Please wait a minute...
img img
地球科学进展  2001, Vol. 16 Issue (3): 324-331    DOI: 10.11867/j.issn.1001-8166.2001.03.0324
徐兴旺,蔡新平,王 杰,张宝林,梁光河
中国科学院地质与地球物理研究所,北京  100029
XU Xing-wang, CAI Xin-ping, WANG Jie,ZHANG Bao-lin, LIANG Guang-he
Institute of Geology and Geophysics,CAS,Beijing100029,China
 全文: PDF 


关键词: 构造构造动力学流体构造动力学流体    

Fluids are important participators and organizers of tectonic processes, such as plate movement, orogenesis, and folding and fracturing of rocks, in geological history and now. It is a time to set up a corresponding subject—“tectonic dynamics of fluids” to improve the study on tectonics of fluids. Tectonic dynamics is a new interdisciplinary frontier between fluid geology and structural geology. It mainly focuses on structures and tectonic dynamics induced by fluid motion, physical conditions (such as temperature and pressure) and their variation of fluids, and interaction between chemical component of fluids and wall rocks in the crust. It takes features of deformation and metamorphism, which formed during interaction between fluids and rocks and have been preserved in rocks, as basic research objects. After studying types, orders, distributions and fabrics of these features, and analyzing and testing physical and chemical information from these features by some techniques, it is intended to reconstruct moving process of fluids, dynamics of interaction between fluids and rocks, and dynamics of mineralization. The research actualities, such as relationship between fluids and tectonics, tectonic pattern of fluids, and fluidogenous tectonics, have been reviewed, and some advances have been introduced and discussed here.

Key words: Fluids    Tectonics    Tectonic dynamics    Tectonics dynamics of fluid.
收稿日期: 2000-02-23 出版日期: 2001-06-01
:  P5  


通讯作者: 徐兴旺(1966-),男,浙江人,副研究员,主要从事构造地质、流体构造动力学及隐伏矿床定位预测研究.      E-mail:
作者简介: 徐兴旺(1966-),男,浙江人,副研究员,主要从事构造地质、流体构造动力学及隐伏矿床定位预测研究
E-mail Alert


徐兴旺,蔡新平,王 杰,张宝林,梁光河. 流体构造动力学及其研究现状与进展[J]. 地球科学进展, 2001, 16(3): 324-331.

XU Xing-wang, CAI Xin-ping, WANG Jie,ZHANG Bao-lin, LIANG Guang-he. TECTONIC DYNAMICS OF FLUIDS AND ITS ADVANCE. Advances in Earth Science, 2001, 16(3): 324-331.


[1]  Ramsay J G. Pressure solution—the field data [J]. Journal of Geological Society, 1977, 134:72.
[2]  Durney D W. Early theories and hypothese on pressure-solution-redeposition [J]. Geology, 1978, 6:369-372.
[3]  Paterson M S. A theory for granular flow accommodated by material transfer via an intergranular fluid [J]. Tectonophysics, 1995, 245:135-151.
[4]  Beach A. Retragressive metamorphic processes in shear zones with special referrence to the Lewisian complex [J]. Journal of Structural Geology, 1980, 2(1-2): 257-263.
[5]  Cox S F, Etheridge M A. Couple grain-scale dilatancy and mass transfer during deformation at high fluid pressure:examples from Mount Lyal, Tasmania [J]. Journal of Structural Geology, 1989, 11:147-162.
[6]  Shimizu I. Kinetics of pressure solution creep in quartz: theoretical considerations [J]. Tectonophysics, 1995, 245: 121-134.
[7]  Xie Xinong, Li Sitian. Fluid flow and dynamic model in fault zones [J]. Earth Science Frontier, 1996, 3(3): 145-151.[解习农,李思田.断裂带流体作用及动力学模型[J].地学前缘,1996, 3(3):145-151.]
[8]  Ledru P, Autran A. Relationships between fluia circulation, ore deposition, and shear zones: new evidence from the Salau Scheelite deposit (French Pyrences) [J]. Economic Geology,1987, 82:224-229.
[9]  Atkinson B K. Stress corrosion and the rate-dependent tensile failure of a fine-grained quarz rock [J]. Tectonophysics,1980, 65:281-290.
[10]  Knipe R J. The interaction of deformation and metamorphism in slates [J]. Tectonophysics, 1981, 78:249-272.
