地球科学进展 ›› 2013, Vol. 28 ›› Issue (6): 685 -694. doi: 10.11867/j.issn.1001-8166.2013.06.0685

综述与评述 上一篇    下一篇

地面雨滴谱观测技术及特征研究进展
朱亚乔 1,2,刘元波 1*   
  1. 1.中国科学院南京地理与湖泊研究所,江苏 南京 210008;2.中国科学院大学,北京 100049
  • 收稿日期:2013-01-16 修回日期:2013-04-19 出版日期:2013-06-10
  • 通讯作者: 刘元波(1969-),男,山东济宁人,研究员,主要从事水文遥感研究.E-mail:ybliu@niglas.ac.cn E-mail:刘元波ybliu@niglas.ac.cn
  • 基金资助:

    中国科学院南京地理与湖泊研究所“一三五”重点项目“长江中游两湖水量变化关键过程与集成模拟研究”(编号:NIGLAS2012135001);中国科学院“百人计划”择优支持项目“基于定量遥感的湖泊蓄水量变化驱动机制研究”资助.

Advances in Measurement Techniques and Statistics Features

Zhu Yaqiao 1,2, Liu Yuanbo 1   

  1. 1.Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences,Nanjing210008,China;2.University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2013-01-16 Revised:2013-04-19 Online:2013-06-10 Published:2013-06-10

雨滴谱是反映降水微观物理过程和宏观动力结构的主要指标之一。通过分析雨色斑滴谱,可以深入了解降水的发展和演变过程,揭示降水机制。传统雨滴谱测量包括动力学法、滤纸色斑法、面粉团法、快速摄影法和浸润法等,但是普遍存在精度低、工作量大、实时性差、成本高及无法自动完成测量分类等缺点。以雨滴谱仪为代表的新型雨滴谱测量技术包括冲击雨滴谱仪、光学雨滴谱仪和声学雨滴谱仪以及雷达技术等克服了这些缺点,在降水粒子[JP2]观测和降水物理研究中发挥了重要的作用。综合概述了描述雨滴谱的主要分布模型及其适用条件。归纳分析了不同降水云系(对流云、层状云和层积云降水)、不同降水类型(大陆云和海洋云降水)及不同高度处观测的降水的雨滴谱特征。从学科发展趋势和社会需求的角度,概述了有关雨滴谱研究中存在的主要问题和发展趋势。

 Rain Drop Size Distribution (DSD) is one of the key parameters to microphysical process and macrodynamical structure of precipitation. It provides useful information for understanding the mechanisms of precipitation formation and development. Conventional measurement techniques include momentum method, flour method, filtering paper, raindrop camera and immersion method. In general, the techniques have  large measurement error, heavy workload, and low efficiency. Innovation of disdrometer is a remarkable progress in DSD observation. To date, the major techniques are classified into impacting, optical and acoustic disdrometers, which are automated and more convenient and accurate. The impacting disdrometer transforms the momentum of raindrops into electric impulse, which are easy to operate and qualityassured but with large errors for extremely large or small raindrops. The optical disdrometer measures rainfall diameter and its velocity in the same time, but cannot distinguish the particles passing through sampling area simultaneously. The acoustic disdrometer determines DSD from the raindrop impacts on water body with a high temporal resolution but easily affected by wind. In addition, the Doppler can provide DSD with polarimetric techniques for large area while it is affected by updrafts, downdrafts and horizontal winds.DSD has meteorological features, which can be described with the MarshallPalmer (M-P), the Gamma, the lognormal or the normalized models. The MP model is suitable for steady rainfall, usually used for weak and moderate rainfall. The gamma model is proposed for DSD at high rain rate. The lognormal model is widely applied for cloud droplet analysis, but not appropriate for DSD with a broad spectrum. The normalized model is free of assumptions about the shape of the DSD. For practical application, statistical comparison is necessary for selection of a most suitable model. Meteorologically, convective rain has a relatively narrow and smooth DSD spectrum usually described by the MP model. Stratiform rain has a broad DSD spectrum described with the Gamma model. Stratocumulus mixed rain has relatively large drop diameter but small mean size usually described by the Gamma model. The continent rainfall is altitude dependent and it differs from the maritime cloud rainfalls in terms of rain rate and drop diameter. Overall, the meteorological features are useful to improve our understanding of precipitation formation but also important to development of precipitation retrieval techniques with a high accuracy.

