地球科学进展 ›› 2013, Vol. 28 ›› Issue (3): 305 -317. doi: 10.11867/j.issn.1001-8166.2013.03.0305

综述与评述 上一篇    下一篇

估算闪电产生氮氧化物量的研究回顾与进展
郭凤霞,鞠晓雨,陈聪   
  1. 1.南京信息工程大学,气象灾害省部共建教育部重点实验室,江苏南京210044;2.南京信息工程大学,中国气象局气溶胶与云降水重点开放实验室,江苏南京210044
  • 收稿日期:2012-10-24 修回日期:2013-01-18 出版日期:2013-03-10
  • 通讯作者: 郭凤霞(1977-),女,甘肃平凉人,副研究员,主要从事雷暴电学研究. E-mail:guo_fx@yahoo.com.cn
  • 基金资助:

    中国气象科学研究院基本科研业务费专项“强对流天气过程的闪电活动和降水关系研究”(编号:2010Z004);国家自然科学基金项目“三维粒子全分档雷暴云起电模式的建立和闪电活动特征的研究”(编号:41275008);江苏省气象灾害重点实验室开放课题“持续深对流系统中电活动特征的模式研究”(编号:KLME1004)
    资助.

Review and Progress of Estimate on Nitrogen Oxide Production by Lightning

Guo Fengxia, Ju Xiaoyu, Chen Cong   

  1. 1.Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science & Technology, Nanjing210044, China; 2.Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administation, Nanjing University of Information Science & Technology, Nanjing210044, China
  • Received:2012-10-24 Revised:2013-01-18 Online:2013-03-10 Published:2013-03-10

在对流层内,闪电产生的氮氧化物(LNOX)是氮氧化物(NOX)的主要来源之一,这一区域内,由于NOX生命史较长,且控制着对流层臭氧(O3)和氢氧根(OH)的含量,影响着全球大气环境和气候变化。针对LNOX量的估算这一大气化学及雷电物理领域内的研究热点,介绍了NOX的主要来源、LNOX的产生机制及其对气候变化的重要性,详细综述了国内外现有的估算LNOX量的主要方法和估算结果。综述结果表明,目前估算LNOX量采用的研究方法主要有野外观测、实验室模拟、理论模式计算和卫星数据反演,主要通过观测或假设得到单位能量产生的NOX量,或单位通道长度产生的NOX量,同时通过观测或假设得到一次放电通道产生的总能量或一次放电的总通道长度,进而外推或数值模拟某一局地区域或全球的LNOX。由于不同地区、不同雷暴、甚至不同的闪电个体之间的显著差异导致不同的研究者估算LNOX时采用的参数值不同,进而使得LNOX估算量的结果差异较大,不确定性增大。近30年LNOX较为精确的产量计算结果平均值为5.2(2.8~9.1)Tg/a。最后提出,今后需继续对比分析利用先进的观测手段得到NOX和闪电的野外观测和卫星观测数据,进一步认识LNOX的产生机制,得到针对不同地区、不同强度的雷暴和不同的闪电个体估算NOX的参数取值,进一步减小估算LNOX时所用到的各个参数的不确定性。在此基础上,利用大气化学数值模式模拟局地或全球LNOX的产生和演变及其对其他空气成分的影响和作用,进一步认识LNOX在全球气候变化中的作用。

