地球科学进展 ›› 2020, Vol. 35 ›› Issue (4): 389 -403. doi: 10.11867/j.issn.1001-8166.2020.038

构造地貌学专栏 上一篇    下一篇

冲积扇形态与沉积特征及其动力学控制因素:进展与展望
武登云 1( ),任治坤 1( ),吕红华 2,刘金瑞 1,哈广浩 1,张弛 1,朱孟浩 1   
  1. 1.中国地震局地质研究所 活动构造与火山实验室,北京 100029
    2.华东师范大学 地理科学学院,上海 200241
  • 收稿日期:2020-01-28 修回日期:2020-03-13 出版日期:2020-04-10
  • 通讯作者: 任治坤 E-mail:rzk@ies.ac.cn
  • 基金资助:
    中国地震局地质研究所中央级公益性科研院所基本科研业务专项“青藏高原东北缘鄂拉山与日月山断裂的构造意义”(IGCEA1803);第二次青藏高原综合科学考察研究专题“碰撞以来古地理格局与构造地貌过程”(2019QZKK0704)

Morphology and Dynamics of Alluvial Fan and Its Research Prospects

Dengyun Wu 1( ),Zhikun Ren 1( ),Lü Honghua 2,Jinrui Liu 1,Guanghao Ha 1,Chi Zhang 1,Menghao Zhu 1   

  1. 1.Key Laboratory of Active Tectonics and Volcanos, Institute of Geology, China Earthquake Administration, Beijing 100029, China
    2.School of Geographic Sciences, East China Normal University, Shanghai 200241, China
  • Received:2020-01-28 Revised:2020-03-13 Online:2020-04-10 Published:2020-05-08
  • Contact: Zhikun Ren E-mail:rzk@ies.ac.cn
  • About author:Wu Dengyun (1994-), male, Dingyuan County, Anhui Province, Ph.D student. Research areas include tectonic geomorphology and active tectonics. E-mail: wdyecnu@163.com
  • Supported by:
    the National Nonprofit Fundamental Research Grant of China, Institute of Geology, China, Earthquake Administration “The tectonic implications of the Elashan and Riyueshan faults in NE margin of Tibetan Plateau”(IGCEA1803);The Second Tibetan Plateau Scientific Expedition and Research Program "Palaeogeographic pattern and tectonic geomorphologic process since the collision"(2019QZKK0704)

冲积扇作为区域环境演变的敏感记录器,日益受到学界关注。通过文献调研,对冲积扇形态特征和动力学控制因素进行了总结梳理。首先对比分析了不同类型冲积扇的沉积学和地貌学特征。进而分别阐明了上游流域基岩岩性、构造运动和气候变化对冲积扇的形态、规模和沉积层序的影响。最后介绍了有助于冲积扇精细化研究的一系列新技术和新方法的应用以及未来研究的发展方向。主要提出重力流和牵引流沉积过程分别塑造碎屑流型和河控型冲积扇两类,并表明冲积扇是多种因素相互控制下的产物:流域基岩性质影响下游冲积扇规模和沉积物组成;构造活动提供山前沉积空间,影响冲积扇形态特征;气候变化决定着第四纪冲积扇沉积层序发育,特别是引发洪水事件的极端气象事件。进一步指出未来需要采用新的手段深入解读冲积扇所蕴含的环境信息。

Alluvial fans can preserve historical records of sediment transport to middle and lower river systems or piedmont basins, which are considered to be sensitive recorders of climate change and tectonic activity. In this paper, the morphological characteristics, control factors and future development trend of alluvial fan are summarized and described. The main understanding is as follows: According to the gravity flow and traction flow process, fan can be divided into debris flow alluvial fan and fluvial fan. The former is formed under the action of debris gravity flow deposits, which is related to the occasional flood and burst flow in a short time. The latter is braided tributaries depositions which are gradually shallower and spread radially in the direction of fan toe under the traction water transport. The erodibility of underlying bedrock can affect the scale of downstream alluvial fan, which depends on the sediment production and store factors in the catchment. The easily eroded bedrock may produce more sediment, making the alluvial fan area larger. In the contrast, the erodibility of rocks in the source area can also affect the slope and hydrological characteristics of the valley so that more sediment is deposited in the upstream basin and the alluvial fan formed in the downstream is smaller. Tectonic activity is the pre-condition for the development of alluvial fans, which provides a space for alluvial fans depositions. Faulting in the piedmont can change the position and morphology of the ancient alluvial fan, and also cause deformation or distortion of the thick sedimentary sequence to record the regional tectonic activity. The quaternary alluvial fan sequence corresponds well to the climate change during the glacial-interglacial period. However, the influence of the flood events caused by extreme meteorological events on alluvial fan deposition should be focused on. The application of a series of new techniques and methods will help to carry out deep research on alluvial fan in the future, such as high-resolution observation technique, physical simulation experiment, and precise dating.

