地球科学进展 ›› 2004, Vol. 19 ›› Issue (5): 767 -773. doi: 10.11867/j.issn.1001-8166.2004.05.0767

综述与评述 上一篇    下一篇

高温高压岩石粒间熔体(和流体)形态学及其研究进展
侯渭;周文戈;谢鸿森;刘永刚   
  1. 中国科学院地球化学研究所,贵州 贵阳 550002
  • 收稿日期:2003-08-13 修回日期:2003-10-24 出版日期:2004-12-20
  • 通讯作者: 侯渭(1942-),女,山西省榆次人,研究员,主要从事地球深部物质科学研究. E-mail:E-mail:xiehongsen@sina.com
  • 基金资助:

    国家自然科学基金重大项目“地球内部几个重要界面物质的高温高压物性研究”(编号:10299040);中国科学院知识创新工程重要方向项目“同步辐射高压高温实验技术及地幔地核重要矿物的物性研究”(编号:KJCX2-SW-No.3)资助

THE MORPHOLOGY OF MELT (AND FLUID) IN INTERGRANULAR PORES OF ROCK UNDER HIGH-TEMPERATURE AND HIGH-PRESSURE AND SOME DEVELOPMENT OF 
EXPERAMENTAL STUDIES OF THIS BRANCH

HOU Wei, ZHOU Wen-ge, XIE Hong-sen ,LIU Yong-gang   

  1. Institute of Geochemistry, Chinese Academy of Sciences,Guiyang 550002,China
  • Received:2003-08-13 Revised:2003-10-24 Online:2004-12-20 Published:2004-10-01

高温高压岩石粒间熔体(和流体)形态学是现代岩石学的前沿领域之一。它主要研究高温高压下低程度部分熔融(或含少量流体)岩石中,矿物颗粒之间熔体(或流体)形态特征、连通性,以及与周围矿物相互关系的科学。研究中较多地借鉴了材料科学的研究方法,与界面物理化学密切相关。高温高压下地幔岩石粒间熔体(和流体)形态学的研究为探讨地幔部分熔融作用、软流圈和地幔交代作用的成因提供了重要的实验依据,已成为地球深部研究的重要手段之一。目前该学科还没有为我国广大地学工作者所熟悉。为此,对高温高压岩石粒间熔体(和流体)形态学的基础理论、实验方法,以及某些实验研究结果进行简要介绍,从而为读者对该学科的了解提供一些便利。

The morphology of melt (and fluid) in intergranular pores of rock under high-temperature and high-pressure is one of forward branches in modern petrology. In this branch, the morphological features of melt (and fluid) in intergranular pores of rock, interconnectivity, and the relation between melt (or fluid) and mineral crystals around them under high-temperature and high-pressure are studied. Some observational methods of materials science are  used in the study of this brach. The interfacial energy theory of physical chemistry is theoretical basis of this branch. The studies of morphology of melt (and fluid) in intergranular pores of mantle rock under high-temperature and high-pressure are very important for partial melting of mantle, asthenosphere, and metasomatism of mantle. In this paper, the theoretical basis, experimental method, and some results of this branch are reviewed.

中图分类号: 