Abstract: [WT5BZ]Nitrogen oxide (NOX) is one of the most important lightingproduced molecules, primarily because it facilitates chemical reactions in the troposphere that determine the concentrations of ozone (O3) and of the hydroxyl radical (OH). NOX source, LNOX mechanism and their significance on climate change are introduced for understanding the estimate of LNOX, which is a research hotspot in atmospheric chemistry and lighting physics. Then, the main methods and results of estimate on LNOX are summarized. The conclusions show that, in situ measurement, laboratory simulation, theoretical extrapolation and retrieval of satellite data are the major research methods in this field. Through these methods, NOX production per unit lightning energy or unit lightning channel length are obtained, then combined with the total energy or channel length of lightning, the LNOX production in local or global is estimated by extrapolation or numerical modeling. Due to the different region, thunderstorm and even lightning are presented remarkable difference, and the parameters chosen by different researchers are various, leading to the diversity of results. In the past three decades, the mean value of relatively accurate production calculations has been 5.2(2.8~9.1) Tg/a. Therefore, advanced NOX observations of in-situ and space measurements should be analyzed to realize the LNOX mechanism. Appropriate NOX parameters should be chosen in varied intensity thunderstorm and individual lightning to reduce the parameter uncertainties. On that basis, atmospheric chemical model is integrated to simulate LNOX generation, development and the influence of other air composition regionally and globally. Thus, the role of LNOX in global climate change would be better recognized.

中图分类号: 

[1]Crutzen P J. The influence of nitrogen oxides on atmospheric ozone content[J]. Quarterly Journal of the Royal Meteorological Society, 1970, 96(408): 320-325.

[2]Qin Yu, Zhao Chunsheng. Atmospheric Chemistry Basic[M].Beijing: China Meteorological Press,2003.[秦瑜,赵春生.大气化学基础[M].北京: 气象出版社,2003.]

[3]Chameides W L, Davies D D, Bradshaw J, et al. An estimate of the NOX production rate in electrified clouds based on NO observations from GTE/CITE 1 fall 1983 field operation[J]. Journal of Geophysical Research, 1987, 92(D2): 2 153-2 156.

[4]Nixon J F. Atmospheric nitrogen fixation by lightning[J]. Geophysical Research Letters, 1976, 3(8):463-465.

[5]Drapcho D L, Sisterson D, Kumar R. Nitrogen fixation by lightning activity in a thunderstorm[J]. Atmospheric Environment, 1983, 17(4): 729-734.

[6]Huntrieser H, Schlager H, Feigl C, et al. Transport and production of NOX in electrfied thunderstorms: Survey of previous studies and new observations at multitudes[J]. Journal of Geophysical Research, 1998, 103(28):247-264.

[7]Huntrieser H, Feigl C, Schlager H, et al. Airborne measurements of NOX, tracer species, and small particles during the European lightning nitrogen oxides experiment[J]. Journal of Geophysical Research, 2002, 107(D11): 4 113-4 119.

[8]Wang Y, DeSilva W, Goldenbaum G C, et al. Nitric oxide production by simulated lightning: Dependence on current, energy, and pressure[J]. Journal of Geophysical Research, 1998, 103(19): 149-159.

[9]Winterrath T, Kurosu T P, Richter A, et al. Enhanced O3 and NO2 in thunderstorm clouds: Convection or production?[J].Geophysical Research Letters, 1999, 26(9):1 291-1 294.

[10]Tuck A F. Production of nitrogen oxides by lightning discharges [J]. Quarterly Journal of the Royal Meteorological Society, 1976, 102(434):749-55.

[11]Borucki W J, Chameides W J. Lightning: Estimates if the rates of energy dissipation and nitrogen fixation[J]. Reviews of Geophysics, 1984, 22(4):363-372.

[12]Tie X X, Zhang R T, Brasseur G, et al. Effects of lightning on reactive nitrogen and nitrigen reservoir species in the troposphere[J]. Journal of Geophysical Research, 2011, 106(D3):3 167-3 178.

[13]Zhou Yunjun, Qie Xiushu. Mechanism and estimation of lightning-generated NOX in Chinese inland area[J]. Plateau Meteorology, 2002, 21(5): 501-508.[周筠珺,郄秀书.闪电产生NOX机制及中国内陆闪电产生NOX量的估算[J].高原气象, 2002, 21(5): 501-508.]

[14]Martin R V, Jacob D J, Logan J A, et al. Interpretation of TOMS observations of tropical tropospheric ozone with a global model and in situ observations[J].Journal of Geophysical Research, 2002,107(D18): 435-440.

[15]Martin R V, Sioris C E, Chance K, et al. Evaluation of space-based constraints on global nitrogen oxide emissions with regional aircraft measurements over and downwind of eastern North America[J]. Journal of Geophysical Research, 2006, 111(D15): 308-310.