中图分类号: 

图1 两种类型的冲积扇地貌学和沉积学特征对比(据参考文献[ 18 , 19 , 43 ]修改)
Fig.1 Comparison of geomorphology and sedimentology of fans (modified after references[18, 19, 43])
图2 碎屑流型冲积扇和河控型冲积扇纵剖面概念图(据参考文献[ 18 ]修改)
(a)由碎屑重力流形成的扇体,扇面坡度较陡,沉积物分选差,多含粒级较粗的砾石,夹杂砂质透镜体;(b)由高含沙重力流形成的扇体,沉积构造和结构主要由中度分选的砂质、砂砾质透镜体和薄片组成,伴生少量砾石层;(c)由牵引水流形成的河控型扇体,扇面坡度较低,沉积物分选较好,沉积层序相对简单,几乎全部由砂砾层和砂层组成,夹有古土壤和湖泊沉积;从扇顶至扇缘,不同位置的横剖面(编号:1,2,3)显示了河控型冲积扇的沉积结构
Fig.2 Cross-sections through a generalized debris flow alluvial fan, a hyperconcentrated flow alluvial fan and a fluvial fan (modified after reference [ 18 ])
(a)The alluvial fan formed by the debris gravity flow has a steep slope, poor separation of sediments, and contains coarse gravel with sandy lens; (b)The sedimentary structure and structure of the alluvial fan formed by the hyperconcentrated gravity flow are mainly composed of moderately separated sand, sand and gravel lenses and thin sections, accompanied by a small amount of gravel layer; (c)The fluvial fan formed by the traction water flow has a low slope, a good separation of sediments, and a relatively simple sedimentary sequence. It is almost entirely composed of sand and gravel layers, sandwiched by ancient soil and lake deposits. From the fan apex to the toe, cross-sections at different locations (No. 1,2,3) show the sedimentary structure of the fluvial fan
图3 流域基岩易蚀性与冲积扇规模的关系(据参考文献[ 68 ]修改)
Fig.3 The relationship between the erodibility of bedrock and the area of alluvial fan(modified after reference[ 68 ])
图4 山前沿正断层发育的典型冲积扇(据参考文献[ 75 ]修改)
山内流域位于断层下盘,冲积扇在断层上盘向山前轴向河进积
Fig.4 Typical alluvial fans located along a normal fault at a range front(modified after reference [ 75 ])
Sourcing drainage basins are entrenched in the mountainous footwall. Triangular facets indicate the mountain front. The fans prograde towards the axial river in the hanging wall basin
图5 构造挤压作用对山前冲积扇发育的影响(据参考文献[ 79 ]修改)
盆地冲积扇构造体系记录了流域的构造隆起与地层褶皱之间的关系;地层楔入前生长地层表明构造抬升是同沉积过程,冲积扇的沉积过程记录了其褶皱变形作用
Fig.5 Cross-section showing the influence of tectonic compress on the development of alluvial in the piedmont (modified after reference[ 79 ])
The alluvial fan system records the relationship between tectonic uplift and stratigraphic fold in the basin. The formation wedge into the former growing strata indicates that the tectonic uplift is a syndepositional process and its folding deformation is recorded in the deposition process of alluvial fan
图6 希腊Spartan山麓气候变化与冲积扇分期的关系(据参考文献[ 76 ]修改)
Fig.6 Relationship between climate change and alluvial fan stages in piedmont of the Spartan Mountain, Greece (modified after reference[ 76 ])
1 Hartley A J, Weissmann G S, Nichols G J, et al. Large distributive fluvial systems: Characteristics, distribution, and controls on development[J]. Journal of Sedimentary Research, 2010, 80(2): 167-183.
2 Yu Xinghe, Li Shunli, Tan Chenpeng, et al. Coarse grained deposits and their reservoir characterizations: A look back to see forward and hot issues [J]. Journal of Palaeogeography, 2018, 20(5): 713-736.
于兴河, 李顺利, 谭程鹏, 等. 粗粒沉积及其储层表征的发展历程与热点问题探讨[J]. 古地理学报, 2018, 20(5): 713-736.
3 Arzani N. Catchment lithology as a major control on alluvial megafan development, Kohrud Mountain range, central Iran[J]. Earth Surface Processes and Landforms, 2012, 37(7): 726-740.
