Please wait a minute...
img img
高级检索
地球科学进展  2013, Vol. 28 Issue (6): 685-694    DOI: 10.11867/j.issn.1001-8166.2013.06.0685
综述与评述     
地面雨滴谱观测技术及特征研究进展
朱亚乔1,2,刘元波1*
1.中国科学院南京地理与湖泊研究所,江苏 南京 210008;2.中国科学院大学,北京 100049
Advances in Measurement Techniques and Statistics Features
Zhu Yaqiao1,2, Liu Yuanbo1
1.Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing210008,China;2.University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(997 KB)  
摘要:

雨滴谱是反映降水微观物理过程和宏观动力结构的主要指标之一。通过分析雨色斑滴谱,可以深入了解降水的发展和演变过程,揭示降水机制。传统雨滴谱测量包括动力学法、滤纸色斑法、面粉团法、快速摄影法和浸润法等,但是普遍存在精度低、工作量大、实时性差、成本高及无法自动完成测量分类等缺点。以雨滴谱仪为代表的新型雨滴谱测量技术包括冲击雨滴谱仪、光学雨滴谱仪和声学雨滴谱仪以及雷达技术等克服了这些缺点,在降水粒子[JP2]观测和降水物理研究中发挥了重要的作用。综合概述了描述雨滴谱的主要分布模型及其适用条件。归纳分析了不同降水云系(对流云、层状云和层积云降水)、不同降水类型(大陆云和海洋云降水)及不同高度处观测的降水的雨滴谱特征。从学科发展趋势和社会需求的角度,概述了有关雨滴谱研究中存在的主要问题和发展趋势。

关键词: 雨滴谱雨滴谱观测技术雨滴谱特征降水雷达降水    
Abstract:

 Rain Drop Size Distribution (DSD) is one of the key parameters to microphysical process and macrodynamical structure of precipitation. It provides useful information for understanding the mechanisms of precipitation formation and development. Conventional measurement techniques include momentum method, flour method, filtering paper, raindrop camera and immersion method. In general, the techniques have  large measurement error, heavy workload, and low efficiency. Innovation of disdrometer is a remarkable progress in DSD observation. To date, the major techniques are classified into impacting, optical and acoustic disdrometers, which are automated and more convenient and accurate. The impacting disdrometer transforms the momentum of raindrops into electric impulse, which are easy to operate and qualityassured but with large errors for extremely large or small raindrops. The optical disdrometer measures rainfall diameter and its velocity in the same time, but cannot distinguish the particles passing through sampling area simultaneously. The acoustic disdrometer determines DSD from the raindrop impacts on water body with a high temporal resolution but easily affected by wind. In addition, the Doppler can provide DSD with polarimetric techniques for large area while it is affected by updrafts, downdrafts and horizontal winds.DSD has meteorological features, which can be described with the MarshallPalmer (M-P), the Gamma, the lognormal or the normalized models. The MP model is suitable for steady rainfall, usually used for weak and moderate rainfall. The gamma model is proposed for DSD at high rain rate. The lognormal model is widely applied for cloud droplet analysis, but not appropriate for DSD with a broad spectrum. The normalized model is free of assumptions about the shape of the DSD. For practical application, statistical comparison is necessary for selection of a most suitable model. Meteorologically, convective rain has a relatively narrow and smooth DSD spectrum usually described by the MP model. Stratiform rain has a broad DSD spectrum described with the Gamma model. Stratocumulus mixed rain has relatively large drop diameter but small mean size usually described by the Gamma model. The continent rainfall is altitude dependent and it differs from the maritime cloud rainfalls in terms of rain rate and drop diameter. Overall, the meteorological features are useful to improve our understanding of precipitation formation but also important to development of precipitation retrieval techniques with a high accuracy.

Key words: Rain Drop Size Distribution    Measurement technique of raindrop size distribution    Characteristic of raindrop size distribution    Radar    Precipitation
收稿日期: 2013-01-16 出版日期: 2013-06-10
:  P426  
基金资助:

中国科学院南京地理与湖泊研究所“一三五”重点项目“长江中游两湖水量变化关键过程与集成模拟研究”(编号:NIGLAS2012135001);中国科学院“百人计划”择优支持项目“基于定量遥感的湖泊蓄水量变化驱动机制研究”资助.

