地球科学进展 ›› 2025, Vol. 40 ›› Issue (5): 456 -472. doi: 10.11867/j.issn.1001-8166.2025.023

综述与评述 上一篇    下一篇

2022年夏季长江流域极端高温的研究进展与展望
华文剑1,2(), 冯慧婷1,2, 崔亚朱1,2,3, 胡宇涵1,2,4   
  1. 1.南京信息工程大学,气候系统预测与变化应对全国重点实验室/气象灾害教育部重点实验室/气象灾害 预报预警与评估协同创新中心,江苏 南京 210044
    2.南京信息工程大学 大气科学学院,江苏 南京 210044
    3.徐州市气象局,江苏 徐州 221000
    4.复旦大学 大气与海洋科学系/大气科学研究院,上海 200348
  • 收稿日期:2025-01-07 修回日期:2025-03-21 出版日期:2025-05-10
  • 基金资助:
    国家重点研发计划项目(2022YFF0801601);国家自然科学基金项目(42075022)

2022 Summertime Heat Extremes in the Yangtze River Basin: Review and Prospect

Wenjian HUA1,2(), Huiting FENG1,2, Yazhu CUI1,2,3, Yuhan HU1,2,4   

  1. 1.State Key Laboratory of Climate System Prediction and Risk Management/Key Laboratory of Meteorological Disaster, Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2.School of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
    3.Xuzhou Meteorological Administration, Xuzhou Jiangsu 221000, China
    4.Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai 200348, China
  • Received:2025-01-07 Revised:2025-03-21 Online:2025-05-10 Published:2025-07-10
  • About author:HUA Wenjian, research areas include climate variability and change. E-mail: wenjian@nuist.edu.cn
  • Supported by:
    the National Key Research and Development Program of China(2022YFF0801601);The National Natural Science Foundation of China(42075022)

2022年夏季长江流域经历了前所未有的高温热浪,引发科学界的广泛关注。受长达1个多月的破纪录高温与干旱影响,此次极端事件对人类、经济和环境造成了严重损害,加剧了粮食不安全的状况,阻碍了可持续发展。全面认识2022年夏季长江流域极端高温,对于理解全球变暖背景下极端事件变化的原因,认识人类活动和自然变率的影响,以及评估可能面临的气候风险都具有重要的科学意义。首先回顾了2022年夏季长江流域极端高温的主要特征、形成机制和原因,以及近3年来对此次极端高温事件的研究进展,发现2022年夏季长江流域高温是一次罕见的极端热事件,该事件主要是由西太平洋副热带高压和南亚高压等环流异常,“三重”La Niña(连续3年发生的La Niña事件)、大西洋和印度洋等海温强迫,以及土壤湿度—气温等陆气反馈等综合作用造成。除了自然变率的贡献,人类活动也是造成此次事件的主要因素。随着全球变暖,此类极端高温事件将会成为常态。最后,讨论了极端高温相关的研究要点、存在问题以及未来可能的发展方向。

In the summer of 2022, the Yangtze River Basin experienced unprecedented heat waves, drawing considerable attention from the scientific community. Affected by over a month of record-breaking high temperatures and droughts, this extreme event not only caused escalating losses to human health, the economy, and the environment, but also exacerbated food insecurity and hindered sustainable development. Therefore, a more comprehensive understanding of extreme heat in the Yangtze River Basin during the summer of 2022 is essential to identify the drivers of extreme event variability under global warming, assess the impacts of human activity and natural variability, and evaluate potential climate risks. This study first reviews the main characteristics, formation mechanisms, and causes of the extreme heat in the Yangtze River Basin in the summer of 2022, and further summarizes the research progress on the event over the past three years. The results showed that the 2022 summer high temperature in the Yangtze River Basin was a rare extreme heat event. Its occurrence was primarily driven by atmospheric circulation anomalies related to the western Pacific subtropical high and the South Asian high, the triple La Niña phenomenon, the Atlantic and Indian SST forcing, and land-atmosphere feedback mechanism (e.g., soil moisture and air temperature). In addition to natural variability, human activity is the dominant factor influencing heat extremes. Without anthropogenic forcing, such extremes would have been highly unlikely. Such rare heat waves are projected to become more frequent under ongoing global warming. Finally, the paper highlights key research challenges and knowledge gaps associated with extreme heat events.