[11]  Burg J P, Leon M I P D. Pressure-solution structures in a granite [J]. Journal of Structural Geology, 1985, 7(3):431-436.
[12]  Fyfe W S, Kerrick R. Fluids and thrusting [J]. Chemical Geology , 1985,49:353-362.
[13]  Tobisch O T, Barton M D, Vernon R H,et al. Fluid-enhanced deformation: transformation of granitoids to banded mylonites, western Sierra Nevada, California, and southeastern Australia [J]. Journal of Structural Geology, 1991,13(10): 1 137-1 156.
[14]  Roddy M, Reynolds S, Smith B,et al. K-metasomatism and detachment-related mineralization, Harcavar Mountains,Arizona [J]. Geological Society of America Bulletin, 1988,100:1 627-1 639.
[15]  Newton R C. Fluids and shear zones in the deep crust [J].Tectonophysics, 1990, 182:21-37.
[16]  Losh S. Stable isotope and modeling studies of fluid-rock interaction associated with the Snake Range and Mormon Peak detachment faults, Nevada [J]. Geological Society of America Bulletin , 1997,109(3):300-323.
[17]  Hubbert M K, Rubey W W. Roles of fluid pressure in mechanics of overthrust fulting [J]. AAPG Bulletin, 1959, 70:167-206.
[18]  Bryant D G. Intrusive breccias associated with ore, Warren(Bisbee) Mining District, Arizona [J]. Economic Geology,1968, 63(1): 1-12.
[19]  Llambias E J, Malvicini L. Geology and genesis of the Bi-Cumineralized breccia-pipe, San Francisco de Los Andes, San Juan, Argentina[J]. Economic Geology, 1969, 64 (3):271-286.
[20]  Norton D L, Cathles L M. Breccia pipes, products of exsolved vapor from magmas [J]. Economic Geology, 1973 ,68(3):540-546.
[21]  Sharp J E. Cave Peak, a molybdenum-mineralized breccia pipe complex in Culberson County, Texas[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 1979, 74(3):517-534.
[22]  Norman D I, Sawkins F J. The tribag breccia pipes: Precambrian Cu-Mo deposits, Batchawana Bay, Ontario[J]. Economic Geology, 1985, 80(5):1 593-1 621.
[23]  Silitoe R H. Ore-related breccias in volcanoplutonic areas[J]. Economic Geology , 1985, 80(5):1 467-1 514.
[24]  Barker E M, Andrew A S. Geologic, Fluid Inclusion, and Stable Isotope studies of the Gold-Bearing Breccia Pipe at Kidston, Queensland, Australia [J]. Economic Geology,1991, 86:810-830.
[25]  Li Shengyuan. Characteristics and origin of the Gengzhuang subvolcanogene hydrothermal gold deposit [J]. Geology and Prospecting, 1988, 24(5): 1-7.[李生元.耿庄次火山热液型金矿的特征与成因[J].地质与勘探,1988,24(5):1-7.]
[26]  Zhang Zengfeng. General features and genetic mechanism of crypto-explosive breccias[J]. Geological Science and Technology Information, 1991, 10(4): 1-5.[张增凤.隐爆角砾岩的特征及其形成机制[J].地质科技情报, 1991, 10(4): 1-5.]
[27]  Zhang Hongtao, Rui Zongyao. On the genetic classification of mineralized breccias related to porphyry deposits and its geological significance [J]. Mineral Deposits, 1991, 10(3):265-271.[张洪涛,芮宗瑶.论与斑岩矿床有关的矿化角砾岩成因类型及其地质意义[J].矿床地质,1991,10(3):265-271.]
[28]  Xu Xingwang, Sun Liqian, Lei Weizhi,et al. Structural characteristics, petrogenesis and mineralization of the massive polymetal deposits in Baiyin, Gansu Province, China[J]. Journal of Geomechanics, 1996, 2: 85-94.
[29]  Xu Xingwang, Cai Xingpin, Zhang Baolin,et al. Tectonic function and mineralization of fluids [J]. Mineral Deposits,1998, 7(Sup):1 067-1 070. [徐兴旺,蔡新平,张宝林,等.流体的构造作用与成矿[J].矿床地质,1998,7(sup.):1 067-1 070.]
[30]  Xu Xingwang, Caixinping, Qin Dajun,et al. Tectonic dynamic process of ore-forming fluids in the breccia pipe,Qibaoshan, Shangdong [J]. Gold Geology, 1999, 5(3): 19-27.[徐兴旺,蔡新平,秦大军,等.山东七宝山角砾岩筒结构和成矿流体构造动力学过程的恢复[J].黄金地质,1999,5(3):19-27.]