通讯作者: 刘元波(1969-),男,山东济宁人,研究员,主要从事水文遥感研究.E-mail:ybliu@niglas.ac.cn     E-mail: 刘元波ybliu@niglas.ac.cn
作者简介: 朱亚乔(1989-),女,安徽安庆人,硕士研究生,主要从事降水遥感研究.E-mail:zhuyaqiao890222@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱亚乔
刘元波

引用本文:

朱亚乔,刘元波. 地面雨滴谱观测技术及特征研究进展[J]. 地球科学进展, 2013, 28(6): 685-694.

Zhu Yaqiao, Liu Yuanbo. Advances in Measurement Techniques and Statistics Features. Advances in Earth Science, 2013, 28(6): 685-694.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2013.06.0685        http://www.adearth.ac.cn/CN/Y2013/V28/I6/685

[1]Gu Zhenchao. Physics Basics of Cloud Precipitation[M]. Beijing: Science Press,1980.[顾震潮.云雾降水物理基础[M]. 北京:科学出版社,1980.]

[2]Wang Kefa, Zhang Huihui, Zhang Wei, et al. The detection and elimination of abnormal data for the precipitation observed by Parsivel precipitation particle spectrometer[J]. Journal of the Meteorological Sciences, 2011, 31(6): 732-736.[王可法,张卉慧,张伟,等.Parsivel激光雨滴谱仪观测降水中异常数据的判别及处理[J]. 气象科学, 2011, 31(6): 732-736.]

[3]Scheleusener P E. Drop Size Distribution and Energy of Falling Raindrops from a Medium Pressure Irrigation Sprinkler[D]. East Lansing: Miehigan State University, 1967: 45-48.

[4]Best A C. The size distribution of raindrops[J]. Quarterly Journal of the Royal Meteorological Society, 1950, 76: 16-36.

[5]Bentley W A. Studies of raindrops and raindrop phenomena[J]. Monthly Weather Review, 1904, 32: 450-456.

[6]Jones D M A. The shape of raindrops[J]. Journal of Atmospheric Sciences, 1959, 16: 504-510.

[7]McCooll D K.Personal Communication[Z].Pullman: Agricultural Engineering Department,Washington State University, 1982: 67-82.

[8]Clardy D E, Tolbert C W. Electronic disdrometer[J]. Review of Scientific  Instruments, 1961, 32(8): 916-920.

[9]Sheppard B E, Joe P I. Comparison of raindrop size distribution measurements by a Joss-Waldvogel Disdrometer, a PMS 2DG Spectrometer, and a POSS Doppler Radar[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11: 874-887.

[10]Tokay A, Wolff D B, Wolff K R, et al. Rain gauge and disdromrter measurements during the Keys Area Microphysics Project(KAMP)[J]. Journal of Atmospheric and Oceanic Technology,2003, 20: 1 460-1 477.

[11]Kinnell P I A. Some observations on the Joss-Waldvogel rainfall disdrometer[J]. Journal of Applied Meteorology, 1976, 15(5): 499-502.

[12]Shi Aili, Zheng Guoguang, Huang Geng, et al. Characteristics of raindrop spectra of stratiform  cloud  precipitation in Autumn 2002 in He’nan Province[J]. Journal of the Meteorological Sciences, 2004, 30(8): 12-17.[石爱丽,郑国光,黄庚,等.2002年秋季河南省层状云降水的雨滴谱特征[J]. 气象科学, 2004, 30(8): 12-17.]

[13]Wang Xiangguo. Studying the usability of the GBPP-100 raindrop disdrometer in field experiment[J]. Journal of the Meteorological Sciences, 1997, 23(4): 43-47.[王祥国.GBPP-100地面雨滴谱仪外场实用可行性研究[J]. 气象科学, 1997, 23(4): 43-47.]

[14]Hauser D, Amayenc P, Nutten P, et al. A new optical instrument for simultaneous measurements of raindrop diameter and fall distribution[J]. Journal of Atmospheric and Oceanic Technology, 1984, 1: 256-269.

[15]Frasson R P M, Cunha L K, Krajewski W F. Assessment of the Thies optical disdrometer performance[J]. Atmosperic Research, 2011, 101(1/2): 237-255.

[16]Zhang Hao, Li Jing. Comparative analysis of observational results between Parsivel disdrometer and doppler weather radar[J]. Meteorological Hydrological and Marine Instruments, 2011, 28(2): 16-19.[张昊, 李靖. Parsivel雨滴谱仪与多普勒天气雷达观测结果对比分析[J]. 气象水文海洋仪器, 2011, 28(2): 16-19.]