中图分类号: 

[1]Gu Zhenchao. Physics Basics of Cloud Precipitation[M]. Beijing: Science Press,1980.[顾震潮.云雾降水物理基础[M]. 北京:科学出版社,1980.]

[2]Wang Kefa, Zhang Huihui, Zhang Wei, et al. The detection and elimination of abnormal data for the precipitation observed by Parsivel precipitation particle spectrometer[J]. Journal of the Meteorological Sciences, 2011, 31(6): 732-736.[王可法,张卉慧,张伟,等.Parsivel激光雨滴谱仪观测降水中异常数据的判别及处理[J]. 气象科学, 2011, 31(6): 732-736.]

[3]Scheleusener P E. Drop Size Distribution and Energy of Falling Raindrops from a Medium Pressure Irrigation Sprinkler[D]. East Lansing: Miehigan State University, 1967: 45-48.

[4]Best A C. The size distribution of raindrops[J]. Quarterly Journal of the Royal Meteorological Society, 1950, 76: 16-36.

[5]Bentley W A. Studies of raindrops and raindrop phenomena[J]. Monthly Weather Review, 1904, 32: 450-456.

[6]Jones D M A. The shape of raindrops[J]. Journal of Atmospheric Sciences, 1959, 16: 504-510.

[7]McCooll D K.Personal Communication[Z].Pullman: Agricultural Engineering Department,Washington State University, 1982: 67-82.

[8]Clardy D E, Tolbert C W. Electronic disdrometer[J]. Review of Scientific  Instruments, 1961, 32(8): 916-920.

[9]Sheppard B E, Joe P I. Comparison of raindrop size distribution measurements by a Joss-Waldvogel Disdrometer, a PMS 2DG Spectrometer, and a POSS Doppler Radar[J]. Journal of Atmospheric and Oceanic Technology, 1994, 11: 874-887.

[10]Tokay A, Wolff D B, Wolff K R, et al. Rain gauge and disdromrter measurements during the Keys Area Microphysics Project(KAMP)[J]. Journal of Atmospheric and Oceanic Technology,2003, 20: 1 460-1 477.

[11]Kinnell P I A. Some observations on the Joss-Waldvogel rainfall disdrometer[J]. Journal of Applied Meteorology, 1976, 15(5): 499-502.

[12]Shi Aili, Zheng Guoguang, Huang Geng, et al. Characteristics of raindrop spectra of stratiform  cloud  precipitation in Autumn 2002 in He’nan Province[J]. Journal of the Meteorological Sciences, 2004, 30(8): 12-17.[石爱丽,郑国光,黄庚,等.2002年秋季河南省层状云降水的雨滴谱特征[J]. 气象科学, 2004, 30(8): 12-17.]

[13]Wang Xiangguo. Studying the usability of the GBPP-100 raindrop disdrometer in field experiment[J]. Journal of the Meteorological Sciences, 1997, 23(4): 43-47.[王祥国.GBPP-100地面雨滴谱仪外场实用可行性研究[J]. 气象科学, 1997, 23(4): 43-47.]

[14]Hauser D, Amayenc P, Nutten P, et al. A new optical instrument for simultaneous measurements of raindrop diameter and fall distribution[J]. Journal of Atmospheric and Oceanic Technology, 1984, 1: 256-269.

[15]Frasson R P M, Cunha L K, Krajewski W F. Assessment of the Thies optical disdrometer performance[J]. Atmosperic Research, 2011, 101(1/2): 237-255.

[16]Zhang Hao, Li Jing. Comparative analysis of observational results between Parsivel disdrometer and doppler weather radar[J]. Meteorological Hydrological and Marine Instruments, 2011, 28(2): 16-19.[张昊, 李靖. Parsivel雨滴谱仪与多普勒天气雷达观测结果对比分析[J]. 气象水文海洋仪器, 2011, 28(2): 16-19.]

[17]Amitai E, Nystuen J A. Underwater acoustic measurements of rainfall[M]∥Michaelides S, ed. Precipitation: Advances in Measurement, Estimation, and Prediction. Berlin: Springer-Verlag, 2008.

