地球科学进展 ›› 2013, Vol. 28 ›› Issue (10): 1067 -1076. doi: 10.11867/j.issn.1001-8166.2013.10.1067

973项目研究    下一篇

冰冻圈变化及其影响研究的主要科学问题概论
丁永建 1, 2, 效存德 1, 3   
  1. 1.中国科学院寒区旱区环境与工程研究所冰冻圈科学国家重点实验室, 甘肃 兰州 730000; 2.中国科学院寒区旱区环境与工程研究所水土资源研究室, 甘肃 兰州 730000; 3.中国气象科学研究院, 北京 100081
  • 收稿日期:2013-05-15 出版日期:2013-10-10
  • 基金资助:

    科技部全球变化重大科学研究计划重大科学目标导向项目“冰冻圈变化及其影响研究”(编号:2013CBA01800)资助.

Challenges in the Study of Cryospheric Changes and Their Impacts

Ding Yongjian 1, 2, Xiao Cunde 1   

  1. 1.State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 2.Water and Soil Resource Division, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; 3. Chinese Academy of Meteorogical Science, Beijing 100081, China
  • Received:2013-05-15 Online:2013-10-10 Published:2013-10-10

冰冻圈变化及其影响日益显著并受到广泛关注。系统梳理了目前国际冰冻圈科学研究的主要关注热点, 认为冰冻圈的变化机理、冰冻圈与气候相互作用、冰冻圈变化的影响与适应等构成了国际冰冻圈科学研究的4大科学问题。冰冻圈变化机理是冰冻圈科学研究的基础领域, 冰冻圈与气候相互作用是当前着力加强的重点, 冰冻圈变化的影响日益受到关注, 但研究基础还较薄弱, 冰冻圈变化影响的适应机制是尚处在萌芽状态的研究领域。围绕上述重大科学问题, 紧抓冰冻圈变化过程中的动力响应与时空差异性问题, 气候模式中冰冻圈过程的精细化描述问题, 准确认识影响的时空尺度与程度问题和脆弱性评价方法和指标体系等科学问题, 是寻求科学突破的关键。以全球的视野审视冰冻圈的变化过程, 从有机耦合的角度探讨气候模式中的冰冻圈过程, 以多因素、多过程综合与集成的手段辨析冰冻圈变化的影响, 从方法创新上寻求科学评估冰冻圈变化脆弱性及适应性的突破途径, 是未来研究的重点。

Cryospheric changes and their impacts are receiving wide attention from international scientific and social communities. Here, we summarize the present hotspots of international cryospheric sciences and hence conclude four major aspects of it. They are respectively ① mechanism of cryospheric changes, ② interaction of cryospheric and other spheres of climate/earth system, ③ impacts of cryospheric changes, and ④ adaptation methods and strategy to these changes. Among the four areas, mechanism study is the basis for cryospherc sciences, interaction between different spheres is the currently developing aspect of the field, impacts of cryospheric changes are increasingly studied and yet still have large gaps, while adaptation study is still an iniative nowadays. For the above four aspects, there are key issues for each of them. For instance, dynamic responses and spatial/temporal differences are the key challenges in the mechanism studies. Rational and precise description on physical/chemical/geochemical processes of cryosphere is one of critical issues on improving the climate models. Scoping the spatial/temporal scales, as well as defining the influence degree is the key gaps in studying the cryospheric impacts. Methods and related index system for vulnerability assessment is the key issue in the study of the adaptation strategy of cryospheric impacts. Cryospheric sciences are developing towards, in the near future, the coupling of cryoshperic components into climate system in global scale, detecting the impacts of cryospheric changes using multiple and integrated methodology, and innovated approaches in adaptation.

中图分类号: 