[31]  Reynolds D. Fluidization as a geological process, and its bearing on the problem of intrusive granites [J]. American Journal Sciences, 1954, 252:577-613.
[32]  Wolfe J A. Fluidization versus phreatomagmatic explosions in breccia pipes [J]. Economic Geology, 1980,75(7):1 105-1 108.
[33]  Burnham C W. Energy release in subvolcanic environments:implications for breccia formation [J]. Economic Geology,1985, 80:1 515-1 522.
[34] 徐兴旺,蔡新平,秦大军,等,山东七宝山角砾岩筒流体温压双重致裂机制与金铜成矿[J].中国科学(D辑), 2000, 30(1):47-52.
[35]  Xu Xingwang, Cai Xinping, Qin Dajun,et al. Fluids double-fracturing genetic mechanism and mineralization of gold-copper of the breccia pipe at Qibaoshan in Shandong Province[J]. Chinese Sciencia (D), 2000, 30(2): 113-121.
[36]  Fyfe W S, Price N J, Thompson A B. Fluids in the Earth' s Crust [M]. Amsterdam: Elsevier Scientific Publihing Company, 1978.1-363.
[37]  Davies J B, Archambeau C B. Analysis of high-pressure fluid flow in fractures with application to Yucca Mountain , Nevada, slug test data [J]. Tectonophysics, 1997, 277:83-98.
[38]  Zheng Y, Wang Y, Liu R,et al. Sliding-thrusting tectonics caused by thermal uplift in the Yunmeng Mountains, Beiking, China [J]. Journal of Structural Geology, 1988, 10(2):135-144.
[39]  Ma Changqian. The magma-dynamic mechanism of emplacement and compositional zonation of the Zhoukoudian stock,Beijing[J]. Acta Geologica Sinica, 1988, 62(4): 329-341.[马昌前.北京周口店岩株侵位和成分分带的岩浆动力学机理[J].地质学报, 1988, 62(4):329-341.]
[40]  Qian Weihong. The motion of the Earth interior liquid and global tectonics [J]. Earth Science Frontier, 1996, 3(3):152-160.[钱维宏.地球内部流体运动与全球构造[J].地学前缘,1996, 3(3):152-160.]
[41]  Sun Xiong, Ma Zongjin, Hong Hanzhing. Preliminary discussion on "Structure fluid dynamics" [J]. Earth Science Frontier, 1996, 3(3):138-144.[孙雄,马宗晋,洪汉诤.初论“构造流体动力学”[J].地学前缘,1996,3(3):138-144.]
[42]  Meissner K, Wever R. The possible role of fluids for the structuring of the continental crust [J]. Earth Science Reviews, 1992,32:19-32.
[43]  Hobbs B E. The influence of metamorphic environment up the deformation of minerals [J]. Tectonophysics, 1981, 78:335-383.
[44]  Rutter E H. The influence of temperature, strain rate and interstitial water in the experimental deformation of calcite rocks [J]. Tectonophysics, 1974, 22:311-334.
[45]  Wintsch R P, Christoffersen R, Kronenberg A K. Fluidrock reaction weakening of fault zone [J]. Journal of Geophysical Reaserch, 1995, 100(7):13 021-13 032.
[46]  Open Laboratory of Ore Deposit Geochemistry, CAS. Ore Deposit Geochemistry [M]. Beijing: Geological Publishing House, 1997. 1-29.[中国科学院矿床地球化学开发研究实验室.矿床地球化学[M].北京:地质出版社, 1997.1-29.]
[47]  Mueller R F, Saxena S K. Chemical Petrology [M]. New York:Springer-Verlag, 1977. 29-33.
[48]  Chen Yong, Wu Xiaodong, Zhang Fuqin. Thermal fracture experiment [J]. Chinese Sciences Bulletin, 1999,44:880-883.[陈勇,吴晓东,张福勤.热致裂实验研究[J].科学通报,1999, 44:880-883.]
[49]  Hammer S K. Segregation bands in plagioclase: non-dilational quartz veins formed by strain enhanced diffusion [J].Tectonophysics, 1981,79:T53-T61.
[50]  Rubie D C. Reaction-enhanced ductility: the role of solid-solid univariant reactions in deformation of the crust and mantle[J]. Tectonophysics, 1983, 96:331-352.