[17]Amitai E, Nystuen J A. Underwater acoustic measurements of rainfall[M]∥Michaelides S, ed. Precipitation: Advances in Measurement, Estimation, and Prediction. Berlin: Springer-Verlag, 2008.

[18]Nystuen J A. Listening to raindrops from underwater: An acoustic disdrometer[J], Journal of Atmospheric and Oceanic Technology, 2001, 18:1 640-1 653.

[19]Rogers R R. An extension of the Z-R relation for Doppler radar[C]∥Preprints of the 11th Conference on Radar Meteorology. Boston: American Meteorological Society, 1964: 158-161.

[20]Marshall J S. Power-law relations in radar meteorology[J]. Journal of Applied Meteorology, 1969, 8: 171-172.

[21]Wilson J W, Brandes E A. Radar measurement of rainfall—A summary[J]. Bullentin of American Meteorological Society, 1979, 60: 1 048-1 058.

[22]Morin E, Krajewski W F, Goodrich D C, et al. Estimating rainfall intensities from weather radar data:The scale-dependency problem[J].Journal of Hydrometeorology, 2003,4: 782-797.

[23]Shelton M L. Hydroclimatology[M]. Cambridge:Cambridge University Press, 2008.

[24]Villarini G, Krajewski W F. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall[J]. Survey in Geophysics, 2010, 31(1):107-129.

[25]Liu Yuanbo, Fu Qiaoni, Song Ping, et al. Satellite retrieval of precipitation: An overview[J]. Advances in Earth Science, 2011, 26(11):1 162-1 172.[刘元波,傅巧妮,宋平,等. 卫星遥感反演降水研究综述[J].地球科学进展, 2011, 26(11):1 162-1 172.]

[26]Stout G E, Mueller E A. Survey of relationships between rainfall rate and radar reflectivity in the measurement of precipitation[J]. Journal of Applied Meteorology, 1968, 7: 465-474.

[27]Cataneo R, Stout G E. Raindrop-size distributions in humid continental climates, and associated rainfall rate-radar reflectivity relationships[J]. Journal of Applied Meteorology, 1968, 7: 901-907.

[28]Rosenfeld D,Ulbrich C W. Cloud microphysical properties, processes, and rainfall estimation opportunities[J]. Meteorological Monographs,2003, 30(52):237-258.

[29]Doviak R J, Zrnic D S. Doppler Radar and Weather Observations[M].New York:Academic Press, 1993.

[30]Seliga T A, Bringi V N. Differential reflectivity and differential phase shift: Application in radar meteorology[J]. Radio Science,1978, 13: 271-275.

[31]Sachidananda M, Zrnic D S. Differential propagation phase shift and rainfall rate estimation[J]. Radio Science, 1986, 21(2): 235-247.

[32]Seliga T A, Bringi V A, Muleller E A. First comparisions of rainfall rates derived from radar differential reflectivity and disdrometer measurements[J].IEEE Transactions on Geoscience and Remote Sensing, 1982, 20: 201-204.

[33]Goddard J W F, Cherry S M. The ability of dual polarization radar(copular linear) to predict rainfall rate and microwave attenuation[J]. Radio Science,1984, 19: 201-208.

[34]Campos E F. On measurements of drop size distributions[J]. Oceanography and Meteorology, 1999, 6: 24-30.

[35]Marshall J S, Palmer W M. The distribution of raindrops with size[J]. Journal of the Meteorology, 1948, 5(4): 165-166.

[36]Joss J, Waldvogel A. Raindrop size distribution and sampling size errors[J]. Journal of Atmospheric Sciences, 1969, 26: 566-569.

[37]Waldvogel A. The N0 jump of raindrop spectra[J]. Journal of Atmospheric Sciences, 1974, 31(4): 1 067-1 078.

[38]Willis P T. Functional fits to some observed drop size distributions and parameterization of rain[J]. Journal of the Atmospheric Sciences, 1984, 41: 1 648-1 661.

[39]Joss J, Gori E G. Shapes of raindrop size distribution[J]. Journal of Applied Meteorology, 1978, 17: 1 054-1 061.

[40]Gong Fujiu, Chen Baojun, Li Zihua, et al. Model of raindrop size distribution in three types of precipitation[J]. Chinese Journal of Atmospheric Science, 1997, 21(5): 607-614.[宫福久,陈宝君,李子华. 三类降水云雨滴谱特征研究[J].大气科学, 1997, 21(5): 607-614.]

