地球科学进展 doi: 10.11867/j.issn.1001-8166.2025.092

   

草原生态系统植物群落稳定性及其影响机制研究进展
王怀海1,2,3,宋兆斌1,2,3,乔静娟1,2,3,张晓雪1,2,3,汪正蛟一1,2,3,郝芳唯1,2,3,左小安1,3*   
  1. (1. 中国科学院西北生态环境资源研究院 干旱区生态安全与可持续发展全国重点实验室/乌拉特荒漠草原研究站,甘肃 兰州 730000;2. 中国科学院大学,北京 100049;3. 甘肃省寒区旱区逆境生理与生态重点实验室,甘肃 兰州 730000)
  • 基金资助:
    内蒙古自治区科技重大专项课题(编号:2024JBGS0011-02);甘肃省科技计划优秀博士生项目(编号:25JRRA527);甘肃省 科技计划基础研究创新群体项目(编号:25JRRA490)资助.

Advances in Plant Community Stability and Its Regulatory Mechanisms in Steppe Ecosystems

WANG Huaihai1, 2, 3, SONG Zhaobin1, 2, 3, QIAO Jingjuan1, 2, 3, ZHANG Xiaoxue1, 2, 3,WANG Zhengjiaoyi1, 2, 3, HAO Fangwei1, 2, 3, ZUO Xiaoan1, 3*   

  1. (1. State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands/Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Key Laboratory of Stress Physiology and Ecology in Cold and Arid Region of Gansu Province, Lanzhou 730000, China)
  • About author:WANG Huaihai, research areas include plant community stability and restoration ecology. E-mail: wanghuaihai@nieer.ac.cn
  • Supported by:
    Project supported by the Major Science and Technology Project of Inner Mongolia Autonomous Region (Grant No. 2024JBGS0011-02); Foundation for Outstanding Ph.D Student of Gansu Province (Grant No. 25JRRA527); Foundation for Innovative Research Groups in Basic Research of Gansu Province (Grant No. 25JRRA490).
植物群落稳定性是维系草原生态系统结构完整性、功能与服务可持续性的核心生态学议题,在全球气候变化和人类活动加剧的背景下,其影响机制已成为生态学和植物学研究的前沿焦点。在前人研究的基础上,从稳定性理论内涵及表征参数、多样性—稳定性关系、草原生态系统植物群落稳定性的影响机制等方面梳理了当前研究进展,指出现有研究中存在的关键问题,并对未来可能的研究重点进行了展望。研究表明,在气候变化与人类活动影响下,草原生态系统植物群落稳定性主要受到超产效应(选择效应与互补效应)、保险效应、异步性效应、补偿效应、投资组合效应、统计平均效应以及土壤养分可利用性等生物机制或非生物因素的共同调控,且具有明显的生态系统类型特异性和时空尺度依赖性。未来需要构建“多扰动要素—多调控过程—多时空尺度/组织维度”的系统研究范式,以便进一步深入解析全球变化背景下草原生态系统的结构、功能和稳定性之间的内在关联机制,为草原生态系统可持续发展与适应性管理实践提供参考依据。
Abstract:Plant community stability is the central ecological issue that underpins the structural integrity, functional continuity, and service sustainability of steppe ecosystems. Its influencing mechanisms have become a frontier focus in ecological and botanical research amid accelerating global climate change and intensifying anthropogenic activities. Building upon previous research, this review synthesizes current understanding of the theoretical connotation and characterization parameters of stability, the diversity-stability relationship, and the influencing mechanisms of plant community stability in steppe ecosystems. It further identifies critical knowledge gaps and provides an outlook on potential research priorities and development directions. Studies have shown that under the impacts of climate change and anthropogenic activities, the stability of plant communities in steppe ecosystems is collectively regulated by multiple biotic mechanisms—such as overyielding effects (via selection and complementarity), insurance effects, asynchrony, compensation effects, portfolio effects, and statistical averaging effects—along with abiotic factors such as soil nutrient availability. These mechanisms exhibit distinct ecosystem type specificity and significant spatio-temporal scale dependence. Future research needs to establish a systematic paradigm of “multiple disturbance factors-multiple regulatory processes-multiple spatio-temporal scales and organizational dimensions” to further unravel the intrinsic linkages between the structure, function, and stability of steppe ecosystems under global change, aiming to provide a reference for the sustainable development and adaptive management practices of steppe ecosystems.