中图分类号: 

图1 2022年长江流域极端高温干旱情况
(a)2022年8月5~28日当地时间14时平均地表温度的空间分布,数据来源于MODIS(Moderate-Resolution Imaging Spectroradiometer,MYD11C2);(b)2022年8月6~26日累计降水量的空间分布,数据来源于CN05.1
Fig. 1 Changes in extreme heat and drought events in the Yangtze River Basin in 2022
(a) Spatial distribution of Land Surface Temperatures (LST) at about 14:00 local time averaged over 5~28 August 2022;(b) Spatial distribution of cumulated precipitation averaged over 6~26 August 2022. The LST and precipitation data sets are obtained from MODIS (MYD11C2) and CN05.1, respectively
图2 2022年夏季长江流域日最高温度异常以及高温概率密度函数分布
(a)2022年夏季21天平均(8月6~26日)的日最高气温异常(Tmax,单位:℃;打点区表示该地气温打破1940—2021年的纪录);(b)长江流域[图(a)中蓝框:27°~33°N, 103°~111°E]在不同时间尺度(1~40天)平均的破纪录区域面积及对应的时间演变,蓝线表示7天、15天、21天和31天平均的最大破纪录面积对应的日期;(c)当前气候条件下(2012—2032年)偏差校正后的通用地球系统模式第二版(CESM2)全强迫(粉色)和自然强迫(蓝色)下长江中游[图(a)中蓝框]夏季高温的概率密度函数(Probability Density Function,PDF)分布(黑竖线表示8月6~26日长江流域区域平均的2022年的异常值);(d)CESM2全强迫模拟的20世纪初(1900—1930年,蓝色)、当前(2012—2032年,红色)和21世纪后期(2070—2100年,紫色)不同气候条件下极端高温事件发生的概率13
Fig. 2 The daily maximum temperature anomalies and the probability density function distribution of high temperatures in the Yangtze River Basin during the summer of 2022
(a) Daily maximum 2 m air temperature (Tmax,℃) anomalies in summer 2022 averaged over 21 d (6~26 August) periods (the stippling indicates the regions with temperatures that break the 1940-2021 record); (b) Temporal evolution of the spatial extent of areas with record-breaking temperatures averaged over different time periods (from 1 d to 40 d) centered on the day plotted on the x-axis in the Yangtze River Basin (27°~33°N, 103°~111°E), blue bars represent the period of maximum extension for the 7 d, 15 d, 21 d, and 31 d average. (c) Histograms (bars) and estimated PDFs (Probability Density Function) of the Tmax anomalies over Central China in CESM2 (the Community Earth System Model Version 2) ALL (pink) and EE (blue) bias-corrected simulations in the present climate (2012-2032), the vertical black line represents the Tmax anomalies in 2022 averaged over 6~26 August and over the Yangtze River Basin; (d) Histograms and PDFs of the Tmax anomalies from the CESM2 all-forcing simulations for the early twentieth century climate (1900-1930, blue), the present (2012-2032, red), and the late twenty-first century climate under SSP3-7.0 scenario (2070-2100, purple)13
图3 2022年夏季长江流域极端高温的示意图
BH:阻塞高压,WJ:西风急流,Iran High:伊朗高压,SAH:南亚高压,WNPSH:西北太平洋副热带高压,IOD:印度洋偶极子,NDVI:归一化植被指数,NPP:净初级生产力,GPP:总初级生产力
Fig. 3 A diagram of 2022 summertime heat extremes in the Yangtze River Basin
BH:Blocking High; WJ: Westerly Jet; SAH: South Asia high; WNPSH: Northwest Pacific subtropical High; IOD: Indian Ocean dipole; NDVI: Normalized Difference Vegetation Index; NPP: Net Primary Productivity; GPP: Gross Primary Production
[1] LU R Y, XU K, CHEN R D, et al. Heat waves in summer 2022 and increasing concern regarding heat waves in general[J]. Atmospheric and Oceanic Science Letters202316(1). DOI: 10.1016/j.aosl.2022.100290 .
[2] ZHANG L X, YU X J, ZHOU T J, et al. Understanding and attribution of extreme heat and drought events in 2022: current situation and future challenges[J]. Advances in Atmospheric Sciences202340(11): 1 941-1 951.
[3] MALLAPATY S. China’s extreme weather challenges scientists trying to study it[J]. Nature2022, 609. DOI: 10.1038/d41586-022-02954-8 .
[4] HAO Z C, CHEN Y, FENG S F, et al. The 2022 Sichuan-Chongqing spatio-temporally compound extremes: a bitter taste of novel hazards[J]. Science Bulletin202368(13): 1 337-1 339.
[5] SENEVIRATNE S I, ZHANG X, ADNAN M, et al. Weather and climate extreme events in a changing climate [M]// MASSON-DELMOTTE V. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2021: 1 513-1 766.
[6] ROGERS C D W, KORNHUBER K, PERKINS-KIRKPATRICK S E, et al. Sixfold increase in historical Northern Hemisphere concurrent large heatwaves driven by warming and changing atmospheric circulations[J]. Journal of Climate202235(3): 1 063-1 078.
[7] WANG Qiong, ZHANG Mingjun, WANG Shengjie, et al. Extreme temperature events in Yangtze River Basin during 1962-2011[J]. Acta Geographica Sinica201368(5): 611-625.