4 Weissmann G S, Hartley A J, Nichols G J, et al. Fluvial form in modern continental sedimentary basins: Distributive fluvial systems[J]. Geology, 2010, 38(1): 39-42.
5 Pope R J, Wilkinson K N, Millington A C. Human and climatic impact on Late Quaternary deposition in the Sparta basin piedmont: Evidence from alluvial fan systems[J]. Geoarchaeology: An International Journal, 2003, 18(7): 685-724.
6 Zheng Hongbo, Butcher K, Powell C. Evolution of neogene foreland Basin in Yecheng, Xinjiang, and uplift of Northern Tibetan Plateau—Ⅱ Facies analysis[J]. Acta Sedimentologica Sinica,2003, 21(1): 48-53.
郑洪波, Kutherine Butcher, Chris Powell. 新疆叶城晚新生代山前盆地演化与青藏高原北缘的隆升——Ⅱ沉积相与沉积盆地演化[J]. 沉积学报, 2003, 21(1): 48-53.
7 Harvey A M. Factors influencing the geomorphology of dry-region alluvial fans: A review[C]// Aportaciones a la Geomorfolog?a de Espana en el Inicio del Tercer Milenio. Publicaciones del Instituto Geológico y Minero de Espana, Serie: Geolog?a, 2002.
8 Zheng Hongbo, Butcher K, Powell C. Evolution of neogene foreland basin in Yecheng, Xinjiang, and Uplift of Northern Tibetan Plateau—I Stratigraphy and petrology[J]. Acta Sedimentologica Sinica, 2002, 20(2): 274-281.
郑洪波, Katherine Butcher,Chris Powell. 新疆叶城晚新生代山前盆地演化与青藏高原北缘的隆升[J]. 沉积学报, 2002, 20(2): 274-281.
9 Jones S J, Frostick L E, Astin T R. Climatic and tectonic controls on fluvial incision and aggradation in the Spanish Pyrenees[J]. Journal of the Geological Society, 1999, 156(4): 761-769.
10 Mo Duowen, Zhu Zhongli, Wan Linyi, et al. The alluvial fans along the eastern foot of Helan Mountain[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,1999, 35(6): 816-823.
莫多闻, 朱忠礼, 万林义, 等. 贺兰山东麓冲积扇发育特征[J]. 北京大学学报:自然科学版, 1999, 35(6): 816-823.
11 White K, Drake N, Millington A, et al. Constraining the timing of alluvial fan response to Late Quaternary climatic changes, southern Tunisia[J]. Geomorphology, 1996, 17(4): 295-304.
12 Drew F. Alluvial and lacustrine deposits and glacial records of the Upper-Indus Basin[J]. Quarterly Journal of the Geological Society, 1873, 29(1/2): 441-471.
13 Bull W B. Geomorphology of Segmented Alluvial Fans in Western Fresno County, California[M]. US Government Printing Office, 1964.
14 Ventra D, Abels H A, Hilgen F J, et al. Orbital-climate control of mass-flow sedimentation in a Miocene alluvial-fan succession (Teruel Basin, Spain)[C]// Ventra D, Clarke L E. Geology and Geomorphology of Alluvial and Fluvial Fans. London: Geological Society, Special Publications, 2018, 440: 129-157.
15 Harvey A M. Differential effects of base-level, tectonic setting and climatic change on Quaternary alluvial fans in the northern Great Basin, Nevada, USA[C]// Harvey A M. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. London: Geological Society, Special Publications, 2005, 251: 117-131.
16 Harvey A M, Mather A E, Stokes M. Alluvial fans: Geomorphology, sedimentology, dynamics—Introduction. A review of alluvial-fan research[C]// Harvey A M. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. London: Geological Society, Special Publications, 2005, 251: 1-7.
17 Giles P T, Whitehouse B M, Karymbalis E. Interactions between alluvial fans and axial rivers in Yukon, Canada and Alaska, USA[C]// Ventra D, Clarke L E. Geology and Geomorphology of Alluvial and Fluvial Fans. London: Geological Society, Special Publications, 2018, 440: 23-43.
18 Moscariello A. Alluvial fans and fluvial fans at the margins of continental sedimentary basins: Geomorphic and sedimentological distinction for geo-energy exploration and development[C]// Ventra D, Clarke L E. Geology and Geomorphology of Alluvial and Fluvial Fans. London: Geological Society, Special Publications, 2018, 440: 215-243.
19 Mather A E, Stokes M. Bedrock structural control on catchment-scale connectivity and alluvial fan processes, High Atlas Mountains, Morocco[C]// Ventra D, Clarke L E. Geology and Geomorphology of Alluvial and Fluvial Fans. London: Geological Society, Special Publications, 2018, 440: 103-128.