[16]Beirle S, Platt U, Wenig M, et al. NOX production by lightning estimated with GOME[J]. Advance in Space Research, 2004, 34(4): 793-797.

[17]Beirle S, Spichtinger N, Stohl A, et al. Estimating the NOX produced by lightning from GOME and NLDN data: A case study in the Gulf of Mexico[J]. Atmospheric Chemistry and Physics, 2006, 6(4): 1 075-1 089.

[18]Boersma K F, Eskes K J, Meijer E W, et al. Estimates of lightning NOX production from GOME satellite observations[J]. Atmospheric Chemistry and Physics, 2005, 5(9): 2 311-2 331.

[19]Warneck P. Chemistry of the Natural Atmosphere[M]. San Diego: Academic Press, 1988.

[20]Levy II H, Moxim W J, Klonecki A A, et al. Simulated tropospheric NOX: Its evaluation, global distribution and individual source contributions[J]. Journal of Geophysical Research, 1999, 104(D21): 26 279-26 306.

[21]Beirle S, Platt U, von Glasow R, et al. Estimate of nitrogen oxide emissions from shipping by satellite remote sensing[J]. Geophysical Research Letters, 2004,31(18): 18 102-18 108.

[22]Ehhalt D H, Drummond J W. The tropospheric cycle of NOX[J].Chemistry of the Unpolluted and Polluted Troposphere (Series C), 1982,96:219-251.

[23]Penner J E, Atherton C S, Dignon J, et al. Tropospheric nitrogen: A three-dimensionalstudy of sources, distributions, and deposition[J]. Journal of Geophysical Research, 1991, 96(D1): 959-990.

[24]von Kuhlmann R, Lawrence M G, Crutzen P J, et al. A model for studies of tropospheric ozone and nonmethane hydrocarbons: Model evaluation of ozone-related species[J]. Journal of Geophysical Research, 2003, 108(D23): 4 729-4 733.

[25]Bond D W, Steiger S, Zhang R, et al. The importance of NOX production by lightning in the tropics[J]. Atmospheric Environment, 2002, 36: 1 509-1 519.

[26]Benkovitz C M, Scholtz M T, Pacyna J, et al. Global gridded inventories of anthropogenic emissions of sulfur and nitrogen[J]. Journal of Geophysical Research, 1996, 101(D22): 29 239-29 254.

[27]Von Liebig J. Une note sur la nitrification[J]. Annales de Chimie et de Physique,1827, 35: 329-333.

[28]Hutchinson G E. The biochemistry of the terrestrial atmosphere[M]∥The Earth as a Planet. Chicago: The University of Chicago Press, 1954.

[29]Galloway J M, Dentener F J, Capone D G, et al. Nitrogen cycles: Past, present and future[J]. Biogeochemistry,2004, 70(2): 153-226.

[30]Schumann U, Ström J, Arnold F, et al. Aviation impact on atmospheric composition and climate[C]∥European Research in the Stratosphere 1996-2000. Brussels: European Commission, 2001.

[31]Coppens F, Berton R, Bondiou-Clergerie A, et al. Theoretical estimate of NOX production in lightning corona[J]. Journal of Geophysical Research, 1998, 103(D9): 10 769-10 785.

[32]Hill R D, Rinker R G, Coucouvinos A. Nitrous oxide production by lightning[J]. Journal of Geophysical Research, 1984, 89(D1): 1 411-1 421.

[33]Lyons W A, Armstrong R A. NOX Production within and above Thunderstorms: The Contribution of Lightning and Sprites[C].California: American Meteorological Society Preprint, 1997.

[34]Zel’dovich Y B, Raizer Y P. Physics of Shock Waves and High Temperature Hydrodynamic Phenomena[C].San Diego: Academic, 1967: 566-571.

