地球科学进展 ›› 2016, Vol. 31 ›› Issue (12): 1215 -1219. doi: 10.11867/j.issn.1001-8166.2016.12.1215

国家重点研发计划进展    下一篇

地球系统模式与综合评估模型的双向耦合及应用
董文杰 1, 袁文平 2, 滕飞 3, 郝志新 4, 郑景云 4, 韦志刚 2, 丑洁明 2, 刘昌新 5, 齐天宇 3, 杨世莉 2, 阎东东 2, 张婧 1   
  1. 1.中山大学,大气科学学院,广东 广州 510275;
    2.北京师范大学,地表过程与资源生态国家重点实验室,北京 100875;
    3.清华大学,能源环境经济研究所,北京 100084;
    4.中国科学院 地理科学与资源研究所,北京 100101;
    5.中国科学院 科技政策与管理科学研究所,北京 100190
  • 收稿日期:2016-09-10 修回日期:2016-11-10 出版日期:2016-12-20
  • 基金资助:
    国家重点研发计划项目“地球系统模式与综合评估模型的双向耦合”(编号:2016YFA0602703)资助

Coupling Earth System Model and Integrated Assessment Model

Dong Wenjie 1, Yuan Wenping 2, Teng Fei 3, Hao Zhixin 4, Zheng Jingyun 4, Wei Zhigang 2, Chou Jieming 2, Liu Changxin 5, Qi Tianyu 3, Yang Shili 2, Yan Dongdong 2, Zhang Jing 1   

  1. 1.School of Atmospheric Science, Sun Yat-sen University, Guangzhou 510275, China;
    2.State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China;
    3.Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China;
    4.Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
    5.Institute of Policy and Management, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2016-09-10 Revised:2016-11-10 Online:2016-12-20 Published:2016-12-20
  • About author:First author:Dongle Wenjie(1966-), male, Gangu County, Gansu Province, Professor. Research areas include global climate change and its impact.E-mail:dongwj3@mail.sysu.edu.cn
  • Supported by:
    Project supported by the National Key Research and Development Program of China “Coupling earth system model and integrated assessment model”(No.2016YFA0602703)
针对2016年度国家重点研发计划项目“全球变化与应对”指南方向“气候变化经济影响综合评估模式研究”,旨在建立具有自主知识产权的、国际一流的评估模式,评估气候变化对中国经济的影响。项目的实施是在全球变化正在深刻影响人类生存和发展的背景下开展的,总体目标是提高地球系统模式空间水平分辨率,完善综合评估模型,实现地球系统模式和综合评估模型的双向耦合,评估气候变化对社会经济的影响。旨在解决2个关键科学问题:综合评估模型中如何刻画气候变化的影响?气候变化对中国社会经济的影响及其程度如何?解决2个关键技术问题:地球系统模式中小尺度人类活动模拟的技术问题;地球系统模式和综合评估模型运行尺度匹配和非同步耦合的技术问题。
According to the guideline of National Key Research and Development Project, this project aims at developing a world-class Integrated Assessment Model (IAM) in China, which will be used to assess the impacts of climate change on economy system. The objects of this project are to ① Improve the spatial resolution of Earth System Model (ESM); ② Modify the Integrated Assessment Model; ③ Couple the ESM and IAM; ④ Evaluate the impacts of climate change on society and economy. This project will solve two key scientific questions: how to identify the impacts of climate change in the IAM; How much the impacts of climate change on economy in China. Meanwhile, two techniques will be developed to complete the mission of this project: Simulate of small-scale human activities in the EAM and spatial and temporal resolution match of ESM and IAM.

中图分类号: 

[1] Stanton E A, Ackerman F, Karthas. Inside the integrated assessment models: Four issuesin climate economics[J]. Climate and Development ,2009,1(2):166-184.
[2] Wu Jing, Zhu Qianting, Wang Zheng. Review on agent-based simulation in policy modeling[J]. Systems Engineering , 2015, (11):107-112.
. 系统工程,2015,(11):107-112.]
[3] Liu Changxin, Wang Zheng, Tian Yuan. Global cooperation on carbon mitigation by applying gametheory[J]. Chinese Science Billetin ,2016,61(7):771-781.
. 科学通报,2016,61(7):771-781.]
[4] Nordhaus W. Critical assumptions in the Stern review on climate change[J]. Science , 2007, 317(5 835): 201-202.
[5] Stocker T F, Qin D, Plattner G K, et al . Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental[M].Cambridge, United Kingdom and New York, NY, USA:Panel on Climate Change Cambridge University Press,2013.
[6] Nordhaus W D. The Dicemodel: Background and Structure of a Dynamic Integrated Climate-economy Model of the Economics of Global Warming[R]. Cowles Foundation for Research in Economics, Yale University, 1992.
[7] Nordhaus W D, Yang Z. A regional dynamic general-equilibrium model of alternative climate-change strategies[J]. American Economic Review , 1996,86(4):741-65.
[8] Collins W D, Craig A P, Truesdale J E, et al. The integrated Earth System Model (iESM): Formulation and functionality[J]. Geoscientific Model Development , 2015, 8(7):2 203-2 219.
[9] Köhler J, Grubb M, Popp D, et al . The transition to endogenous technical change in climate-economy models: A technical overview to the innovation modeling comparison project[J]. The Energy Journal , 2006,27: 17-55.
[10] Ackerman F. Still dead after all these years: Interpreting the failure of general equilibrium theory[J]. Journal of Economic Methodology , 2002, 9(2): 119-139.
[11] Yang S, Dong W, Chou J, et al . Global warming projections using the human-earth system model BNU-HESM1.0[J]. Science Bulletin , 2016,61(23):1 833-1 838,doi: 10.1007/s11434-016-1176-x.
[12] Ji D, Wang L, Feng J, et al . Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1[J]. Geoscientific Model Development , 2014, 7(5): 2 039-2 064.
[13] Moore J C, Grinsted A, Zwinger T, et al . Semiempirical and process-based global sea level projections[J]. Reviews of Geophysics , 2013, 51(3): 484-522.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 于德永,郝蕊芳. 生态系统服务研究进展与展望[J]. 地球科学进展, 2020, 35(8): 804-815.
[10] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[11] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[12] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[13] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[14] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[15] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
阅读次数
全文


摘要