[41]Feingold G, Levin Z. The lognormal fit to raindrop spectra from frontal convective clouds in Israel[J]. Journal of Climate and Applied Meteorology, 1986, 25: 1 346-1 363.

[42]Tokay A, Short D A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds[J]. Journal of Applied Meteorology, 1996, 35: 355-371.

[43]Abe D O, Armand N, Henri S. Parametrization of drop size distribution with rain rate[J]. Atmospheric Research, 2007, 84(1):58-66.

[44]Harikumar R, Sampath S, Kumar S V. An empirical model for the variation of rain drop size distribution with rain rate at a few locations in southern India[J]. Advances in Space Research, 2009, 43(5):837-844.

[45]Harikumar R, Sampath S, Kumar S V. Variation of raindrop size distribution with rain rate at a few coastal and high altitude stations in southern peninsular India[J]. Advances in Space Research, 2010, 45(4): 576-586.

[46]Ulbrich C W. Natural variations in the analytical form of the rain-drop size distribution[J]. Journal of Climate and Applied Meteorology, 1983, 22: 1 764-1 775.

[47]Takeuchi D M.Characterization of raindrop size distribution[C]∥Preprints of Conference on Cloud Physics and Atmospheric Electricity,  Washington: American Meteorological Society, 1978: 154-161.

[48]Ulbrich C W.Effect of size distribution variations on precipitation parameters determined by dual-measurement techniques[C]∥Preprints of 20th Conference on Radar Meteorology. Boston: American Meteorological Society, 1981:276-281.

[49]Zheng Jiaoheng, Chen Baojun. Comparative study of exponential and Gamma functional fits to observed raindrop size distribution[J]. Scientia Meteorologica Sinica, 2007, 27(1): 17-23.[郑娇恒,陈宝君. 雨滴谱分布函数的选择:M-P和Gamma分布的对比研究[J]. 气象科学, 2007, 27(1): 17-23.]

[50]Chandrasekar V, Bringi V N. Simulation of radar reflectivity and surface measurements of rainfall[J]. Journal of Atmospheric and Oceanic Technology, 1987,4:464-478.

[51]Testud J, Oury S, Black R A,et al. The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing[J]. Journal of Applied Meteorology, 2001, 40: 1 118-1 140.

[52]Chen Wankui, Yan Caifan. A case study of raindrop spectra and its characteristic parameters along horizontal level[J]. Meteorological Monthly, 1988, 14(1): 8-11.[陈万奎,严采蘩. 雨滴谱及其特征值水平分布的个例分析[J]. 气象, 1988, 14(1): 8-11.]

[53]Chen Delin, Gu Shufen. Research on the mean spectrum of the rain storm[J]. Acta Meteorologica Sinica, 1989, 47(1):124-127.[陈德林, 谷淑芬. 大暴雨雨滴平均谱的研究[J]. 气象学报, 1989, 47(1):124-127.]

[54]Liu Hongyan, Lei Hengchi. Characteristics of rain from stratiform versus convective cloud based on the surface raindrop data[J]. Chinese Journal of Atmospheric Science, 2006, 30(40): 693-702.[刘红燕,雷恒池. 基于地面雨滴谱资料分析层状云和对流云降水的特征[J]. 大气科学, 2006, 30(40): 693-702.]

[55]Lin Wen, Niu Shengjie. Characteristics of the surface raindrop size distribution of summer stratiformis precipitation in Ningxia Province[J]. Scientia Meteorologica Sinica, 2009, 29(1): 97-101.[林文,牛生杰.宁夏盛夏层状云降水雨滴谱特征分析[J].气象科学, 2009, 29(1) : 97-101.]

[56]Niu Shengjie, Jia Xingcan, Sang Jianren, et al. Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains[J]. Journal Applied Meteorology and Climatology, 2010, 49: 632-645.

[57]Niu Shengjie.Research of Cloud Precipitation[M]. Beijing: China Meteorological Press, 2010.[牛生杰.云降水物理研究[M]. 北京:气象出版社, 2010.]

[58]Marzuki, Kozu T, Shimomai T, et al. Raindrop size distributions of convective rain over equatorial Indonesia during the first CPEA campaign[J]. Atmospheric Research, 2010, 96(4): 645-655.

[59]Ulbrich C W, Atlas D. Microphysics of raindrop size spectra: Tropical continental and maritime storms[J]. Journal of Applied Meteorology Climatology, 2007, 46:1 777-1 791.