20 Sorriso-Valvo M, Antronico L, Le Pera E. Controls on modern fan morphology in Calabria, Southern Italy[J]. Geomorphology, 1998, 24(2/3): 169-187.
21 Ventra D, Nichols G J. Autogenic dynamics of alluvial fans in endorheic basins: Outcrop examples and stratigraphic significance[J]. Sedimentology, 2014, 61(3): 767-791.
22 Viseras C, Calvache M L, Soria J M, et al. Differential features of alluvial fans controlled by tectonic or eustatic accommodation space. Examples from the Betic Cordillera, Spain[J]. Geomorphology, 2003, 50(1/3): 181-202.
23 Harvey A M, Wigand P E, Wells S G. Response of alluvial fan systems to the late Pleistocene to Holocene climatic transition: Contrasts between the margins of pluvial Lakes Lahontan and Mojave, Nevada and California, USA[J]. Catena, 1999, 36(4): 255-281.
24 Calvache M L, Viseras C, Fernd?ez J. Controls on fan development—Evidence from fan morphometry and sedimentology; Sierra Nevada, SE Spain[J]. Geomorphology, 1997, 21(1): 69-84.
25 Zhang Jiyi. Some deposition characteristics and microfacies subdivision of coarse clastic alluvial fans[J]. Acta Sedimentologica Sinica,1985, 3(3): 74-85.
张纪易. 粗碎屑洪积扇的某些沉积特征和微相划分[J]. 沉积学报, 1985, 3(3): 74-85.
26 Goswami P K, Pant C C, Pandey S. Tectonic controls on the geomorphic evolution of alluvial fans in the Piedmont zone of Ganga Plain, Uttarakhand, India[J]. Journal of Earth System Science, 2009, 118(3): 245-259.
27 Quigley M C, Sandiford M, Cupper M L. Distinguishing tectonic from climatic controls on range-front sedimentation[J]. Basin Research, 2007, 19(4): 491-505.
28 Leier A L, DeCelles P G, Pelletier J D. Mountains, monsoons, and megafans[J]. Geology, 2005, 33(4): 289-292.
29 Horton B K, DeCelles P G. Modern and ancient fluvial megafans in the foreland basin system of the central Andes, southern Bolivia: Implications for drainage network evolution in fold‐thrust belts[J]. Basin Research, 2001, 13(1): 43-63.
30 Gupta S. Tectonic control on paleovalley incision at the distal margin of the early Tertiary Alpine foreland basin, southeastern France[J]. Journal of Sedimentary Research, 1997, 67(6): 1 030-1 043.
31 Galloway W E, Hobday D K. Terrigenous Clastic Depositional Systems: Applications to Petroleum, Coal, and Uranium Exploration[M]. New York: Springer-Verlag, 2012.
32 Blair T C, McPherson J G. Processes and forms of alluvial fans[C]// Parsons A J, Abrahams A D. Geomorphology and Desert Environments. Netherlands: Springer, 2009.
33 Harvey A M, Stokes M, Mather A, et al. Spatial characteristics of the Pliocene to modern alluvial fan successions in the uplifted sedimentary basins of Almería, SE Spain: Review and regional synthesis[C]// Ventra D, Clarke L E. Geology and Geomorphology of Alluvial and Fluvial Fans. London: Geological Society, Special Publications, 2018, 440: 65-77.
34 Lowey G W. Sedimentary processes of the Kusawa Lake torrent system, Yukon, Canada, as revealed by the September 16, 1982 flood event[J]. Sedimentary Geology, 2002, 151(3/4): 293-312.
35 Blair T C. Cause of dominance by sheetflood vs. debris‐flow processes on two adjoining alluvial fans, Death Valley, California[J]. Sedimentology, 1999, 46(6): 1 015-1 028.
36 Maraga F, Marchi L, Mortara G, et al. Colate detritiche torrentizie: Aspetti granulometrici e influenza sul territorio[J]. Memorie Societa' Geologica Italiana, 1998, 53: 75-96.
37 Bowman D. Principles of Alluvial Fan Morphology[M]. Netherlands: Springer, 2019.
38 Nichols G. Fluvial systems in desiccating endorheic basins[M]//Sedimentary Processes, Environments and Basins: A Tribute to Peter Friend, 2007: 569-589.
doi: 10.1002/9781444304411.ch23    
DOI:10.1002/9781444304411.ch23.
doi: 10.1002/9781444304411.ch23    
39 Weissmann G S, Mount J F, Fogg G E. Glacially driven cycles in accumulation space and sequence stratigraphy of a stream-dominated alluvial fan, San Joaquin Valley, California, USA[J]. Journal of Sedimentary Research, 2002, 72(2): 240-251.