中图分类号: 

[1] 罗栋梁, 刘佳, 李晓英, 杜柯飞, 金会军, 陈方方, OLGA Makarieva, 王青志. 气候变化下冰椎演化及其水文生态与灾害效应[J]. 地球科学进展, 2025, 40(8): 767-777.
[2] 陈心怡, 崔腾飞, 潘忆遥, 陈一帆, 李紫函, 伏钱琛, 杨瑞强. 北极陆地环境新型有机污染物的传输及其影响[J]. 地球科学进展, 2025, 40(8): 831-846.
[3] 何春阳, 刘小平, 王伟, 黄庆旭, 刘志锋, 廖威林, 朱国梁. 全球城镇化趋势及其对气候变化的影响[J]. 地球科学进展, 2025, 40(6): 577-591.
[4] 华文剑, 冯慧婷, 崔亚朱, 胡宇涵. 2022年夏季长江流域极端高温的研究进展与展望[J]. 地球科学进展, 2025, 40(5): 456-472.
[5] 张井勇, 杨占梅, 吴凌云. 夏季极端高温预测模型系统及实际应用[J]. 地球科学进展, 2025, 40(5): 516-524.
[6] 谢思敏, 杜志恒, 王磊, 严芳萍, 崔浩, 陶长廉, 杨佼, 吴通华, 效存德. 北极海底冻土变化特征与温室气体研究进展[J]. 地球科学进展, 2025, 40(4): 360-373.
[7] 向书旗, 陈静, 游超. 中国植被火燃烧格局与展望[J]. 地球科学进展, 2025, 40(2): 207-220.
[8] 张井勇. 面向碳中和的气候变化预估与风险研究新框架[J]. 地球科学进展, 2025, 40(1): 15-20.
[9] 陈梦佳, 白炜, 张成铭, 刘文艳, 高泽永. 多年冻土区热喀斯特湖水—热—碳循环过程研究进展[J]. 地球科学进展, 2025, 40(1): 82-98.
[10] 袁星, 周诗玙, 马凤, 王钰淼, 郝奕, 梁妙玲, 陈李楠. 气候和下垫面变化下骤旱形成演变机制研究进展[J]. 地球科学进展, 2024, 39(9): 877-888.
[11] 魏泽勋, 徐腾飞, 方越, 王晶, 秦秉斌, 胡石建, 李颖, 聂珣炜, 张志祥, 李志, 曹智勇, 马强. 热带太平洋—印度洋洋际交换及其气候效应的观测研究[J]. 地球科学进展, 2024, 39(8): 788-800.
[12] 刘锦波, 张勇, 刘时银, 王欣, 蒋宗立. 青藏高原及周边石冰川识别、冰储量及动力学过程研究进展[J]. 地球科学进展, 2024, 39(4): 391-404.
[13] 倪杰, 吴通华, 张雪, 朱小凡, 陈杰, 杜宜臻. 19792022年三江源地区大气冻融指数时空变化特征分析[J]. 地球科学进展, 2024, 39(12): 1299-1310.
[14] 兰措. 气候变化背景下陆面模式研究进展及不足[J]. 地球科学进展, 2024, 39(1): 46-55.
[15] 丁一汇, 柳艳菊, 徐影, 吴萍, 薛童, 汪靖, 石英, 张颖娴, 宋亚芳, 王朋岭. 全球气候变化的区域响应:中国西北地区气候“暖湿化”趋势、成因及预估研究进展与展望[J]. 地球科学进展, 2023, 38(6): 551-562.
阅读次数
全文


摘要