[60]Caton P G F. A study of raindrop-size distributions in the free atmosphere[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 92(391): 15-30.

[61]Zhang Hao, Pu Jiangping, Li Jing, et al. Analysis of characteristics of raindrop size distribution at different altitudes in Lushan[J]. Meteorology and Disaster Reduction Research, 2011, 34(2): 43-50.[张昊,濮江平,李靖,等. 庐山地区不同海拔高度降水雨滴谱特征分析[J]. 气象与减灾研究, 2011, 34(2): 43-50.]

[62]Harikumar R, Sampath S, Kumar V. Altitudinal and temporale volution of raindrop size distribution observed over a tropical station using a K-band radar[J]. International Journal of Remote Sensing, 2012, 33(10): 3 286-3 300.

[63]Miriovsky B J , Bradley A A, Eichinger W E, et al. An experimental study of small-scale variability of radar reflectivity using disdrometer observations[J]. Journal of Applied Meteorology, 2004, 43: 106-118.

[64]Lee C K, Lee G W, Isztar Z, et al. A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events[J]. Journal of Applied Meteorology and Climatology, 2009, 48: 270-283.

[65]Kozu T, Reddy K K, Mori S, et al. Seasonal and diurnal variations of raindrop size distribution in Asian monsoon region[J]. Journal of the Meteorological Society of Japan, 2006, 84(A):195-209.

[66]Rao T N, Radhakrishna B, Nakamura K, et al. Differences in raindrop size distribution from southwest monsoon to northeast monsoon at Gadanki[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135: 1 630-1 637.

[67]Martins R C G, Machado L A T, Costa A A. Characterization of the micro-physics of precipitation over Amazon region using radar and disdrometer data[J]. Atmospheric Research, 2010, 96: 388-394.

[1] 王学界, 章新平, 张婉君, 张新主, 罗紫东. 全球降水中氢氧稳定同位素GCM模拟空间分布的比较[J]. 地球科学进展, 2017, 32(9): 983-995.
[2] 张乐乐, 高黎明, 赵林, 乔永平, 史健宗. 降水观测误差修正研究进展[J]. 地球科学进展, 2017, 32(7): 723-730.
[3] 李东欢, 邹立维, 周天军. 全球1.5 ℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32(4): 446-457.
[4] 王根, 盛绍学, 黄勇, 吴蓉, 刘惠兰. 基于不适定反问题求解的降水图像降尺度研究[J]. 地球科学进展, 2017, 32(10): 1102-1111.
[5] 叶晓燕, 陈崇成, 罗明. 东亚夏季降水与全球海温异常的年代际变化关系[J]. 地球科学进展, 2016, 31(9): 984-994.
[6] 王磊, 陈仁升, 宋耀选. 基于Γ函数的祁连山葫芦沟流域湿季小时降水统计特征[J]. 地球科学进展, 2016, 31(8): 840-848.
[7] 郭瑞芳, 刘元波. 多传感器联合反演高分辨率降水方法综述[J]. 地球科学进展, 2015, 30(8): 891-903.
[8] 尹金方, 王东海, 许焕斌, 翟国庆, 姜晓玲. 冰核对云物理属性和降水影响的研究[J]. 地球科学进展, 2015, 30(3): 323-333.
[9] 胡凯, 方小敏, 赵志军. 宇宙成因核素10Be揭示的北祁连山侵蚀速率特征[J]. 地球科学进展, 2015, 30(2): 268-275.
[10] 方建, 杜鹃, 徐伟, 史培军, 孔锋. 气候变化对洪水灾害影响研究进展[J]. 地球科学进展, 2014, 29(9): 1085-1093.
[11] 黄强, 陈子燊. 全球变暖背景下珠江流域极端气温与降水事件时空变化的区域研究[J]. 地球科学进展, 2014, 29(8): 956-967.
[12] 张红梅, 吴炳方, 闫娜娜. 饱和水汽压差的卫星遥感研究综述[J]. 地球科学进展, 2014, 29(5): 559-568.
[13] 高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014, 29(5): 577-589.
[14] 熊喆. 不同积云对流参数化方案对黑河流域降水模拟的影响[J]. 地球科学进展, 2014, 29(5): 590-597.
[15] 李霞, 高艳红, 王婉昭, 蓝永超, 许建伟, 李凯. 黄河源区气候变化与GLDAS数据适用性评估[J]. 地球科学进展, 2014, 29(4): 531-540.