40 Blair T C, McPherson J G. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages[J]. Journal of Sedimentary Research, 1994, 64(3): 450-489.
41 Stanistreet I G, McCarthy T S. The Okavango Fan and the classification of subaerial fan systems[J]. Sedimentary Geology, 1993, 85(1/4): 115-133.
42 Blair T C, McPherson J G. Recent debris-flow processes and resultant form and facies of the Dolomite alluvial fan, Owens Valley, California[J]. Journal of Sedimentary Research, 1998, 68(5): 800-818.
43 Al-Farraj A, Harvey A M. Morphometry and depositional style of Late Pleistocene alluvial fans: Wadi Al-Bih, northern UAE and Oman[C]//Alluvial Fans: Geomorphology, Sedimentology, Dynamics. London: Geological Society, Special Publications, 2005, 251(1): 85-94.
44 Blair T C. Sedimentology of the debris‐flow‐dominated Warm Spring Canyon alluvial fan, Death Valley, California[J]. Sedimentology, 1999, 46(5): 941-965.
45 Wagreich M, Strauss P E. Source area and tectonic control on alluvial-fan development in the Miocene Fohnsdorf intramontane basin, Austria[C]// Harvey A M. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. London: Geological Society, Special Publications, 2005, 251: 207-216.
46 Sepúlveda S A, Rebolledo S, Vargas G. Recent catastrophic debris flows in Chile: Geological hazard, climatic relationships and human response[J]. Quaternary International, 2006, 158(1): 83-95.
47 Gutiérrez F, Gutiérrez M, Sancho C. Geomorphological and sedimentological analysis of a catastrophic flash flood in the Arás drainage basin (Central Pyrenees, Spain)[J]. Geomorphology, 1998, 22(3/4): 265-283.
48 de Haas T, Ventra D, Carbonneau P E, et al. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering[J]. Geomorphology, 2014, 217: 165-181.
49 Iriondo M, Colombo F, Kr?hling D. El abanico aluvial del Pilcomayo, Chaco (Argentina-Bolivia-Paraguay): Características y significado sedimentario[J]. Geogaceta, 2000, 28: 79-82.
50 Latrubesse E M. Large rivers, megafans and other Quaternary avulsive fluvial systems: A potential “who's who” in the geological record[J]. Earth-Science Reviews, 2015, 146: 1-30.
51 Chakraborty T, Kar R, Ghosh P, et al. Kosi megafan: Historical records, geomorphology and the recent avulsion of the Kosi River[J]. Quaternary International, 2010, 227(2): 143-160.
52 Fontana A, Mozzi P, Bondesan A. Alluvial megafans in the Venetian-Friulian Plain (north-eastern Italy): Evidence of sedimentary and erosive phases during Late Pleistocene and Holocene[J]. Quaternary International, 2008, 189(1): 71-90.
53 Iriondo M. Geomorphology and late Quaternary of the Chaco[J]. Geomorphology, 1993, 7: 289-303.
54 Arzani N. The fluvial megafan of Abarkoh Basin (Central Iran): An example of flash-flood sedimentation in arid lands[C]// Harvey A M. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. London: Geological Society, Special Publications, 2005, 251: 41-59.
55 Goodbred Jr S L. Response of the Ganges dispersal system to climate change: A source-to-sink view since the last interstade[J]. Sedimentary Geology, 2003, 162(1/2): 83-104.
56 Singh H, Parkash B, Gohain K. Facies analysis of the Kosi megafan deposits[J]. Sedimentary Geology, 1993, 85(1/4): 87-113.
57 Bilmes A, Veiga G D. Linking mid-scale distributive fluvial systems to drainage basin area: Geomorphological and sedimentological evidence from the endorheic Gastre Basin, Argentina[C]// Ventra D, Clarke L E. Geology and Geomorphology of Alluvial and Fluvial Fans. London: Geological Society, Special Publications, 2018, 440: 265-279.
58 Kukulski R B, Hubbard S M, Moslow T F, et al. Basin-scale stratigraphic architecture of upstream fluvial deposits: Jurassic-Cretaceous foredeep, Alberta Basin, Canada[J]. Journal of Sedimentary Research, 2013, 83(8): 704-722.
59 Jordan O D, Mountney N P. Sequence stratigraphic evolution and cyclicity of an ancient coastal desert system: The Pennsylvanian-Permian Lower Cutler Beds, Paradox Basin, Utah, USA[J]. Journal of Sedimentary Research, 2012, 82(10): 755-780.