[18]Nystuen J A. Listening to raindrops from underwater: An acoustic disdrometer[J], Journal of Atmospheric and Oceanic Technology, 2001, 18:1 640-1 653.

[19]Rogers R R. An extension of the Z-R relation for Doppler radar[C]∥Preprints of the 11th Conference on Radar Meteorology. Boston: American Meteorological Society, 1964: 158-161.

[20]Marshall J S. Power-law relations in radar meteorology[J]. Journal of Applied Meteorology, 1969, 8: 171-172.

[21]Wilson J W, Brandes E A. Radar measurement of rainfall—A summary[J]. Bullentin of American Meteorological Society, 1979, 60: 1 048-1 058.

[22]Morin E, Krajewski W F, Goodrich D C, et al. Estimating rainfall intensities from weather radar data:The scale-dependency problem[J].Journal of Hydrometeorology, 2003,4: 782-797.

[23]Shelton M L. Hydroclimatology[M]. Cambridge:Cambridge University Press, 2008.

[24]Villarini G, Krajewski W F. Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall[J]. Survey in Geophysics, 2010, 31(1):107-129.

[25]Liu Yuanbo, Fu Qiaoni, Song Ping, et al. Satellite retrieval of precipitation: An overview[J]. Advances in Earth Science, 2011, 26(11):1 162-1 172.[刘元波,傅巧妮,宋平,等. 卫星遥感反演降水研究综述[J].地球科学进展, 2011, 26(11):1 162-1 172.]

[26]Stout G E, Mueller E A. Survey of relationships between rainfall rate and radar reflectivity in the measurement of precipitation[J]. Journal of Applied Meteorology, 1968, 7: 465-474.

[27]Cataneo R, Stout G E. Raindrop-size distributions in humid continental climates, and associated rainfall rate-radar reflectivity relationships[J]. Journal of Applied Meteorology, 1968, 7: 901-907.

[28]Rosenfeld D,Ulbrich C W. Cloud microphysical properties, processes, and rainfall estimation opportunities[J]. Meteorological Monographs,2003, 30(52):237-258.

[29]Doviak R J, Zrnic D S. Doppler Radar and Weather Observations[M].New York:Academic Press, 1993.

[30]Seliga T A, Bringi V N. Differential reflectivity and differential phase shift: Application in radar meteorology[J]. Radio Science,1978, 13: 271-275.

[31]Sachidananda M, Zrnic D S. Differential propagation phase shift and rainfall rate estimation[J]. Radio Science, 1986, 21(2): 235-247.

[32]Seliga T A, Bringi V A, Muleller E A. First comparisions of rainfall rates derived from radar differential reflectivity and disdrometer measurements[J].IEEE Transactions on Geoscience and Remote Sensing, 1982, 20: 201-204.

[33]Goddard J W F, Cherry S M. The ability of dual polarization radar(copular linear) to predict rainfall rate and microwave attenuation[J]. Radio Science,1984, 19: 201-208.

[34]Campos E F. On measurements of drop size distributions[J]. Oceanography and Meteorology, 1999, 6: 24-30.

[35]Marshall J S, Palmer W M. The distribution of raindrops with size[J]. Journal of the Meteorology, 1948, 5(4): 165-166.

[36]Joss J, Waldvogel A. Raindrop size distribution and sampling size errors[J]. Journal of Atmospheric Sciences, 1969, 26: 566-569.

[37]Waldvogel A. The N0 jump of raindrop spectra[J]. Journal of Atmospheric Sciences, 1974, 31(4): 1 067-1 078.

[38]Willis P T. Functional fits to some observed drop size distributions and parameterization of rain[J]. Journal of the Atmospheric Sciences, 1984, 41: 1 648-1 661.

[39]Joss J, Gori E G. Shapes of raindrop size distribution[J]. Journal of Applied Meteorology, 1978, 17: 1 054-1 061.

[40]Gong Fujiu, Chen Baojun, Li Zihua, et al. Model of raindrop size distribution in three types of precipitation[J]. Chinese Journal of Atmospheric Science, 1997, 21(5): 607-614.[宫福久,陈宝君,李子华. 三类降水云雨滴谱特征研究[J].大气科学, 1997, 21(5): 607-614.]