[51]  Xu Xingwang, Li Dongxu. Metamorphic and cataclastic granularization of mineral in ductile shear zone and classification of mylonites in the Huairou area, Beijing[A]. In:Tectonics Symposium Abstracts[C]. 1994.140-141.[徐兴旺,李东旭.北京怀柔地区韧性剪切带中矿物的变质粒化作用、脆性粒化作用及糜棱岩分类[A].见:大陆构造学术讨论会论文摘要[C].1994.140-141.]
[52]  Bell T H. The deformation and recrystallization of biotite in the WOODREFFE thrust mylonite zone [ J ]. Tectonophysics, 1979, 58:139-158.
[53]  Atkinson B K, Meredith P G. Stress corosion cracking of quartz:a note on the influence of chemical environment [J].Tectonophysics, 1981, 77:T1-T11.
[54]  Urai J L. Water-enhanced dynamic recrystallization and solution transfer in expermentally deformed carnallite [ J ].Tectonophysics, 1985,120:285-317.
[55]  Urai J L, Spiers C J, Zwart H J,et al. Weakening of rock salt by water during long-term creep [J]. Nature, 1986,324:554-557.
[56]  Griggs D T, Blacic J D. Quartz:anomalous weakness of synthetic crystals [J]. Science, 1965, 147:292-295.
[57]  Griggs D T. Hydrolytic weakening of quartz and other silicates [J]. Geophys J R Astron Soc, 1967 , 14:19-31.
[58]  Blacic J D. Effect of water on thevexperimental deformation of olivine[J]. Am Geophys Union, Geophys Monogr, 1972 ,16:109-115.
[59]  Boland J N, Tullis T E. Deformation behavior of wet and dry clinopyroxenite in the brittle toductile transition region[A].In: Hobbs Heard,ed. Geophysical Monograph 36, Mineral and rock deformation: Laboratory studies, the Paterson Volume[C]. American Geophysical Unoin, Washington, D C,1986. 35-49.
[60]  Borradail C J, Mcarthur J. Experimental calcite fabric in a synthetic weaker aggregate by coaxial and non-coaxial deformation [J]. Journal of Structural Geology, 1990, 12(3):351-363.
[61]  Freundt A, Rosi M. From Magma to Tephra-Modelling Physical Processes of Explosive Volcanic Eruptions[Z]. ELSEVIER,1999. 1-334.
[62]  Woods A, Spark S, Connor C,et al. A Model of the Interaction of a Fissure Eruption with a Horizonal Tunnel[Z]. IUGG 99, birmingham, abstracts, 1999. B169.
[63]  Hill B, Connor C, Doubike P. Constraints on Shallow Basalic Subvolcanic Conduit Dimensions[Z]. IUGG 99, birmingham, abstracts, 1999.B169.
[64]  Toramaru A. Thermodynamic and Kinrtic Consideration of Magma Fragmentation as a Rarefaction Shock Wave[Z]. IUGG 99, birmingham, abstracts, 1999,B167.
[65]  Melnik O, Sparks S. The Influence of Fragmentation Criterion on Explosive Flow Dynamcs in High-viscous Gas-saturated Magamas[Z]. IUGG 99, abstracts, 1999, B167.
[66]  Zimanowski B, Buettner R, Caffier I. The Ash Problem:Hydrodynamic Versus Brittle Fragmentation[Z]. IUGG 99,Birmingham, abstracts, 1999, B167.
[67]  Dellino P, Volpe L L. Contrasting Fragmentation and Transportation Dynamics in the Agnano Monte Spina eruption (4.1KA) at Phlegrean field (southern Italy) [Z]. IUGG 99,birmingham, abstracts, 1999, B167.
[68]  Buettner R, Zimanowski B, Roeder H. Monitoring of Magma Fragmentation by Electrical Field Measurements[Z]. IUGG 99, Birmingham, abstracts, 1999,B168.
[69]  Ryang G A, Lane S J, Phillips J C. Fragmentation Behaviour of a Laboratory Analogue to Explosive Magmatic Flows[Z].IUGG 99, Birmingham, abstracts, 1999,B167.
[70]  Taddeucci J, Wohletz K. Magma Fragmentation during the Plinian Phase of the Minoan Eruption (Santorini, Greece),as Inferred by Deposit Features and Pyroclast Textures[Z].IUGG 99, Birmingham, abstracts, 1999. B170.