[35]Yuan Ping, Zhao Xueyan, Ouyang Yuhua, et al. Theoretical study on the process of chemical reactions of lightning-generated NO[J]. Journal of Northwest Normal University (Natural Science), 2009, 45(3): 33-37. [袁萍,赵学燕,欧阳玉花,等.闪电产生一氧化氮(NO)过程的理论研究[J].西北师范大学学报:自然科学版, 2009, 45(3): 33-37.]

[36]Schultz M G, Jacob D J, Wang Y, et al. On the origin of tropospheric ozone and NOX over the tropical South Pacific[J]. Journal of Geophysical Research, 1999, 104(D5): 5 829-5 843.

[37]Kotamarthi V R, Ko M K W, Weisenstein D K, et al. Effect of lightning on the concentration of odd nitrogen species in the lower stratosphere: An update[J]. Journal of Geophysical Research, 1994, 99(D4): 8 167-8 173.

[38]Grewe V, Shindell D T, Eyring V. The impact of horizontal transport on the chemical composition in the tropopause region: Lightning NOX and streamers[J]. Advance in Space Research, 2004, 33(D10): 1 058-1 061.

[39]Müller J F, Brasseur G. IMAGES: A three-dimensional chemical transport model of the global troposphere[J]. Journal of Geophysical Research, 1995, 100(D10): 16 445-16 490.

[40]Jaeglé L, Jacob D J, Wang Y, et al. Sources and chemistry of NOX in the upper troposphere over the United States[J]. Geophysical Research Letter, 1998,25: 1 705-1 708.

[41]Davis D D, Crawford J, Chen G, et al. Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West a observations during the fall 1991[J]. Journal of Geophysical Research, 1996,101(D1): 2 111-2 134.

[42]Jacob D J, Heikes B G, Fan S M, et al. Origin of ozone and NOX in the tropical troposphere: A photochemical analysis of aircraft observations over the South Atlantic Basin[J]. Journal of Geophysical Research, 1996,101(D19): 24 235-24 250.

[43]Wu S, Mickley L J, Jacob D J, et al. Why are there large differences between models in global budgets of tropospheric ozone?[J].Journal of Geophysical Research, 2007, 112(D5): 112-118.

[44]Wild O. Modelling the global tropospheric ozone budget: Exploring the variability in current models[J].  Atmospheric Chemistry and Physics, 2007, 7(10): 2 643-2 660.

[45]Chatfield R B, Crutzen P J. Sulfur dioxide in remote oceanic air: Cloud transport of reactive precursors[J]. Journal of Geophysical Research, 1984, 89(D5): 7 111-7 132.

[46]Brunner D, Staehelin J, Jeker D. Large-scale nitrogen oxide plumes in the tropopause region and implications for ozone[J]. Science, 1998, 282(5 392):1 305-1 308.

[47]Pickering K E, Thompson A M, Wang Y, et al. Convective transport of biomass burning emissions over Brazil during TRACE A[J]. Journal of Geophysical Research, 1996,101(D19): 23 993-24 012.

[48]Li Q, Jacob D J, Logan J A, et al. A tropospheric ozone maximum over the Middle East[J].Geophysical Research Letter, 2001, 28: 3 235-3 238.

[49]Koike M, Kondo Y, Kita K, et al. Reactive nitrogen over the tropical western Pacific: Influence from lightning and biomass burning during BIBLE A[J]. Journal of Geophysical Research, 2003,107(D3): 8 403-8 411.

[50]Staudt A C, Jacob D J, Logan J A, et al. Global chemical model analysis of biomass burning and lightning influences over the South Pacific in austral spring[J]. Journal of Geophysical Research, 2002, 107: 4 200-4 210.

[51]Marufu L, Dentener F, Lelieveld J, et al. Photochemistry of the African troposphere: Influence of biomass-burning emissions[J]. Journal of Geophysical Research, 2000, 105(D11): 14 513-14 530.

[52]Cooper O R, Stohl A, Trainer M, et al. Large upper tropospheric ozone enhancements above mid-latitude North America during summer: In situ evidence from the IONS and MOZAIC ozone measurement network[J]. Journal of Geophysical Research, 2006, 111(D24): 5-10.