[41]Feingold G, Levin Z. The lognormal fit to raindrop spectra from frontal convective clouds in Israel[J]. Journal of Climate and Applied Meteorology, 1986, 25: 1 346-1 363.

[42]Tokay A, Short D A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds[J]. Journal of Applied Meteorology, 1996, 35: 355-371.

[43]Abe D O, Armand N, Henri S. Parametrization of drop size distribution with rain rate[J]. Atmospheric Research, 2007, 84(1):58-66.

[44]Harikumar R, Sampath S, Kumar S V. An empirical model for the variation of rain drop size distribution with rain rate at a few locations in southern India[J]. Advances in Space Research, 2009, 43(5):837-844.

[45]Harikumar R, Sampath S, Kumar S V. Variation of raindrop size distribution with rain rate at a few coastal and high altitude stations in southern peninsular India[J]. Advances in Space Research, 2010, 45(4): 576-586.

[46]Ulbrich C W. Natural variations in the analytical form of the rain-drop size distribution[J]. Journal of Climate and Applied Meteorology, 1983, 22: 1 764-1 775.

[47]Takeuchi D M.Characterization of raindrop size distribution[C]∥Preprints of Conference on Cloud Physics and Atmospheric Electricity,  Washington: American Meteorological Society, 1978: 154-161.

[48]Ulbrich C W.Effect of size distribution variations on precipitation parameters determined by dual-measurement techniques[C]∥Preprints of 20th Conference on Radar Meteorology. Boston: American Meteorological Society, 1981:276-281.

[49]Zheng Jiaoheng, Chen Baojun. Comparative study of exponential and Gamma functional fits to observed raindrop size distribution[J]. Scientia Meteorologica Sinica, 2007, 27(1): 17-23.[郑娇恒,陈宝君. 雨滴谱分布函数的选择:M-P和Gamma分布的对比研究[J]. 气象科学, 2007, 27(1): 17-23.]

[50]Chandrasekar V, Bringi V N. Simulation of radar reflectivity and surface measurements of rainfall[J]. Journal of Atmospheric and Oceanic Technology, 1987,4:464-478.

[51]Testud J, Oury S, Black R A,et al. The concept of “normalized” distributions to describe raindrop spectra: A tool for cloud physics and cloud remote sensing[J]. Journal of Applied Meteorology, 2001, 40: 1 118-1 140.

[52]Chen Wankui, Yan Caifan. A case study of raindrop spectra and its characteristic parameters along horizontal level[J]. Meteorological Monthly, 1988, 14(1): 8-11.[陈万奎,严采蘩. 雨滴谱及其特征值水平分布的个例分析[J]. 气象, 1988, 14(1): 8-11.]

[53]Chen Delin, Gu Shufen. Research on the mean spectrum of the rain storm[J]. Acta Meteorologica Sinica, 1989, 47(1):124-127.[陈德林, 谷淑芬. 大暴雨雨滴平均谱的研究[J]. 气象学报, 1989, 47(1):124-127.]

[54]Liu Hongyan, Lei Hengchi. Characteristics of rain from stratiform versus convective cloud based on the surface raindrop data[J]. Chinese Journal of Atmospheric Science, 2006, 30(40): 693-702.[刘红燕,雷恒池. 基于地面雨滴谱资料分析层状云和对流云降水的特征[J]. 大气科学, 2006, 30(40): 693-702.]

[55]Lin Wen, Niu Shengjie. Characteristics of the surface raindrop size distribution of summer stratiformis precipitation in Ningxia Province[J]. Scientia Meteorologica Sinica, 2009, 29(1): 97-101.[林文,牛生杰.宁夏盛夏层状云降水雨滴谱特征分析[J].气象科学, 2009, 29(1) : 97-101.]

[56]Niu Shengjie, Jia Xingcan, Sang Jianren, et al. Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains[J]. Journal Applied Meteorology and Climatology, 2010, 49: 632-645.

[57]Niu Shengjie.Research of Cloud Precipitation[M]. Beijing: China Meteorological Press, 2010.[牛生杰.云降水物理研究[M]. 北京:气象出版社, 2010.]

[58]Marzuki, Kozu T, Shimomai T, et al. Raindrop size distributions of convective rain over equatorial Indonesia during the first CPEA campaign[J]. Atmospheric Research, 2010, 96(4): 645-655.