[1]Ringwood A E. Mineralogical constitution of the deep mantle[J]. Journal of Geophysical Research,1962, 67:4 005-4 010. 
[2]Green D H, Ringwood A E. The genesis of basalt magmas[J]. Contributiona to Mineralogy and Petrology,1967,15:103-190.
[3]Kushiro I. Partial melting experiments on peridotite and origin of mid-ocean ridge basalt[J]. Annual Review on Earth and Planet Science,2001, 29:71-107.
[4]Jin Zhenming, Green W H , Zhou Yi. Melt topology in partially molten peridotite during ductile deformation[J]. Nature,1994,372:164-167.
[5]Ye Ruilun(叶瑞伦),Fang Yonghan(方永汉),Lu Peiwen(陆佩文). Physical Chemistry of Inorganic Material[M]. Beijing: Press of Chinese Architecture Industry,1986.103-115(in Chinese).
[6]Watson E B, Brenan J M. Fluids in the lithosphere,1. experimentally-determined wetting characteristics of CO2-H2O fluids and their implications for fluid transport,host-rock physical properties, and fluid inclusion formation[J].Earth and Planetary Science Letters,1987,85: 497-515. 
[7]Ikeda S, Toriumi M, Yoshida H,et al. Experimental study of the textural development of igneous rocks in the late stage of crystallization: The importance of interfacial energies under non-equilibrium conditions[J].Contributiona to Mineralogy and Petrology,2002, 142:397-415.
[8] Cmiral M, John D, Gerald F,et al. A clock look at dihedral angles and melt geometry in olivine-basalt aggregates: A TEM study[J]. Contributiona to Mineralogy and Petrology,1998,130:336-345.
[9]Laporte D, Watson E B. Experimental and theoretical constraints on melt distribution in crustal sources: The effect of crystalline anisotropy on melt interconnectivity[J]. Chemical Geology,1995, 124:161-184.
[10]Holness M B. The effect of feldspar on quartz- H2O -CO2 dihedral angles at 4 kbar, with consequences for the behaviour of aqueous fluids in migmatites[J]. Contributiona to Mineralogy and Petrology,1995,118(4):356-364.
[11]Hiraga T, Nishikawa O, Nagase T, et al. Morphology of intergranular pores and wetting angles in pelitic schists studied by transmission electron microscopy[J]. Contributiona to Mineralogy and Petrology,2001, 141: 613-622.
[12]Harte B, Hunter R H, Kinny P D. Melt geometry, movement and crystallization,in relatrion to mantle dykes,veins and metasomatism[A]. In: Cox K G, McKenzie D, White R S,eds. Melting and Melt Movement in the Earth[C]. London:Oxford Science Publications,1993.1-21. 
[13]Waff  H S, Faul U H. Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts[J].Journal of Geophysical Research, 1992, 97(B6):9 003-9 014.
[14]Faul U H. Permeability of partially molten upper mantle rocks from experiments and percolation theory[J].Journal of Geophysical Research,1997,102(B5): 10 299-10 311.
[15]Schafer F N, Foley S F. The effect of crystal orientation on the wetting behaviour of silicate melts on the surfaces of spinel peridotite minerals[J]. Contributiona to Mineralogy and Petrology,2002,143:245-261.
[16]Laporte D,Watson E B.Direct observation of near-equilibrium pore geometry in synthetic quartzites at 600-800℃ and 2-10.5 kbar[J].Journal of Geology,1991, 99:873-878.
[17]Holness M B. Equilibrium dihedral angles in the system quartz-CO2-H2O-NaCl at 800℃ and 1-15kbar:The effects of pressure and fluid composition on the permeability of quartzites[J].Earth and Planetary Science Letters, 1992, 114: 171-184.
[18]Holness M B. Temperature and pressure dependence of quartz-aqueous fluid dihedral angles:The control of adsorbed H2O on the permeability of quartzites[J].Earth and Planetary Science Letters, 1993,117:363-377.
[19]Hiraga T, Nishikawa O, Nagase T,et al.Morphology of intergranular pores and wetting angles in pelitic schists studied by transmission electron microscopy[J].Contributiona to Mineralogy and Petrology,2001, 141: 613-622.
[20] Bargen N V, Waff H S. Permeabilities, interfacial areas and curvatures of partially molten system: Results of numerical computations of equilibrium microstructures[J].Journal of Geophysical Research,1986,91(B9): 9 261-9 276. 
[21]Mo Xuanxue(莫宣学). Structure of magma melt[J].Geological Science and Technology Information(地质科技情报),1985,4(2):21-31(in Chinese).

[1] 陈国松, 孟元林, 郇金来, 肖丽华, 冯丹. 含油气盆地碎屑岩储层异常高孔、渗带成因机制研究进展[J]. 地球科学进展, 2021, 36(9): 922-936.
[2] 李荣西, 毛景文, 赵帮胜, 陈宝赟, 刘淑文. 烃类流体在 MVT型铅锌矿成矿中角色与作用:研究进展与展望[J]. 地球科学进展, 2021, 36(4): 335-345.
[3] 张晓智, 周怀阳, 钱生平. 俯冲带岩浆弧安山岩的成因研究进展[J]. 地球科学进展, 2021, 36(3): 288-306.
[4] 余小灿,刘成林,王春连. 锂同位素地球化学在大陆地热体系研究中的应用[J]. 地球科学进展, 2020, 35(3): 246-258.
[5] 张为,周丽,唐红峰,李和平,王力. 水热体系中 Na2SO4/K2SO4 溶解度的热力学计算[J]. 地球科学进展, 2019, 34(4): 414-423.
[6] 贾凌云, 李琳, 王千遥, 马劲风, 王大兴. 致密砂岩储层岩石物理模型的优化建立[J]. 地球科学进展, 2018, 33(4): 416-424.
[7] 张瑞刚, 高雪, 杨立强. 岩浆混合作用的识别:以义敦岛弧稻城岩体为例[J]. 地球科学进展, 2018, 33(10): 1058-1074.
[8] 廖一帆, 孙宁宇, 毛竹. 地球下地幔矿物结构和热力学参数的研究进展与展望[J]. 地球科学进展, 2017, 32(5): 465-480.
[9] 李兴文, 张鹏, 强小科, 敖红. 三门峡会兴沟剖面黄土—古土壤序列的岩石磁学研究[J]. 地球科学进展, 2017, 32(5): 513-523.
[10] 王九一, 刘成林. 石盐流体包裹体中古嗜盐菌的研究进展[J]. 地球科学进展, 2016, 31(12): 1220-1227.
[11] 毛克宇. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析[J]. 地球科学进展, 2016, 31(10): 1056-1066.
[12] 赵欣, 施光海, 张骥. 岩石圈地幔中的金刚石及其矿物包裹体的研究进展[J]. 地球科学进展, 2015, 30(3): 310-322.
[13] 蒲俊兵, 蒋忠诚, 袁道先, 章程. 岩石风化碳汇研究进展:基于IPCC 第五次气候变化评估报告的分析[J]. 地球科学进展, 2015, 30(10): 1081-1090.
[14] 王水龙, 尚林波, 毕献武, 樊文苓. 硅酸盐熔体和流体中金的性质及行为研究进展[J]. 地球科学进展, 2014, 29(6): 683-690.
[15] 琚宜文, 卜红玲, 王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.
阅读次数
全文


摘要