的响应[J]. 地球科学进展, 2015, 30(7): 791-801, doi:10.11867/j.issn.1001-8166.2015.07.0791.]
[19] Yang Jianping, Ding Yongjian, Fang Yiping, et al. Research frame of vulnerability and adaptation for the cryosphere and its changes[J]. Advances in Earth Science, 2015, 30(5): 517-529,doi:10.11867/j.issn.1001-8166.2015.05.0517.
[杨建平, 丁永建, 方一平, 等. 冰冻圈及其变化的脆弱性与适应研究体系[J]. 地球科学进展, 2015, 30(5): 517-529,doi: doi:10.11867/j.issn.1001-8166.2015.05.0517.]
[20] Dong Guoqing, Li Liping, Zheng Guangfen. Changing trends of winter temperature in recent 53 years in Ningxia and impact for agriculture[J]. Advances in Earth Science, 2016, 31(11): 1 172-1 181,doi:10.11867/j.issn.1001-8166.2016.11.1172.
[董国庆, 李丽平, 郑广芬. 宁夏近53 年冬季气温变化趋势及对农业的影响[J]. 地球科学进展, 2016, 31(11): 1 172-1 181,doi:10.11867/j.issn.1001-8166.2016.11.1172.]
[21] Cheng Jiangang, Xie Ming’en. The analysis of regional climate change features over Yunnan in recent 50 years[J]. Progress in Geography, 2008,127(5): 19-26.
[程建刚, 解明恩. 近50年云南地区气候变化特征分析[J]. 地理科学进展, 2008,127(5): 19-26.]
[22] Li Meng, Zhu Yong, Huang Wei. Influence of climate change on climate potential productivity in Yunnan[J]. Chinese Journal of Agrometeorology, 2010, 31(3): 442-446.
[李蒙, 朱勇, 黄玮. 气候变化对云南气候生产潜力的影响[J]. 中国农业气象, 2010, 31(3): 442-446.]
[23] Liu Yu, Zhao Erxu, Huang Wei, et al. Characteristic analysis of precipitation and temperature trend in Yunnan Province in recent 46 years[J]. Journal of Catastrophology,2010, 25(1): 39-44, 63.
[刘瑜, 赵尔旭, 黄玮, 等. 云南近46年降水与气温变化趋势的特征分析[J]. 灾害学, 2010, 25(1): 39-44,63.]
[24] Duan Xu, Tao Yun. The climate change of Yunnan over the last 50 years[J]. Journal of Tropical Meteorology, 2012, 28(2): 243-250.
[段旭, 陶云. 云南近50 年来的气候变化[J]. 热带气象学报, 2012, 28(2): 243-250.]
[25] Wu Jia, Gao Xuejie. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal Geophysics, 2013, 56(4): 1 102-1 111,doi: 10.6038/cjg20130406.
[吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4): 1 102-1 111, doi: 10.6038/cjg20130406.]
[26] Wu J, Gao X J, Giorgi F, et al. Changes of effective temperature and cold/hot days in late 10 as over China based on a high resolution gridded observation dataset[J].International Journal of Climatology, 2017, doi: 10.1002/joc.5038.
[27] Xu Y, Gao X J, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advances in Atmospheric Sciences, 2009, 26(4): 502 763-502 772.
[28] Gao X J, Wang M L, Giorgi F. Climate change over China in the 21st century as simulated by BCC_CSM1.1-RegCM4.0[J]. Atmospheric and Oceanic Science Letter, 2013, 6: 381-386, doi:10.3878/j.issn.1674-2834.13.0029.
[29] Hu Qin, Jiang Dabang, Fan Guangzhou. Evaluation of CMIP5 Models over the Qinghai-Tibetan Plateau[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(5): 924-938.
[胡芩, 姜大膀, 范广洲. CMIP5全球气候模式对青藏高原地区气候模拟能力评估[J]. 大气科学, 2014, 38(5): 924-938.]
[30] Huang Y Y, Wang H J, Fan K. Improving the prediction of the summer Asian-Pacific Oscillation using the interannual increment approach[J]. Journal of Climate, 2014, 27: 8 126-8 134,doi: 45010.1175/JCLI-D-14-00209.1.
[31] Hua Wenjian, Chen Haishan, Li Xing. Effects of future land use change on the regional climate in China[J]. Scientia Sinica Terrae, 2015, 45(7): 1 034-1 042.
[华文剑, 陈海山, 李兴. 未来土地利用变化影响中国区域气候的数值模拟[J]. 中国科学:地球科学, 2015, 45(7): 1 034-1 042.]
[32] Shi Y, Gao X J, Xu Y, et al. Effects of climate change on heating and cooling degree days and potential energy demand in the household sector of China[J]. Climate Research, 2016, 67: 135-149, doi: 10.3354/cr01360.
[33] Houghton F C, Yaglo C P. Determining equal comfort lines[J]. Journal of the American Society of Heating and Ventilating Engineers, 1923, 29: 165-176.
[34] Missenard F A. Température effective d’une atmosphere Généralisation temperature résultante d’un milieu[M]∥Encyclopédie Industrielleet Commerciale, Etude physiologique et technique de la ventilation. Paris: Librerie de l’Enseignement Technique, 1933.
[35] Gregorczuk M. Biometeorological and hygienic assessment of negative effective temperatures[J].Hygiene and Sanitation, 1968, 33: 400-403.
[36] Landsberg H E. The Assessment of Human Bioclimate: A Limited Review of Physical Parameters[M]. Geneva: World Meteorological Organization (WMO No. 331), Technical Note No. 123, 1972.
[37] Hentschel G. A human biometeorology classification of climate for large and local scales[C]∥Proc. WMO/HMO/UNEP Symposium on Climate and Human Health. Leningrad: Vol. I, WCPA-No.1, WMO, 1987.
[38] Li P W, Chan S T. Application of a weather stress index for alerting the public to stressful weather in Hong Kong[J]. Meteorological Applications, 2000, 7(4): 369-375.
[39] Gagge A P, Stolwijk J A J, Nishi Y. An effective temperature scale based on a simple model of human physiological regulatory response[J]. ASHRAE Transactions, 1971, 77: 247-272.
[40] Höppe P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal environment[J]. International Journal of Biometeorology, 1999, 43:71-75.
[41] Jendritzky G, de Dear R, Havenith G. UTCI—Why another thermal index?[J]. International Journal of Biometeorology, 2012, 56(3): 421-428.
[42] Wang Y Q. MeteoInfo: GIS software for meteorological data visualization and analysis[J].Meteorological Applications,2014, 21(2): 360-368.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要