王琼, 张明军, 王圣杰, 等. 1962—2011年长江流域极端气温事件分析[J]. 地理学报201368(5): 611-625.
[8] WANG Xiyuan, YAN Yechao, YUE Shuping, et al. On spatiotemporal variations of heat waves in the Yangtze River Basin from 1961 to 2010[J]. Journal of Yunnan University: Natural Sciences Edition201638(4): 602-609.
王喜元, 闫业超, 岳书平, 等. 1961—2010年长江流域高温热浪时空变化特征 [J]. 云南大学学报(自然科学版)201638(4): 602-609.
[9] ZHANG S Q, REN G Y, ZHENG X, et al. Changes in the mean and extreme temperature in the Yangtze River Basin over the past 120 years[J]. Weather and Climate Extremes2023, 40. DOI: 10.1016/j.wace.2023.100557 .
[10] China Meteorological Administration Climate Change Center. Blue book on climate change in China (2023) [M]. Beijing: Science Press, 2023.
中国气象局气候变化中心. 中国气候变化蓝皮书(2023)[M]. 北京: 科学出版社, 2023.
[11] YUAN Y F, LIAO Z, ZHOU B Q, et al. Unprecedented hot extremes observed in city clusters in China during summer 2022[J]. Journal of Meteorological Research202337(2): 141-148.
[12] TANG S K, QIAO S B, WANG B, et al. Linkages of unprecedented 2022 Yangtze River Valley heatwaves to Pakistan flood and triple-dip La Niña[J]. NPJ Climate and Atmospheric Science2023, 6. DOI:10.1038/s41612-023-00386-3 .
[13] HUA W J, DAI A G, QIN M H, et al. How unexpected was the 2022 summertime heat extremes in the middle reaches of the Yangtze River?[J]. Geophysical Research Letters202350(16). DOI: 10.1029/2023GL104269 .
[14] ZHU Z, HUANG H, CHEN H, et al. The record-breaking hot summer of 2022 in Yangtze River Basin (in “State of the Climate in 2022”)[J]. Bulletin of the American Meteorological Society2023104: S443-S444.
[15] LIN Shu, LI Hongying, HUANG Pengcheng, et al. Characteristics of high temperature, drought and circulation situation in summer 2022 in China[J]. Journal of Arid Meteorology202240(5): 748-763.
林纾, 李红英, 黄鹏程, 等. 2022年夏季我国高温干旱特征及其环流形势分析[J]. 干旱气象202240(5): 748-763.
[16] ZHOU J, ZHAO J H, LI Y H, et al. The hottest center: characteristics of high temperatures in midsummer of 2022 in Chongqing and its comparison with 2006[J]. Theoretical and Applied Climatology2024155(1): 151-162.
[17] LI L, ZHOU T J, ZHANG W X, et al. Quantifying the extremity of 2022 Chinese Yangtze River Valley daily hot extreme: fixed or moving baseline matters[J]. Environmental Research Letters202419(6). DOI: 10.1088/1748-9326/ad4e49 .
[18] MA F, YUAN X. When will the unprecedented 2022 summer heat waves in Yangtze River Basin become normal in a warming climate?[J]. Geophysical Research Letters202350(4). DOI: 10.1029/2022GL101946 .
[19] JIANG Yutong, HOU Aizhong, HAO Zengchao, et al. Evolution and historical comparison of hot droughts in Yangtze River Basin in 2022[J]. Journal of Hydroelectric Engineering202342(8): 1-9.
姜雨彤, 侯爱中, 郝增超, 等. 长江流域2022年高温干旱事件演变及历史对比[J]. 水力发电学报202342(8): 1-9.
[20] YUAN X, WANG Y M, ZHOU S Y, et al. Multiscale causes of the 2022 Yangtze mega-flash drought under climate change[J]. Science China Earth Sciences202467(8): 2 649-2 660.
[21] YANG S Q, SUN H Q, ZHAO R X, et al. Was the 2022 drought in the Yangtze River Basin, China more severe than other typical drought events by considering the natural characteristics and the actual impacts?[J]. Theoretical and Applied Climatology2024155(6): 5 543-5 556.
[22] ZHANG Y, LIU X M, WANG K W, et al. Response of evapotranspiration to the 2022 unprecedented extreme drought in the Yangtze River Basin[J]. International Journal of Climatology202444(8): 2 779-2 791.
[23] WANG Y M, YUAN X. High temperature accelerates onset speed of the 2022 unprecedented flash drought over the Yangtze River Basin[J]. Geophysical Research Letters202350(22). DOI: 10.1029/2023GL105375 .
[24] YUAN X, WANG Y M, JI P, et al. A global transition to flash droughts under climate change[J]. Science2023380(6 641): 187-191.
[25] BARRIOPEDRO D, GARCÍA-HERRERA R, ORDÓÑEZ C, et al. Heat waves: physical understanding and scientific challenges[J]. Reviews of Geophysics202361(2). DOI: 10.1029/2022RG000780 .