[59]Ulbrich C W, Atlas D. Microphysics of raindrop size spectra: Tropical continental and maritime storms[J]. Journal of Applied Meteorology Climatology, 2007, 46:1 777-1 791.

[60]Caton P G F. A study of raindrop-size distributions in the free atmosphere[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 92(391): 15-30.

[61]Zhang Hao, Pu Jiangping, Li Jing, et al. Analysis of characteristics of raindrop size distribution at different altitudes in Lushan[J]. Meteorology and Disaster Reduction Research, 2011, 34(2): 43-50.[张昊,濮江平,李靖,等. 庐山地区不同海拔高度降水雨滴谱特征分析[J]. 气象与减灾研究, 2011, 34(2): 43-50.]

[62]Harikumar R, Sampath S, Kumar V. Altitudinal and temporale volution of raindrop size distribution observed over a tropical station using a K-band radar[J]. International Journal of Remote Sensing, 2012, 33(10): 3 286-3 300.

[63]Miriovsky B J , Bradley A A, Eichinger W E, et al. An experimental study of small-scale variability of radar reflectivity using disdrometer observations[J]. Journal of Applied Meteorology, 2004, 43: 106-118.

[64]Lee C K, Lee G W, Isztar Z, et al. A preliminary analysis of spatial variability of raindrop size distributions during stratiform rain events[J]. Journal of Applied Meteorology and Climatology, 2009, 48: 270-283.

[65]Kozu T, Reddy K K, Mori S, et al. Seasonal and diurnal variations of raindrop size distribution in Asian monsoon region[J]. Journal of the Meteorological Society of Japan, 2006, 84(A):195-209.

[66]Rao T N, Radhakrishna B, Nakamura K, et al. Differences in raindrop size distribution from southwest monsoon to northeast monsoon at Gadanki[J]. Quarterly Journal of the Royal Meteorological Society, 2009, 135: 1 630-1 637.

[67]Martins R C G, Machado L A T, Costa A A. Characterization of the micro-physics of precipitation over Amazon region using radar and disdrometer data[J]. Atmospheric Research, 2010, 96: 388-394.

[1] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[2] 王忠静,石羽佳,张腾. TRMM遥感降水低估还是高估中国大陆地区的降水?[J]. 地球科学进展, 2021, 36(6): 604-615.
[3] 王鹏,刘磊,刘西川,胡帅,赵世军,姬文明,高太长. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714.
[4] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[5] 梅双丽,李勇,马杰. 热带季节内振荡在延伸期预报中的应用进展[J]. 地球科学进展, 2020, 35(12): 1222-1231.
[6] 高艳红,许建伟,张萌,姜凤友. 中国 400 mm等降水量变迁与干湿变化研究进展[J]. 地球科学进展, 2020, 35(11): 1101-1112.
[7] 李修仓,姜彤,吴萍. 水分再循环计算模型的研究进展及其展望[J]. 地球科学进展, 2020, 35(10): 1029-1040.
[8] 谢彦君, 任福民, 李国平, 王铭杨, 杨慧. 影响中国双台风活动气候特征研究[J]. 地球科学进展, 2020, 35(1): 101-108.
[9] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[10] 朱月佳,邢蕊,朱明佳,王东勇,邱学兴. 联合概率方法在安徽强对流潜势预报中的应用和检验[J]. 地球科学进展, 2019, 34(7): 731-746.
[11] 杨慧,任福民,杨明仁. 不同强度热带气旋对中国降水变化的影响[J]. 地球科学进展, 2019, 34(7): 747-756.
[12] 窦芳丽,陆其峰,郭杨. 全天候卫星微波观测资料变分同化研究进展[J]. 地球科学进展, 2019, 34(11): 1120-1130.
[13] 谢鑫昌,杨云川,田忆,廖丽萍,韦钧培,周津羽,陈立华. 广西降水非均匀性多尺度特征与综合评价[J]. 地球科学进展, 2019, 34(11): 1152-1164.
[14] 陈亮, 段建平, 马柱国. 大气环流形势客观分型及其与中国降水的联系[J]. 地球科学进展, 2018, 33(4): 396-403.
[15] 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 *[J]. 地球科学进展, 2018, 33(11): 1181-1192.
阅读次数
全文


摘要