地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.10.1173

应用地球化学新方向——物理地球化学 上一篇    下一篇

应用于地震预测的遥感气体地球化学
崔月菊 1,2, 杜建国 2, 张德会 1,孙玉涛 2   
  1. 1.中国地质大学地球科学与资源学院,北京 100083;
    2.中国地震局地震预测重点实验室,中国地震局地震预测研究所,北京 100036
  • 收稿日期:2012-07-24 修回日期:2012-08-23 出版日期:2012-10-10
  • 基金资助:

    中国地震局地震预测研究所基本科研业务费专项重点项目[JP2]“六盘山及其邻区强震孕育的物质基础和构造化学研究”(编号:2012IES010200)和“首都圈地震重点监视区活动断裂带气体地球化学流动测量和地震应急项目”(编号:02122408)资助.

Application of Remote Gas Geochemistry in Earthquake Prediction

Cui Yueju 1,2, Du Jianguo 2, Zhang Dehui 1, Sun Yutao 2   

  1. 1.School of the Earth Science and Resources, China University of Geosciences, Beijing 100083,China;
    2.Institute of Earthquake Science, Laboratory of Rock Physics and Fluid Geochemistry, China Seismological Administration, Beijing 100036,China
  • Received:2012-07-24 Revised:2012-08-23 Online:2012-10-10 Published:2012-10-10

利用卫星高光谱技术可以监测到大震前后地下气体释放引起的气体地球化学异常。利用AIRS标准产品数据中CO和O3月平均数据构建全球9年(2003—2011年)平均CO月背景场和O3月背景场,运用差值法(地震发生当年数据—背景场数据)开展震例研究。通过调研全球自2003年以来7级以上震例,系统地进行2003年以来全球7级以上地震的震例分析,对典型震例进行分析,总结CO和O3时空异常特征。

The gas geochemical anomalies caused by underground gas releasing during some large earthquakes can be observed using high-resolution satellite remote sensing technology. Monthly CO total column and O3 total columns background field were obtained using AIRS standard product data in recent nine years (2003—2011) and earthquake cases study were conducted by the method of making differences. The temporal and spacial variations of CO and O3 distributions were summarized through analyzing the earthquakes with the magnitude more than 7 all around the world since 2003.

中图分类号: 

[1]Wang Chengmin, Li Xuanhu. Applications of fracture-gas measurement to the earthquake studies in China[J]. Earthquake Research in China, 1991, 7(2): 19-30.[汪成民, 李宣瑚. 我国断层气测量在地震科学研究中的应用现状[J]. 中国地震, 1991, 7(2): 19-30.]

[2]Qiang Zuji, Du Letian. Earth degassing, forest fire and seismic activities [J]. Earth Science Frontiers, 2001, 8(2): 236-245.[强祖基, 杜乐天. 地球排气与森林火灾和地震活动[J]. 地学前缘, 2001, 8(2): 236-245.]

[3]Kasimov N S, Kovin M I, Proskuryakov Y V, et al. Geochemistry of the soils of fault zones (exemplified by Kazakhstan)[J].Soviet Soil Science,1979, 11:397-406.

[4]King C. Gas geochemistry applied to earthquake prediction: An overview[J]. Journal of Geophysical Research, 1986, 91(B12): 12 269-12 281.

[5]Zhu Hongren, Wang Chengmin, Wan Dengbao, et al. A preliminary study on the scale of gaseous geochemistry for determining seismic intensity[J]. Earthquake Research in China, 1991, 7(1): 59-64.[朱宏任,汪成民,万登堡,等.  地震烈度的气体地球化学标度初探[J]. 中国地震,1991,7(1): 59-64.]

[6]Tronin A A. Satellite remote sensing in seismology. A review[J].Remote Senseing, 2010, 2(1):124-150.

[7]Tronin A A. Remote sensing and earthquakes: A review [J]. Physics and Chemistry of the Earth, 2006, 31(4/9): 138-142.

[8]Tronin A A, Hayakawa M, Molchanov O A. Thermal IR satellite data application for earthquake research in Japan and China [J]. Journal of Geodynamics, 2002, 33: 519-534.