[26] WANG Z Q, LUO H L, YANG S. Different mechanisms for the extremely hot central-eastern China in July-August 2022 from a Eurasian large-scale circulation perspective[J]. Environmental Research Letters202318(2). DOI:10.1088/1748-9326/acb3e5 .
[27] CHEN R D, LI X Q. Causes of the persistent merging of the western North Pacific subtropical high and the Iran high during late July 2022[J]. Climate Dynamics202361(5): 2 285-2 297.
[28] LI X F, HU Z Z, LIU Y Y, et al. Causes and predictions of 2022 extremely hot summer in East Asia[J]. Journal of Geophysical Research: Atmospheres2023128(13). DOI: 10.1029/2022JD038442 .
[29] HE C, COLLINS M, ZHOU T J, et al. Contrasting East Asian climate extremes in 2020 and 2022 tied to zonal flow[J]. Environmental Research Letters202419(10). DOI:10.1088/1748-9326/ad6a72 .
[30] SUN Bo, WANG Huijun, HAUNG Yanyan, et al. Characteristics and causes of the hot-dry climate anomalies in China during summer of 2022[J]. Transactions of Atmospheric Sciences202346(1): 1-8.
孙博, 王会军, 黄艳艳, 等. 2022年夏季中国高温干旱气候特征及成因探讨[J]. 大气科学学报202346(1): 1-8.
[31] PENG Jingbei, SUN Shuqing, LIN Dawei. The extreme hot event along the Yangtze Basins in August 2022[J]. Journal of Applied Meteorological Science202334(5): 527-539.
彭京备, 孙淑清, 林大伟. 2022年8月长江流域持续性极端高温事件成因[J]. 应用气象学报202334(5): 527-539.
[32] HAO Lisheng, MA Ning, HE Liye. Circulation anomalies characteritics of the abnormal drought and high temperature event in the middle and lower reaches of the Yangtze River in summer of 2022[J]. Journal of Arid Meteorology202240(5): 721-732.
郝立生, 马宁, 何丽烨. 2022年长江中下游夏季异常干旱高温事件之环流异常特征[J]. 干旱气象202240(5): 721-732.
[33] LIU Y, YUAN S S, ZHU Y, et al. The patterns, magnitude, and drivers of unprecedented 2022 mega-drought in the Yangtze River Basin, China[J]. Environmental Research Letters202318(11). DOI:10.1088/1748-9326/acfe21 .
[34] LYU Z Z, GAO H, GAO R, et al. Extreme characteristics and causes of the drought event in the whole Yangtze River Basin in the midsummer of 2022[J]. Advances in Climate Change Research202314(5): 642-650.
[35] MA Y Y, CHEN Y T, HU X X, et al. The 2022 record-breaking high temperature in China: sub-seasonal stepwise enhanced characteristics, possible causes and its predictability[J]. Advances in Climate Change Research202314(5): 651-659.
[36] LI Yiping, ZHANG Jinyu, YUE Ping, et al. Study on characteristics of severe drought event over Yangtze River Basin in summer of 2022 and its causes[J]. Journal of Arid Meteorology202240(5): 733-747.
李忆平, 张金玉, 岳平, 等. 2022年夏季长江流域重大干旱特征及其成因研究[J]. 干旱气象202240(5): 733-747.
[37] ZHANG D P, HUANG Y Y, ZHOU B T, et al. Who is the major player for 2022 China extreme heat wave? Western Pacific Subtropical high or South Asian high?[J]. Weather and Climate Extremes202443: 100640.
[38] ZHANG D Q, CHEN L J, YUAN Y, et al. Why was the heat wave in the Yangtze River valley abnormally intensified in late summer 2022?[J]. Environmental Research Letters202318(3). DOI: 10.1088/1748-9326/acba30 .
[39] ZHU Chuandong, REN Rongcai. Relationship between two types of East-West Oscillations of the South Asia High in summer and their influences on weather [J]. Chinese Journal of Atmospheric Sciences202347(1): 53-69.
祝传栋, 任荣彩. 夏季南亚高压两类东—西振荡过程的联系及其天气效应对比[J]. 大气科学202347(1):53-69.
[40] DING T, GAO H, LI X. Increasing risk of a “hot eastern-pluvial western” Asia[J]. Earth’s Future202412(5). DOI:10.1029/2023EF004333 .
[41] LU G M, LI Q Q, SUN X T, et al. Comparative analysis of peak-summer heatwaves in the Yangtze-Huaihe River Basin of China in 2022 and 2013: thermal effects of the Tibetan Plateau[J]. Atmospheric Research2024, 300. DOI:10.1016/j.atmosres.2024.107222 .
[42] HE C, ZHOU T J, ZHANG L X, et al. Extremely hot East Asia and flooding western South Asia in the summer of 2022 tied to reversed flow over Tibetan Plateau[J]. Climate Dynamics202361(5): 2 103-2 119.