[53]Duncan B N, Bey I, Chin M, et al. Indonesian wildfires of 1997: Impact on tropospheric chemistry[J]. Journal of Geophysical Research, 2003, 108(D15): 4 458-4 566.

[54]Williams E R. Lightning and climate: A review[J].  Atmospheric Research, 2005, 76(1/4): 272-287.

[55]Zhang C. Madden-Julian oscillation[J].  Reviews of Geophysics, 2005, 43(2):158-196.

[56]Franzblau E, Popp C J. Nitrogen oxides produced from lightning[J]. Journal of Geophysical Research, 1989, 94(D8): 11 089-11 104.

[57]Zhou Yunjun, Qie Xiushu, Yan Muhong, et al. Ground observation of NOX generated by lightning in thunderstorm weather[J]. Plateau Meteorology, 2003, 22(3): 275-328.[周筠珺,郄秀书,言穆弘,等.雷暴过程中闪电产生NOX的地面观测研究[J].高原气象, 2003, 22(3): 275-328.]

[58]Zhou J Y, Soula S, Pont V, et al. NOX ground concentration at a station at high altitude in relation to cloud-to-ground lightning flashes[J]. Atmospheric Research, 2005, 75(1/2): 47-69.

[59]Dye J E, Ridley B A, Skamarock W, et al. An overview of the Stratospheric-Tropospheric experiment: Radiation, Aerosols, and Ozone (STERAO)-Deep Convection experiment with results for the July 10, 1996 storm[J]. Journal of Geophysical Research, 2000,105(D8): 10 023-10 045.

[60]Hller H, Schumann U. EULINOX-The European Lightning Nitrogen Oxides Project[Z]. Deutsches Zentrum fürLuft-und Raumfahrt, Kln, Germany, DLR-FB 2000,2000.

[61]Marenco A, Thouret V, Nedelec P, et al. Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview[J]. Journal of Geophysical Research, 1998,103(D19): 25 631-25 642.

[62]Huntrieser H, Schlager H, Roiger A, et al. Lightning-produced NOX over Brazil during TROCCINOX: Airborne measurements in tropical and subtropical thunderstorms and the importance of mesoscale convective systems[J]. Atmospheric Chemistry and Physics, 2007, 7: 2 987-3 013.

[63]Labrador L, Vaughan G, Heyes W, et al. Lightning-produced NOX during the Northern Australian monsoon; results from the ACTIVE campaign[J]. Atmospheric Chemistry and Physics, 2009, 9(19): 7 419-7 429.

[64]Thompson A M, Tao W K, Pickering K E, et al. Tropical deep convection and ozone formation[J]. American Meteorological Society, 1997, 78(6): 1 043-1 054.

[65]Rahman M, Cooray V, Rakov V A, et al. Measurements of NOX produced by rocket-triggered lightning[J]. Geophysical Research Letter, 2007, doi:10.1029/2006GL027956.

[66]Levine J S, Augustrron T R, Anderson J C, et al. Troposphere sources of NOX:Lightning and bioligy[J]. Atmospheric Environment, 1984, 18(9): 1 797-1 804.

[67]Peyrous R, Lapeyre R M. Gaseous products created by electrical discharges in the atmosphere and condensation nuclei resulting from gaseous phase reactions[J]. Atmospheric Environment, 1982, 16(5): 959-968.

[68]Cooray V, Rahman M, Rakov V. On the NOX production by laboratory electrical discharges and lightning[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71: 1 877-1 889.

[69]Decaria A J. A cloud-scale model study of lightning-generated NOX in an individual thunderstorm during STERAO-A[J]. Journal of Geophysical Research, 2000, 105(D9): 11 601- 11 616.

[70]Guo Fengxia, Yan Muhong, Zhang Yijun. A model study of lightning generated NOX(LNOX) and it’s  transportation[J]. Plateau Meteorology, 2006, 25 (2):229-235.[郭凤霞,言穆弘,张义军.闪电产生氮氧化物(LNOX)及其输送过程的模式计算[J].高原气象,2006, 25(2): 229-235.]