[1]Climate and Cryosphere[EB/OL]. [2012-10-21]. http:∥clic.npopar.no/.
[2]IPCC. Climate change 2007: Impacts, adaptation and vulnerability[M]∥Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA: Cambridge University Press, 2007.
[3]Wu B, Huang R, Gao D. Effects of variation of winter sea-ice area in Kara and Barents seas on East Asian winter monsoon[J].Acta Meteorologica Sinica, 1999, 13:141-153.
[4]Alexander M A, Bhatt U S, Walsh J E, et al. The atmospheric response to realistic sea ice anomalies in an AGCM during winter[J]. Journal of Climate, 2004, 17: 890-905.
[5]Deser C, Magnusdottir G, Saravanan R, et al. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response[J]. Journal of Climate, 2004, 17: 877-889.
[6]Honda M, Inous J, Yamane S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters[J]. Geophysical Research Letters, 2009, 36:L08707, doi:10.1029/2008GL037079.
[7]Li Zhenkun, Zhu Weijun, Wu Bingyi. Impact of improved soil freezing process on climate in East Asia using NCAR CAM model[J]. Chinese Journal of Atomspheric Sciences, 2011, 35(4):683-693.[李震坤, 朱伟军, 武炳义. 大气环流模式CAM中土壤冻融过程改进对东亚气候模拟的影响[J]. 大气科学, 2011, 35(4):683-693.]
[8]Ding Yongjian, Qin Dahe. Cryosphere change and global warming: Impact and challenges in China[J]. China Basic Science, 2009, 11(3):4-11.[丁永建, 秦大河. 冰冻圈变化与全球变暖:我国面临的影响与挑战[J]. 中国基础科学, 2009, 11(3):4-11.]
[9]Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle: A test of our knowledge of earth as a system[J]. Science, 2000, 290: 291-296.
[10]Hinzman L D, Bettez N D, Bolton W R, et al. Evidence and implications of recent climate change in terrestrial regions of the Arctic[J]. Climatic Change, 2005, 72: 251-298.
[11]Tape K, Sturm M, Racine C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic[J]. Global Change Biology, 2006, 12: 686-702.
[12]Kaplan J O. New M. Arctic climate change with a 2 ℃ global warming: Timing, climate patterns and vegetation change[J]. Climatic Change, 2006, 79(3/4): 213-241.
[13]Lenoir J, Gegout J C, Marquet P A, et al. A significant upward shift in plant species optimum elevation during the 20th century[J]. Science, 2008, 320: 1 768-1 771.
[14]Wang Genxu, Li Yuanshou, Wang Yibo. Land Surface Process and Environmental Change in the River Sources of Tibet Plateau[M]. Beijing: Science Press, 2010.[王根绪, 李元寿, 王一博. 青藏高原河源区地表过程与环境变化[M]. 北京: 科学出版社, 2010.]
[13]Loarie S R, Duffy P B, Hamilton H, et al. The velocity of climate change[J]. Nature, 2009, 462(24): 1 052-1 055.
[14]Zimov S A, Schuur E A G, Chapin F S. Permafrost and global carbon budget[J]. Science, 2009, 312: 1 612-1 613.
[15]Tarnocai C, Canadel J G, Schuur E A G, et al. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 2009, 23: GB2023, doi:10.1029/2008GB003327.
[16]Ping C, Michalson G J, Jorgenson M T, et al. High stocks of soil organic carbon in the North American Arctic region[J]. Nature Geoscience, 2008, 1: 615-619.
[17]Christensen T R, Johansson T, Akerman H J, et al. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions[J]. Geophysical Research Letters, 2004, 31: L04501.
[18]Slaymaker O, Richard E J K. The Cryosphere and Global Environmental Change[M]. Malden, MA: Blackwell Publishing, 2007.
[19]Grove J M. Glacier fluctuations and hazards[J]. The Geophysical Journal, 1987, 153(3): 351-369.
[20]Ding Yongjian, Liu Jingshi. Glacier lake outburst flood disasters in China[J]. Annals of Glaciology, 1992, 16: 180-190.
[21]Shen Yongping, Wang Guoya, Zhang Jian’gang, et al. Human activity impacts on local climate and water environments of Aksu River Oasis, South Xinjiang[J]. Arid Land Geography, 2008, 31(4): 524-534.[沈永平, 王国亚, 张建岗, 等.人类活动对阿克苏河绿洲气候及水文环境的影响[J]. 干旱区地理, 2008, 31(4): 524-534.]
[22]Reid W V, Catherine Bréchignac, Yuan Tseh Lee. Earth system research priorities[J]. Science, 2009, 325(5 938): 245.
[23]Reid W V, Chen D, Goldfarb L, et al. Earth system science for global sustainability: Grand challenges[J]. Science, 2010, 330(6 006): 916-917.
[24]Smit B, Wandel J. Adaptation, adaptation capacity and vulnerability[J]. Global Environmental Change, 2006, 16:282-292.
[25]Li Huilin, Li Zhongqin, Shen Yongping, et al. Glacier dynamic models and their applicability for the glaciers in China[J]. Journal of Glaciology and Geocryology, 2007, 29(2): 201-208.[李慧林, 李忠勤, 沈永平, 等. 冰川动力学模式及其对中国冰川变化预测的适应性[J]. 冰川冻土, 2007, 29(2): 201-208.]
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 韦进, 申重阳, 胡敏章, 江颖, 张晓彤, 刘子维. 连续重力观测站测定的中国大陆潮汐因子空间分布特征[J]. 地球科学进展, 2021, 36(5): 490-499.
[7] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[8] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[9] 夏松, 刘鹏, 江志红, 程军. CMIP5CMIP6模式在历史试验下对 AMOPDO的模拟评估[J]. 地球科学进展, 2021, 36(1): 58-68.
[10] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[11] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[12] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[13] 王卷乐,石蕾,王玉洁,高孟绪,徐波,王超,王明明,王艳杰,周业智. 科学数据汇聚的模式分析及对我国的发展建议[J]. 地球科学进展, 2020, 35(8): 839-847.
[14] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[15] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
阅读次数
全文


摘要