[43] YIN Z J, YANG S, WEI W. Prevalent atmospheric and oceanic signals of the unprecedented heatwaves over the Yangtze River Valley in July-August 2022[J]. Atmospheric Research2023, 295. DOI: 10.1016/j.atmosres.2023.107018 .
[44] LIU W C, SHI N, WANG H J, et al. Thermodynamic characteristics of extreme heat waves over the middle and lower reaches of the Yangtze River Basin[J]. Climate Dynamics202462(5): 3 877-3 889.
[45] ZHANG Ling, GUO Guangfen, XIONG Kaiguo, et al. Causes of the high temperature process in the Yangtze River Basin in 2022[J]. Progress in Geography202342(5): 971-981.
张灵, 郭广芬, 熊开国, 等. 长江流域2022年夏季高温过程的成因分析[J]. 地理科学进展202342(5): 971-981.
[46] YIN Qiuchao, WANG Lu, GE Zian, et al. Dominant modes of interannual variation in extremely-high-temperature days in summer in China and associated mechanisms [J]. Chinese Journal of Atmospheric Sciences202448(4): 1 657-1 673.
尹秋超, 王璐, 葛子安, 等. 中国夏季极端高温日数年际变化的主要模态及产生机理[J]. 大气科学48(4):1 657-1 673.
[47] HU Y P, ZHOU B T, WANG H J, et al. Record-breaking summer-autumn drought in Southern China in 2022: roles of tropical sea surface temperature and Eurasian warming[J]. Science China Earth Sciences202467(2): 420-431.
[48] WANG R L, LI X, MA H D, et al. Persistent meteorological drought in the Yangtze River basin during summer-autumn 2022: relay effects of different atmospheric internal variabilities[J]. Atmosphere202314(9). DOI: 10.3390/atmos14091402 .
[49] HUANG H J, ZHU Z W, LI J. Disentangling the unprecedented Yangtze River basin extreme high temperatures in summer 2022: combined impacts of the reintensified La Niña and strong positive NAO[J]. Journal of Climate202437(3): 927-942.
[50] YIN Zejiang, WEI Wei, YANG Song. Extreme hot events in the middle and lower reaches of the Yangtze River in peak summer 2022: roles of the North Atlantic Oscillation and the British-Okhotsk corridor patter[J]. Transactions of Atmospheric Sciences202346(3): 345-353.
尹泽疆, 魏维, 杨崧. 北大西洋涛动和英国—鄂霍次克海走廊型遥相关对2022年盛夏长江中下游极端高温的影响[J]. 大气科学学报202346(3): 345-353.
[51] ZHANG T T, TAM C Y, LAU N C, et al. Influences of the boreal winter Arctic Oscillation on the peak-summer compound heat waves over the Yangtze-Huaihe River Basin: the North Atlantic capacitor effect[J]. Climate Dynamics202259(7): 2 331-2 343.
[52] LIU B Q, ZHU C W, MA S M, et al. Subseasonal processes of triple extreme heatwaves over the Yangtze River valley in 2022[J]. Weather and Climate Extremes2023, 40. DOI: 10.1016/j.wace.2023.100572 .
[53] LIANG P, ZHANG Z Q, DING Y H, et al. The 2022 extreme heatwave in Shanghai, lower reaches of the Yangtze River valley: combined influences of multiscale variabilities[J]. Advances in Atmospheric Sciences202441(4): 593-607.
[54] CHEN X L, ZHOU T J. Relative contributions of external SST forcing and internal atmospheric variability to July-August heat waves over the Yangtze River valley[J]. Climate Dynamics201851(11): 4 403-4 419.
[55] JEONG H, PARK H S, CHOWDARY J S, et al. Triple-dip La Niña contributes to Pakistan flooding and Southern China drought in summer 2022[J]. Bulletin of the American Meteorological Society2023104(9): E1570-E1586.
[56] LIAO Z, YUAN Y F, CHEN Y, et al. Extraordinary hot extreme in summer 2022 over the Yangtze River basin modulated by the La Niña condition under global warming[J]. Advances in Climate Change Research202415(1): 21-30.
[57] ZHANG P, WANG B, WU Z W, et al. Intensified gradient La Niña and extra-tropical thermal patterns drive the 2022 East and South Asian “Seesaw” extremes[J]. NPJ Climate and Atmospheric Science2024, 7. DOI: 10.1038/s41612-024-00597-2 .
[58] CUI L L, ZHONG L H, MENG J C, et al. Spatiotemporal evolution features of the 2022 compound hot and drought event over the Yangtze River Basin[J]. Remote Sensing202416(8). DOI: 10.3390/rs16081367 .