60 Shukla U K. Sedimentation model of gravel-dominated alluvial piedmont fan, Ganga Plain, India[J]. International Journal of Earth Sciences, 2009, 98(2): 443-459.
61 Saez A, Anadon P, Herrero M J, et al. Variable style of transition between Palaeogene fluvial fan and lacustrine systems, southern Pyrenean foreland, NE Spain[J]. Sedimentology, 2007, 54(2): 367-390.
62 Hampton B A, Horton B K. Sheetflow fluvial processes in a rapidly subsiding basin, Altiplano plateau, Bolivia[J]. Sedimentology, 2007, 54(5): 1 121-1 148.
63 de Haas T, van den Berg W, Braat L, et al. Autogenic avulsion, channelization and backfilling dynamics of debris‐flow fans[J]. Sedimentology, 2016, 63(6): 1 596-1 619.
64 Levson V M, Rutter N W. Influence of bedrock geology on sedimentation in Pre-Late Wisconsinan alluvial fans in the Canadian Rocky Mountains[J]. Quaternary International, 2000, 68:133-146.
65 Blair T C. Sedimentary processes and facies of the waterlaid Anvil Spring Canyon alluvial fan, Death Valley, California[J]. Sedimentology, 1999, 46(5): 913-940.
66 Bull W B. Relation of textural (CM) patterns to depositional environment of alluvial-fan deposits[J]. Journal of Sedimentary Research, 1962, 32(2): 211-216.
67 Hooke R L. Model geology: Prototype and laboratory streams: Discussion[J]. Geological Society of America Bulletin, 1968, 79(3): 391-394.
68 Lecce S A. Influence of lithologic erodibility on alluvial fan area, western White Mountains, California and Nevada[J]. Earth Surface Processes and Landforms, 1991, 16(1): 11-18.
69 Ghinassi M, Ielpi A. Morphodynamics and facies architecture of streamflow-dominated, sand-rich alluvial fans, Pleistocene Upper Valdarno Basin, Italy[C]//Ventra D, Clarke L E. Geology and Geomorphology of Alluvial and Fluvial Fans. London: Geological Society, Special Publications, 2018, 440: 175-200.
70 Yun Long, Yang Xiaoping, Song Fangmin, et al. Late quaternary dinistral dtrike-slip sctivities of Sanwei Shan gault in the North of Tibetan Plateau[J]. Seismology and Geology,2016, 38(2): 434-446.
云龙, 杨晓平, 宋方敏, 等. 青藏高原北缘三危山断裂晚第四纪以来的左旋走滑活动[J]. 地震地质, 2016, 38(2): 434-446.
71 Ding Rui, Ren Junjie, Zhang Shimin. Late quaternary activity and paleoearthquakes along the Nanyukou Segment of the northern piedmont fault of the Wutai Mountain[J]. Earthquake Research in China, 2009, 25(1): 41-53.
丁锐, 任俊杰, 张世民. 五台山北麓断裂南峪口段晚第四纪活动与古地震[J]. 中国地震, 2009, 25(1): 41-53.
72 Leleu S, Ghienne J, Manatschal G. Upper Cretaceous-Palaeocene basin-margin alluvial fans documenting interaction between tectonic and environmental processes (Provence, SE France) [C]//Harvey A M. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. London: Geological Society, Special Publications, 2005, 251: 217-239.
73 Yang Xiaoping, Shen Jun. Late Quaternapy activity of Jinghe-Alashankou Section of the Boluokenu Fault, Interior Tianshan[J]. Seismology and Geology, 2000, 22(3): 305-315.
杨晓平, 沈军. 天山内部博罗可努断裂精河—阿拉山口段晚更新世以来的活动特征[J]. 地震地质, 2000, 22(3): 305-315.
74 Zhang Weiqi, Liao Yuhua, Pan Zushou, et al. On the piedmont scarp in Alluvial Fan of Helanshan Mountain [J]. Seismology and Geology, 1982, 4(2): 32-34.
张维岐, 廖玉华, 潘祖寿, 等. 初论贺兰山前洪积扇断层陡坎[J]. 地震地质, 1982, 4(2): 32-34.
75 Burbank D W, Anderson R S. Tectonic Geomorphology[M]. Oxford:Blackwell Science, 2011.
76 Pope R J, Wilkinson K N. Reconciling the roles of climate and tectonics in Late Quaternary fan development on the Spartan piedmont, Greece[C]// Harvey A M. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. London: Geological Society, Special Publications, 2005, 251: 133-152.