[9]Dey S, Sarkar S, Singh R P. Anomalous changes in column water vapor after Gujarat earthquake [J]. Advances in Space Research, 2004, 33(3):274-278.

[10]Okada Y, Mukai S, Singh R P. Changes in atmospheric aerosol parameters after Gujarat earthquake of January 26, 2001[J]. Advances in Space Research, 2004, 33(3): 254-258.

[11]Yao Qinglin, Qiang Zuji, Wang Yiping. CO Release from the Tibetan plateau before earthquake and increasing temperature anomaly showing in thermal infrared images of satellite[J].Advances in Earth Science, 2005, 20(5): 505-510.[姚清林,强祖基,王弋平. 青藏高原地震前CO的排放与卫星热红外增温异常[J]. 地球科学进展,2005,20(5): 505-510.]

[12]Guo Guangmeng, Cao Yungang, Gong Jianming. Monitoring anomaly before earthquake with MODIS and MOPITT data [J]. Advances in Earth Science, 2006, 2(7): 695-698. [郭广猛,曹云刚,龚建明. 使用MODIS和MOPITT卫星数据监测震前异常[J]. 地球科学进展,2006,2(7): 695-698.]

[13]Singh R P, Kumar S J, Zlotnicki J,et al. Satellite detection of carbon monoxide emission prior to the Gujarat earthquake of 26 January 2001 [J]. Applied Geochemistry, 2010, 25: 580-585.

[14]Aumann H H, Chahine M T, Gautier C,et al. AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products and processing system[J].IEEE Transactions on Geoscience and Remote Sensing, 2003, 41: 253-264.

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 杨雄, 祝意青, 申重阳, 赵云峰. 2019年甘肃夏河 MS 5.7地震前后重力场异常特征分析[J]. 地球科学进展, 2021, 36(5): 510-519.
[3] 周卫健,吴书刚,熊晓虎,程鹏,王鹏,侯瑶瑶,牛振川,杜花,陈宁,卢雪峰,付云翀,刘林. 我国城市大气化石源 CO214C示踪研究进展[J]. 地球科学进展, 2020, 35(9): 881-889.
[4] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[5] 白玲,宋博文,李国辉,江勇. 喜马拉雅造山带地震活动及其相关地质灾害[J]. 地球科学进展, 2019, 34(6): 629-639.
[6] 黄稳柱,张文涛,李芳. 基于光纤传感的多参量地震综合观测技术研究[J]. 地球科学进展, 2019, 34(4): 424-432.
[7] 毛经伦, 祝意青. 地面重力观测数据在地震预测中的应用研究与进展[J]. 地球科学进展, 2018, 33(3): 236-247.
[8] 安艳玲, 吕婕梅, 罗进, 吴起鑫, 秦立. 赤水河流域岩石化学风化及其对大气CO 2的消耗[J]. 地球科学进展, 2018, 33(2): 179-188.
[9] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
[10] 周晓成, 石宏宇, 陈超, 曾令华, 孙凤霞, 李静, 陈志, 吕超甲, 黄丹, 杜建国. 汶川 M S8.0地震破裂带土壤气中H 2浓度时空变化[J]. 地球科学进展, 2017, 32(8): 818-827.
[11] 王根, 张华, 杨寅. 高光谱大气红外探测器AIRS资料质量控制研究进展[J]. 地球科学进展, 2017, 32(2): 139-150.
[12] 方家松, 李江燕, 张利. 海底CORK观测30年:发展、应用与展望[J]. 地球科学进展, 2017, 32(12): 1297-1306.
[13] 田彪, 丁明虎, 孙维君, 汤洁, 王叶堂, 张通, 效存德, 张东启. 大气CO研究进展[J]. 地球科学进展, 2017, 32(1): 34-43.
[14] 汪燕敏, 祁第, 陈立奇. 南大洋酸化指标——海水文石饱和度变异的研究进展[J]. 地球科学进展, 2016, 31(4): 357-364.
[15] 李安, 冉勇康, 刘华国, 徐良鑫. 西南天山柯坪推覆系西段全新世构造活动特征和古地震[J]. 地球科学进展, 2016, 31(4): 377-390.
阅读次数
全文


摘要