[71]Stockwell D Z, Giannakopoulos C, Plantevin P H, et al. Modelling NOX from lightning and its impact on global chemical fields[J]. Atmospheric Environment, 1999, 33(27): 4 477-4 493.

[72]Penner J E, Atherton C S, Dignon J, et al. Tropospheric nitrogen: A three-dimensional study of sources, distributions, and deposition[J].Journal of Geophysical Research,1991, 96(D1):959-990.

[73]Lamarque J F, Brasseur G P, Hess P G, et al. Three-dimensional study of the relative contributions of the different nitrogen sources in the troposphere[J]. Journal of Geophysical Research, 1996, 101(22): 955-968.

[74]Murray L T, Jacob D J, Logan J A, et al. Optimized regional and interannual variability of lightning in a global chemical transport model constrained by LIS/OTD satellite data[J]. Journal of Geophysical Research, 2012, 117(D20):1-31.

[75]Hauglustaine D A, Brasseur G P, Walters S, et al. MOZART, a global chemical transport model for ozone and related chemical tracers. Part 2: Model results and evaluation[J]. Journal of Geophysical Research, 1998, 103(D28): 28 291-28 335.

[76]Tie X, Zhang R, Brasseur G, et al. Effects of lightning on reactive nitrogen and nitrogen reservoir species in the troposphere[J]. Journal of Geophysical Research, 2001, 106(D3): 3 167-3 178.

[77]Meijer E W, van Velthoven P F J, Thompson A M, et al. Model calculations of the impact of NOX from air traffic, lightning, and surface emissions, compared with measurements[J]. Journal of Geophysical Research, 2000, 105(D3): 3 833-3 850.

[78]Meijer E W, van Velthoven P F J, Brunner D, et al. Improvement and evaluation of the parameterization of nitrogen oxide production by lightning[J]. Physics and Chemistry of the Earth, 2001, 26(8): 577-583.

[79]Brasseur G, Schultz M, Granier C, et al. Impact of climate change on the future chemical composition of the global troposphere[J]. Journal of Climate, 2006, 19: 3 932-3 951.

[80]van der Veen T S, Boersma K F, Pickering K E, et al. An improved parameterization of lightning NOX production in the TM5 global chemistry transport model[J]. Geophysical Research Abstracts, 2009, 11: 6 880.

[81]Zhang R Y, Sanger N T, Orville R E, et al. Enhanced NOX  by lightning in the upper troposphere and lower stratosphere inferred from the UARS Global NO2 measurements[J]. Journal of Geophysical Research, 2000, 27(5): 685-688.

[82]Martin R V, Sauvage B, Folkins I, et al. Space-based constraints on the production of nitric oxide by lightning[J]. Journal of Geophysical Research, 2007, 112(D9): 309-315.

[83]Levelt P F, van den Oord G H J, Dobber M R, et al. The Ozone Monitoring Instrument[J].  IEEE Transactions Geoscience and Remote Sensing, 2006, 44(5): 1 093-1 101.

[84]Katrina S V, Thornton J A, Wallace J M, et al. Daily and intraseasonal relationships between lightning and NO over the Maritime Continent[J]. Geophysical Research Letter, 2011, 38(19): 803-810.

[85]Guo Fengxia, Chen Cong. Comparison of lightning activity and NOX distribution in the upper troposphere in China[J]. Atmospheric Sciences, 2012,(4):713-718.[郭凤霞,陈聪.中国地区闪电和对流层上部NOX的时空分布特征及其相关性分析[J].大气科学,2012, (4):713-718.]

[86]Sun Anping, Du Jian, Zhang Yijun, et al. Calculation of global characteristics of NOX produced by lightning[J]. Plateau Meteorology, 2004, 23(4): 481-487.[孙安平,杜健,张义军,等.闪电产生氢氧化物(LNOX)全球特征计算[J].高原气象, 2004, 23(4): 481-487.]