77 Karymbalis E, Ferentinou M, Giles P T. Use of morphometric variables and self-organizing maps to identify clusters of alluvial fans and catchments in the north Peloponnese, Greece[C]// Ventra D, Clarke L E. Geology and Geomorphology of Alluvial and Fluvial Fans. London: Geological Society, Special Publications, 2018, 440: 45-64.
78 Xu Binbin, Zhang Dongli, Zhang Peizhen, et al. Slip offset along strlike-slip fault determined from stream terraces formation[J]. Seismology and Geology, 2019, 41(3): 587-602.
许斌斌, 张冬丽, 张培震, 等. 冲积扇河流阶地演化对走滑断裂断错位移的限定[J]. 地震地质, 2019, 41(3): 587-602.
79 Leleu S, Ghienne J F, Manatschal G. Upper Cretaceous-Palaeocene basin-margin alluvial fans documenting interaction between tectonic and environmental processes (Provence, SE France)[C]// Harvey A M. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. London: Geological Society, Special Publications, 2005, 251: 218-239.
80 Harvey A M. Factors influencing Quaternary alluvial fan development in southeast Spain[M]//Alluvial Fans: A Field Approach. Chichester:Wiley, 1990: 247-269.
81 Waters J V, Jones S J, Armstrong H A. Climatic controls on late Pleistocene alluvial fans, Cyprus[J]. Geomorphology, 2010, 115(3/4): 228-251.
82 Macklin M G, Fuller I C, Lewin J, et al. Correlation of fluvial sequences in the Mediterranean basin over the last 200 ka and their relationship to climate change[J]. Quaternary Science Reviews, 2002, 21(14/15): 1 633-1 641.
83 Harvey A M. The response of dry-region alluvial fans to late Quaternary climatic change[M]// Desertification in the Third Millenium. Balkema, Rotterdam, 2004: 83-98.
84 Hooke R L. Toward a uniform theory of clastic sediment yield in fluvial systems[J]. Geological Society of America Bulletin, 2000, 112(12): 1 778-1 786.
85 David-Novak H B, Morin E, Enzel Y. Modern extreme storms and the rainfall thresholds for initiating debris flows on the hyperarid western escarpment of the Dead Sea, Israel[J]. Geological Society of America Bulletin, 2004, 116(5/6): 718-728.
86 Caine N. The rainfall intensity-duration control of shallow landslides and debris flows[J]. Geografiska Annaler: Series A, Physical Geography, 1980, 62(1/2): 23-27.
87 Dorn R I. The role of climatic change in alluvial fan development[M]//Parsons A J, Abrahams A D. Geomorphology of Desert Environments. London: Springer, 1994: 593-615.
88 Iverson R M. The physics of debris flows[J]. Reviews of geophysics, 1997, 35(3): 245-296.
89 Wieczorek G F, Glade T. Climatic factors influencing occurrence of debris flows[M]// Jakob M, Hungr O. Debris-flow Hazards and Related Phenomena. Berlin: Springer, 2005.
90 Foulds S A, Griffiths H M, Macklin M G, et al. Geomorphological records of extreme floods and their relationship to decadal-scale climate change[J]. Geomorphology, 2014, 216: 193-207.
91 Sletten K, Blikra L H. Holocene colluvial (debris‐flow and water‐flow) processes in eastern Norway: Stratigraphy, chronology and palaeoenvironmental implications[J]. Journal of Quaternary Science: Published for the Quaternary Research Association, 2007, 22(6): 619-635.
92 Griffiths P G, Webb R H, Melis T S. Frequency and initiation of debris flows in Grand Canyon, Arizona[J]. Journal of Geophysical Research: Earth Surface, 2004, 109(F4). DOI:10.1029/2003JF000077.
doi: 10.1029/2003JF000077    
93 Beylich A A, Sandberg O. Geomorphic effects of the extreme rainfall event of 20-21 July, 2004 in the Latnjavagge catchment, northern Swedish Lapland[J]. Geografiska Annaler: Series A, Physical Geography, 2005, 87(3): 409-419.
94 Hovius N, Stark C P, Hao-Tsu C, et al. Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan[J]. The Journal of Geology, 2000, 108(1): 73-89.
95 Stager J C, Mayewski P A. Abrupt early to mid-Holocene climatic transition registered at the equator and the poles[J]. Science, 1997, 276(5 320): 1 834-1 836.
96 Colombo F. Quaternary telescopic-like alluvial fans, Ranges Andean, Argentina[C]// Harvey A M. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. London: Geological Society, Special Publications, 2005, 251: 69-84.
97 Mather A E, Hartley A. Flow events on a hyper-arid alluvial fan: Quebrada Tambores, Salar de Atacama, northern Chile[C]// Harvey A M. Alluvial Fans: Geomorphology, Sedimentology, Dynamics. London: Geological Society, Special Publications, 2005, 251: 9-24.