[59] JIANG J L, LIU Y M, MAO J Y, et al. Extreme heatwave over Eastern China in summer 2022: the role of three oceans and local soil moisture feedback[J]. Environmental Research Letters202318(4). DOI: 10.1088/1748-9326/acc5fb .
[60] XU W S, MA S M, ZHU C W. Enhanced subseasonal variability of spring temperature over Eastern China in 2022: initial role of extremely heavy Arctic sea ice in previous winter[J]. Geophysical Research Letters202350(23). DOI: 10.1029/2023gl106017 .
[61] ZHANG J, CHEN H S, FANG X Y, et al. Warming-induced hydrothermal anomaly over the Earth’s three poles amplifies concurrent extremes in 2022[J]. NPJ Climate and Atmospheric Science2024, 7. DOI:10.1038/s41612-023-00553-6 .
[62] MIRALLES D G, TEULING A J, van HEERWAARDEN C C, et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation[J]. Nature Geoscience20147: 345-349.
[63] QIAO L, ZUO Z Y, ZHANG R H, et al. Soil moisture-atmosphere coupling accelerates global warming[J]. Nature Communications202314(1). DOI: 10.1038/s41467-023-40641-y .
[64] CHEN X, WANG J L, PAN F F, et al. Land-atmosphere feedback exacerbated the mega heatwave and drought over the Yangtze River Basin of China during summer 2022[J]. Agricultural and Forest Meteorology2025, 361. DOI: 10.1016/j.agrformet.2024.110321 .
[65] NI Y Y, QIU B, MIAO X, et al. Shift of soil moisture-temperature coupling exacerbated 2022 compound hot-dry event in Eastern China[J]. Environmental Research Letters202419(1). DOI:10.1088/1748-9326/ad178c .
[66] CUI Caizhen, YU Jinhua, DAI Kan, et al. The impact of soil moisture-surface temperature coupling on the compound heat wave event in the middle and lower reaches of the Yangtze River in August 2022[J]. Chinese Journal of Geophysics202467(5): 1 709-1 720.
崔彩珍, 余锦华, 代刊, 等. 土壤湿度—地表气温耦合对长江中下游地区2022年8月复合型热浪事件的影响[J]. 地球物理学报202467(5): 1 709-1 720.
[67] ZHOU B Q, HU S J, PENG J J, et al. The extreme heat wave in China in August 2022 related to extreme northward movement of the eastern center of SAH[J]. Atmospheric Research2023, 293. DOI: 10.1016/j.atmosres.2023.106918 .
[68] HU S, ZHOU T J, PENG D D, et al. Extreme dry advection dominates the record-breaking Yangtze River heatwave in midsummer of 2022[J]. Climate Dynamics202462(6): 5 049-5 060.
[69] ZHANG C, JIA X J, WEN Z. Increased impact of the Tibetan Plateau spring snow cover to the Mei-yu rainfall over the Yangtze River valley after the 1990s[J]. Journal of Climate202134(14): 5 985-5 997.
[70] LI Z Q, XIAO Z N, LING J. Impact of extremely warm Tibetan Plateau in spring on the rare rainfall anomaly pattern in the regions west and east to Plateau in late summer 2022[J]. Atmospheric Research2023, 290. DOI:10.1016/j.atmosres.2023.106797 .
[71] GENTINE P, GREEN J K, GUÉRIN M, et al. Coupling between the terrestrial carbon and water cycles: a review[J]. Environmental Research Letters201914(8). DOI:10.1088/1748-9326/ab22d6 .
[72] WANG J, YAN R, WU G X, et al. Unprecedented decline in photosynthesis caused by summer 2022 record-breaking compound drought-heatwave over Yangtze River Basin[J]. Science Bulletin202368(19): 2 160-2 163.
[73] CAO D, ZHANG J H, HAN J Q, et al. Projected increases in global terrestrial net primary productivity loss caused by drought under climate change[J]. Earth’s Future202210(7). DOI: 10.1029/2022EF002681 .
[74] XU W F, YUAN W P, WU D H, et al. Impacts of record-breaking compound heatwave and drought events in 2022 China on vegetation growth[J]. Agricultural and Forest Meteorology2024, 344. DOI:10.1016/j.agrformet.2023.109799 .
[75] HUANG Z Q, TAN X Z, LIU B J. Relative contributions of large-scale atmospheric circulation dynamics and anthropogenic warming to the unprecedented 2022 Yangtze River Basin heatwave[J]. Journal of Geophysical Research: Atmospheres2024129(4). DOI: 10.1029/2023JD039330 .
[76] FAN X W, MIAO C Y, ZSCHEISCHLER J, et al. Escalating hot-dry extremes amplify compound fire weather risk[J]. Earth’s Future202311(11). DOI: 10.1029/2023EF003976 .
[77] LIAO Z, AN N, CHEN Y, et al. On the possibility of the 2022-like spatio-temporally compounding event across the Yangtze River Valley[J]. Environmental Research Letters202419(1). DOI:10.1088/1748-9326/ad178e .