[87]Zhou Yunjun, Qie Xiushu, Yuan Tie. Spatial and temporal distributions of NOX produced by lightning in East Asian region[J]. Plateau Meteorology,2004, 23(5):488-494.[周筠珺, 郄秀书, 袁铁.东亚闪电产生的NOX的时空分布特征[J].高原气象,2004, 23(5):488-494.]

[88]Lawrence M G, Chameides W L, Kasibhatla P S, et al. Lightning and Atmospheric Chemistry: The Rate of Atmospheric NO Production[M]. Boca Raton, Florida: CRC Press, 1995.

[89]Price C, Rind D. Possible implications of global climate change on global lightning distributions and frequencies[J]. Journal of Geophysical Research,1994, 99(D5): 10 823-10 831.

[90]Cook D R, Liaw Y P, Sisterson D L, et al. Productionof nitrogen oxides by a large spark generator[J]. Journal of Geophysical Research, 2000,105(D6): 7 103-7 110.

[91]Dawson G A. Nitrogen fixation by lightning[J]. Journal of Atmospheric Science, 1980, 37: 174-178.

[92]Ridley B, Ott L, Pickering K, et al. Florida thunderstorms: A faucet of reactive nitrogen to the upper troposphere[J]. Journal of Geophysical Research, 2004, 109(D17): 1-19.

[93]Schumann U, Huntrieser H, Schlager H, et al. Nitrogen Oxides from thunderstorms-Results from experiments over Europe and the Continental Tropics[EB/OL].[2012-12-28]http:∥elib.dlr.de/10188/.

[94]Kurz C. Entwicklung und Anwendung eines gekoppelten Klima-Chemie-Modellsystems[EB/OL]. [2012-12-28] http:∥edoc.ub.uni-muenchen.de/archive/00004804/01/Kurz Christian.pdf.

[95]Zhang Rong, Zhang Guangshu, Wang Yanhui, et al. Estimate on lightning-produced NOX[C]∥10th Lightning Protection and Disaster Reduction Forum-Lightning Disaster. Shenyang: Chinese Meteorological Society, 2012.[张荣,张广庶,王彦辉,等.闪电产生氮氧化物的计算[C]∥第十届防雷减灾论坛——雷电灾害与风险评估. 沈阳:中国气象学会,2012.]

[96]Zhang Guangshu, Wang Yanhui, Qie Xiushu, et al. Using lightning locating system based on time-of-arrival technique to study three-dimensional lightning discharge processes[J]. Science in China (Series D),2010, 40(4):523-534.[张广庶,王彦辉,郄秀书,等.基于时差法三维定位系统对闪电放电过程的观测研究[J]. 中国科学:D辑,2010, 40(4):523-534.]

[97]Zhang Yijun, Yan Muhong, Du Jian. Regional characteristic calculation of lightning production of nitrogen oxides[WT6BZ](LNOX) (Ⅰ): Theory and calculation method[J]. Plateau Meteorology, 2002, 21(4):347-353.[张义军,言穆弘,杜建.闪电产生氮氧化物(LNOX)区域特征计算(Ⅰ):理论和计算方法[J].高原气象, 2002,21(4): 347-353.]

[98]Du Jian, Zhang Yijun, Yan Muhong. Regional characteristic calculation of lightning production of Nitrogen Oxides(LNOX) (Ⅱ): Analysis on calculation result of LNOX[J]. Plateau Meteorology, 2002, 21(5): 433-440.[杜建,张义军,言穆弘. 闪电产生氮氧化物(LNOX)区域特征计算(Ⅱ):LNOX计算结果分析[J]. 高原气象,2002,21(5): 433-440.]

[99]Schumann U, Huntrieser H. The global lightning-induced nitrogen oxides source[J]. Atmospheric Chemistry and Physics, 2007,7(14): 3 823-3 907.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[9] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[10] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[11] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[12] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[13] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[14] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
[15] 罗鑫玥,陈明星. 城镇化对气候变化影响的研究进展[J]. 地球科学进展, 2019, 34(9): 984-997.
阅读次数
全文


摘要