[71]  Ongaro T E, Neri A. Flow Patterns of Overpressured volcanic jets [Z]. IUGG 99, Birmingham, abstracts, 1999.B171.
[72]  Wada Y. Five Parallel Brecciated Felsic Dikes, Observed at Central KII Peninsula, SW Japan[Z]. IUGG 99, Birmingham, abstracts, 1999, B172.
[73]  Papale P. Strain-induced magma fragmentation and Non-equilibrium Flow Dynamics in Volcanic Conduits[Z]. IUGG 99, Birmingham, abstracts, 1999.B172.
[74]  Colgate S A, Sigurgeisson T. Dynamic mixing of water and lava [J]. Nature, 1973, 224:252-255.
[75]  Boulter C A, Wilton V M, Cox D J,et al. Magma-wet-sediment interaction: The most widespread yet least recognized alteration system in the Iberian pyrit belt [A]. In: Stanley C J,et al, eds. Mineral Deposits: Processes to Processing(volume1)[C]. London: A.A.BALKEMA,1999.483-486.
[76]  Skilling I. Basaltic Magma Fragmentation Mechanisms within Muddy to Sandy Wet Sediments: A Textural Study of Peperite from welgesien, South Africa[Z]. IUGG 99, birmingham, abstracts, 1999.B1679.
[77]  Xu Xing-wang, Cai Xinping, Liang Guanghe,et al. Detailed prediction on position, shape and size of concealed ore-bearing breccia pipes in the subvolcanic complex in Qibaoshan area, Shangdong [J]. Gold Science and technology, 1999, 7(2): 9-18.[徐兴旺,蔡新平,梁光河,等.山东七宝山次火山杂岩区隐伏含矿角砾岩筒位-形-域精细预测[J].黄金科学技术,1999,7(2):9-18.]

[1] 王斌, 常宏, 段克勤. 秦岭新生代构造隆升与环境效应:进展与问题[J]. 地球科学进展, 2017, 32(7): 707-715.
[2] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[3] 王佳, 谭先锋, 曾春林, 陈青, 冉天, 薛伟伟, 李霞, 陈岑. 泥质岩成岩系统过程及其对SiO2赋存状态的制约——以渝东南地区龙马溪组为例[J]. 地球科学进展, 2017, 32(3): 292-306.
[4] 张虎才. 滇池构造漏水隐患及水安全[J]. 地球科学进展, 2016, 31(8): 849-857.
[5] 郑伟, 齐永安, 张忠慧, 邢智峰. 豫西荥阳陆相二叠纪—三叠纪之交的微生物成因构造(MISS)及其地质意义[J]. 地球科学进展, 2016, 31(7): 737-750.
[6] 姜波, 李明, 屈争辉, 刘杰刚, 李伍. 构造煤研究现状及展望[J]. 地球科学进展, 2016, 31(4): 335-346.
[7] 王九一, 刘成林. 石盐流体包裹体中古嗜盐菌的研究进展[J]. 地球科学进展, 2016, 31(12): 1220-1227.
[8] 毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10): 1056-1066.
[9] 陈志敏, 严松宏, 赵德安, 余云燕. 青藏地区地应力分布规律研究[J]. 地球科学进展, 2015, 30(8): 915-921.
[10] 刘仲兰, 李江海, 姜佳奇, 于涵. 四川峨眉山地质遗迹及其地学意义[J]. 地球科学进展, 2015, 30(6): 691-699.
[11] 胡毅, 王立明, 钟贵才, 房旭东, 许江, 何慧优. 威德尔海的重磁场特征及其构造意义[J]. 地球科学进展, 2015, 30(11): 1231-1238.
[12] 陈鹏, 施炜. 南秦岭造山带韧性剪切系中—晚侏罗世运动学分析与力学机制探讨[J]. 地球科学进展, 2015, 30(1): 69-77.
[13] 陈汉林, 陈沈强, 林秀斌. 帕米尔弧形构造带新生代构造演化研究进展[J]. 地球科学进展, 2014, 29(8): 890-902.
[14] 王水龙, 尚林波, 毕献武, 樊文苓. 硅酸盐熔体和流体中金的性质及行为研究进展[J]. 地球科学进展, 2014, 29(6): 683-690.
[15] 陈为佳, 何登发, 桂宝玲. 宽裂谷的构造样式与成因机制[J]. 地球科学进展, 2014, 29(3): 344-351.