[78] BELLPRAT O, GUEMAS V, DOBLAS-REYES F, et al. Towards reliable extreme weather and climate event attribution[J]. Nature Communications201910(1). DOI: 10.1038/s41467-019-09729-2 .
[79] ZHANG T T, DENG Y, CHEN J W, et al. An energetics tale of the 2022 mega-heatwave over central-eastern China[J]. NPJ Climate and Atmospheric Science2023, 6. DOI:10.1038/s41612-023-00490-4 .
[80] MA Q R, SUN Y X, HU R, et al. Multiscale interaction underlying 2022 concurrent extreme precipitation in Pakistan and heatwave in Yangtze River Valley[J]. NPJ Climate and Atmospheric Science2024, 7. DOI: 10.1038/s41612-024-00725-y .
[81] GONG H N, MA K J, HU Z Y, et al. Attribution of the August 2022 extreme heatwave in Southern China: role of dynamical and thermodynamical processes[J]. Bulletin of the American Meteorological Society2024105(1): E193-E199.
[82] CAO C Y, GUAN X D, LI C, et al. Anthropogenic contribution to the unprecedented 2022 midsummer extreme high-temperature event in Southern China[J]. Bulletin of the American Meteorological Society2024105(1): E233-E238.
[83] MENG Y, HAO Z C, ZHANG Y T, et al. The 2022-like compound dry and hot extreme in the Northern Hemisphere: extremeness, attribution, and projection[J]. Atmospheric Research2023, 295. DOI: 10.1016/j.atmosres.2023.107009 .
[84] LI W, JIANG Z H, LI L. Anthropogenic influence on the record-breaking compound hot and dry event in summer 2022 in the Yangtze River Basin in China[J]. Bulletin of the American Meteorological Society2023104(11): E1928-E1934.
[85] ZHOU B Q, ZHAI P M, LIAO Z. Bivariate attribution of the compound hot and dry summer of 2022 on the Tibetan Plateau[J]. Science China Earth Sciences202467(7): 2 122-2 136.
[86] FU B, LI B G, GASSER T, et al. The contributions of individual countries and regions to the global radiative forcing[J]. Proceedings of the National Academy of Sciences of the United States of America2021118(15). DOI: 10.1073/pnas.2018211118 .
[87] WANG D Q, SUN Y, HU T, et al. The 2022 record-breaking heat event over the middle and lower reaches of the Yangtze River: the role of anthropogenic forcing and atmospheric circulation[J]. Bulletin of the American Meteorological Society2024105(1): E200-E205.
[88] CHEN D, QIAO S B, YANG J, et al. Contribution of anthropogenic influence to the 2022-like Yangtze River valley compound heatwave and drought event[J]. NPJ Climate and Atmospheric Science2024, 7. DOI:10.1038/s41612-024-00720-3 .
[89] ZHANG L X, ZHOU T J, ZHANG X, et al. Attribution of the extreme 2022 summer drought along the Yangtze River valley in China based on detection and attribution system of Chinese academy of sciences[J]. Bulletin of the American Meteorological Society2024105(7): E1062-E1067.
[90] HAO Zengchao, CHEN Yang. Research progresses and prospects of multi-sphere compound extremes from the Earth system perspective[J]. Science China Earth Sciences202454(2): 360-393.
郝增超, 陈阳. 地球系统视角下的多圈层复合极端事件研究进展与展望[J]. 中国科学: 地球科学202454(2): 360-393.
[91] HUA W J, QIN M H, DAI A G, et al. Reconciling human and natural drivers of the tripole pattern of multidecadal summer temperature variations over Eurasia[J]. Geophysical Research Letters202148(14). DOI: 10.1029/2021GL093971 .
[92] HUA W J, DAI A G, CHEN H S. Little influence of Asian anthropogenic aerosols on summer temperature in central east Asia since 1960[J]. Geophysical Research Letters202249(7). DOI: 10.1029/2022GL097946 .
[93] HONG C C, HUANG A Y, HSU H H, et al. Causes of 2022 Pakistan flooding and its linkage with China and Europe heatwaves[J]. NPJ Climate and Atmospheric Science2023, 6. DOI: 10.1038/s41612-023-00492-2 .
[94] LU X Y, DOI T, YUAN C X, et al. Anatomy of the 2022 scorching summer in the Yangtze River Basin using the SINTEX-F2 seasonal prediction system[J]. Geophysical Research Letters202451(15). DOI: 10.1029/2024GL109554 .
[95] FU Z H, ZHOU W, XIE S P, et al. Dynamic pathway linking Pakistan flooding to East Asian heatwaves[J]. Science Advances202410(17). DOI: 10.1126/sciadv.adk9250 .