98 Lustig L K. Clastic Sedimentation in Deep Springs Valley, California[M]. Washington DC:US Government Printing Office, 1965.
99 Harvey A M, Silva P G, Mather A E, et al. The impact of Quaternary sea-level and climatic change on coastal alluvial fans in the Cabo de Gata ranges, southeast Spain[J]. Geomorphology, 1999, 28(1/2): 1-22.
100 Ritter J B, Miller J R, Enzel Y, et al. Reconciling the roles of tectonism and climate in Quaternary alluvial fan evolution[J]. Geology, 1995, 23(3): 245-248.
101 Wang Ping. Response of the development of the Shule River Alluvial fan to tectonic activity[J]. Quaternary Sciences,2004, 24(1): 74-81.
王萍. 甘肃疏勒河冲积扇发育特征及其对构造活动的响应[J]. 第四纪研究, 2004, 24(1): 74-81.
102 Ventra D, Clarke L E. Geology and geomorphology of alluvial and fluvial fans: Current progress and research perspectives[C]// Ventra D, Clarke L E. Geology and Geomorphology of Alluvial and Fluvial Fans. London: Geological Society, Special Publications, 2018, 440: 1-21.
103 Radebaugh J, Ventra D, Lorenz R D, et al. Alluvial and fluvial fans on Saturn's moon Titan reveal processes, materials and regional geology[C]// Ventra D, Clarke L E. Geology and Geomorphology of Alluvial and Fluvial Fans. London: Geological Society, Special Publications, 2018, 440: 281-305.
104 Chen Shupeng. Some information of quaternary environment changes from satellite image in North China Plain[J]. Quaternary Sciences,1990, (1): 53-65.
陈述彭. 卫星遥感信息与华北平原第四纪环境变迁研究[J]. 第四纪研究, 1990, (1): 53-65.
105 Farr T G, Chadwick O A. Geomorphic processes and remote sensing signatures of alluvial fans in the Kun Lun Mountains, China[J]. Journal of Geophysical Research: Planets, 1996, 101(E10): 23 091-23 100.
106 Deganutti A M, Tecca P R, Nigro G. Comparative numerical modelling of a debris-flow fan in the Eastern Italian Alps[C]// Ventra D, Clarke L E. Geology and Geomorphology of Alluvial and Fluvial Fans. London: Geological Society, Special Publications, 2018, 440: 201-213.
107 Beguería S, Van Asch T W, Malet J P, et al. A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain[J]. Natural Hazards & Earth System Science, 2009, 9(6):1 897-1 909.
108 Armanini A, Fraccarollo L, Rosatti G. Two-dimensional simulation of debris flows in erodible channels[J]. Computers & Geosciences, 2009, 35(5): 993-1 006.
109 Reitz M D, Jerolmack D J. Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth[J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F2). DOI:10.1029/2011JF002261.
doi: 10.1029/2011JF002261    
110 Van Dijk M, Kleinhans M G, Postma G, et al. Contrasting morphodynamics in alluvial fans and fan deltas: Effect of the downstream boundary[J]. Sedimentology, 2012, 59(7): 2 125-2 145.
111 Al-Farraj A, Harvey A M. Desert pavement characteristics on wadi terrace and alluvial fan surfaces: Wadi Al-Bih, UAE and Oman[J]. Geomorphology, 2000, 35(3/4): 279-297.
112 Alonso-Zarza A M, Silva P G, Goy J L, et al. Fan-surface dynamics and biogenic calcrete development: Interactions during ultimate phases of fan evolution in the semiarid SE Spain (Murcia)[J]. Geomorphology, 1998, 24(2/3): 147-167.
113 McFadden L D, Ritter J B, Wells S G. Use of multiparameter relative-age methods for age estimation and correlation of alluvial fan surfaces on a desert piedmont, eastern Mojave Desert, California[J]. Quaternary Research, 1989, 32(3): 276-290.
114 Scorpio V, Santangelo N, Santo A. Multiscale map analysis in alluvial fan flood-prone areas[J]. Journal of Maps, 2016, 12(2): 382-393.
115 Chakraborty T, Ghosh P. The geomorphology and sedimentology of the Tista megafan, Darjeeling Himalaya: Implications for megafan building processes[J]. Geomorphology, 2010, 115(3/4): 252-266.
[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[13] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[14] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
[15] 闫昕旸,张强,闫晓敏,王胜,任雪塬,赵福年. 全球干旱区分布特征及成因机制研究进展[J]. 地球科学进展, 2019, 34(8): 826-841.
阅读次数
全文


摘要