[96] HAO Z C, HAO F H, XIA Y L, et al. Compound droughts and hot extremes: characteristics, drivers, changes, and impacts[J]. Earth-Science Reviews2022, 235. DOI:10.1016/j.earscirev.2022.104241 .
[97] ZHAI P M, ZHOU B Q, CHEN Y. A review of climate change attribution studies[J]. Journal of Meteorological Research201832(5): 671-692.
[98] van OLDENBORGH G J, van der WIEL K, KEW S, et al. Pathways and pitfalls in extreme event attribution[J]. Climatic Change2021166(1). DOI: 10.1007/s10584-021-03071-7 .
[99] TRENBERTH K E, FASULLO J T, SHEPHERD T G. Attribution of climate extreme events[J]. Nature Climate Change20155: 725-730.
[100] LIANG M J, HAN Z W, LI J W, et al. Aerosol effects during heat waves in summer 2022 and responses to emission change over China[J]. NPJ Climate and Atmospheric Science2024, 7. DOI: 10.1038/s41612-024-00744-9 .
[101] CHEN Haishan, ZHANG Yaocun, ZHANG Wenjun, et al. Research on weather and climate extremes over China: brief introduction and recent progress of the national key R & D program of China for Earth system and global change[J]. Transactions of Atmospheric Sciences202447(1): 23-45.
陈海山, 张耀存, 张文君, 等. 中国极端天气气候研究: “地球系统与全球变化” 重点专项项目简介及最新进展[J]. 大气科学学报202447(1): 23-45.
[102] WANG Huijun, SUN Jianqi, CHEN Huopo, et al. Global warming acceleration and climate extremization:comments on major climate research advances in China 2024[J]. Transactions of Atmospheric Sciences202548(1): 1-7.
王会军, 孙建奇, 陈活泼, 等. 全球变暖加速和气候极端化——2024年中国气候研究重大进展速评[J]. 大气科学学报202548(1): 1-7.
[1] 张井勇, 杨占梅, 吴凌云. 夏季极端高温预测模型系统及实际应用[J]. 地球科学进展, 2025, 40(5): 516-524.
[2] 向书旗, 陈静, 游超. 中国植被火燃烧格局与展望[J]. 地球科学进展, 2025, 40(2): 207-220.
[3] 张璐, 王伟, 贾国栋, 伊凯, 张振卿. 1 100年来小兴安岭火灾演化历史及其对环境变化的响应[J]. 地球科学进展, 2023, 38(11): 1173-1185.
[4] 汤秋鸿,刘星才,李哲,运晓博,张学君,于强,李俊,张永勇,崔惠娟,孙思奥,张弛,唐寅,冷国勇. 陆地水循环过程的综合集成与模拟[J]. 地球科学进展, 2019, 34(2): 115-123.
[5] 王思佳,刘鹄,赵文智,李中恺. 干旱、半干旱区地下水可持续性研究评述[J]. 地球科学进展, 2019, 34(2): 210-223.
[6] 常海钦,付亚龙,林鑫,张苗苗,孟刚刚. 流域盆地化学风化强度空间分布及控制因素研究:以长江和珠江为例[J]. 地球科学进展, 2019, 34(1): 93-102.
[7] 刘学, 张志强, 郑军卫, 赵纪东, 王立伟. 关于人类世问题研究的讨论[J]. 地球科学进展, 2014, 29(5): 640-649.
[8] 邬建国, 何春阳, 张庆云, 于德永, 黄甘霖, 黄庆旭. 全球变化与区域可持续发展耦合模型及调控对策[J]. 地球科学进展, 2014, 29(12): 1315-1324.
[9] 贾永锋,郭华明. 高砷地下水研究的热点及发展趋势[J]. 地球科学进展, 2013, 28(1): 51-61.
[10] 杨秋明,宋娟,李熠,谢志清,黄世成,钱玮. 全球大气季节内振荡对长江流域持续暴雨影响的研究进展[J]. 地球科学进展, 2012, 27(8): 876-884.
[11] 陈晓宏,涂新军,谢平,李艳. 水文要素变异的人类活动影响研究进展[J]. 地球科学进展, 2010, 25(8): 800-811.
[12] 史威,李世杰,马春梅,朱诚,张蕾. 中坝和中堡岛遗址文化堆积连续性的自然及人类活动因素[J]. 地球科学进展, 2010, 25(5): 523-532.
[13] 王革丽,吕达仁,杨培才. 人类活动对大气臭氧层的影响[J]. 地球科学进展, 2009, 24(3): 331-337.
[14] 肖生春,肖洪浪. 黑河流域水环境演变及其驱动机制研究进展[J]. 地球科学进展, 2008, 23(7): 748-755.
[15] 赵哈林,大黑俊哉,周瑞莲,李玉霖,左小安,黄刚. 人类活动与气候变化对科尔沁沙质草地植被的影响[J]. 地球科学进展, 2008, 23(4): 408-414.
阅读次数
全文


摘要