地球科学进展 doi: 10.11867/j.issn.1001-8166.2012.10.1167

实验地球化学 上一篇    下一篇

海底蚀变玄武岩中次生组分去除实验研究
卜文瑞,李 力,朱爱美,张 辉,张 俊,崔菁菁   
  1. 国家海洋局第一海洋研究所 海洋沉积与环境地质国家海洋局重点实验室,山东 青岛 266061
  • 收稿日期:2012-07-24 修回日期:2012-08-17 出版日期:2012-10-10
  • 基金资助:

    国家海洋局第一海洋研究所基本科研业务费专项资金项目“海底玄武岩次生碳酸盐去除实验研究”(编号:2007G22);国际海底区域研究开发“十一五”项目“海底多金属成矿系统及矿集区初步研究”(编号:DYXM-115-01-2-1)资助.

Leaching Experiments of Secondary Components in Altered Submarine Basalts

Bu Wenrui, Li Li, Zhu Aimei, Zhang Hui, Zhang Jun, Cui Jingjing   

  1. The First Institute of Oceanography,  Key Laboratory of Marine Sedimentology & Environmental Geology, State Oceanic Administration, Qingdao 266061, China
  • Received:2012-07-24 Revised:2012-08-17 Online:2012-10-10 Published:2012-10-10

选择有大量次生方解石沉淀的海底蚀变玄武岩为研究对象,研磨、均一化后将粉末样品分为49份,其中48份分别以0.25,0.5,1.0,1.5,2.0,2.5 mol/L 6种浓度的足量HCl溶解0.5,1,2,4,8,16,32,64 h,选取溶解残渣测定其主要氧化物和特征微量元素含量,研究确定HCl溶解法去除海底玄武岩中次生组分的浓度—时间组合。结果表明,1.0 mol/L-0.5 h,1.0 mol/L-1 h,1.0 mol/L-2 h,1.0 mol/L4 h,1.5 mol/L-0.5 h,1.5 mol/L-1 h,2.0 mol/L-0.5 h,2.0 mol/L-1 h和2.5 mol/L-0.5 h等9种HCl浓度—时间组合是可供去除海底蚀变玄武岩中次生碳酸盐的理想方案

Altered submarine basalts with rich secondary calcites were graded, homogenized, and divided into 49 subsamples. 48 subsamples were leached with hydrochloric acid (HCl) of different concentrations (0.25 mol/L, 0.5 mol/L, 1.0 mol/L, 1.5 mol/L, 2.0 mol/L, 2.5 mol/L) for different time periods (0.5 hour, 1 hour, 2 hours, 4 hours, 16 hours, 32 hours and 64 hours). The main oxides and trace elements in the leached residuals were analyzed to determine the preferred HCl concentration-time combinations for leaching secondary components in altered submarine basalts. The result indicates that there are 9 optimal schemes as preferred HCl concentration-time combinations to leach secondary components in altered submarine basalts, which are 1.0 mol/L-0.5 hours, 1.0 mol/L-1 hour, 1.0 mol/L-2 hours, 1.0 mol/L-4 hours, 1.5 mol/L-0.5 hours, 1.5 mol/L-1 hour, 2.0 mol/L-0.5 hours, 2.0 mol/L-1 hour and 2.5 mol/L-0.5 hour.

中图分类号: 

[1]Guy C, Daux V, Schott J. Behaviour of rare earth elements during seawater/basalt interactions in the Mururoa Massif [J]. Chemical Geology, 1999, 158: 21-35.

[2]Alta J C, Teagle D A H. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: Mineral, chemical, and isotopic evidence from ODP Site 801[J]. Chemical Geology, 2003, 201: 191-211.

[3]Zhu Kechao. Petrology of the substrate in seamounts MA, MC, MD, ME and MF from Magellan Seamounts [J]. Marine Geology & Quaternary Geology, 2002, 22(1): 49-56.[朱克超. 麦哲伦海山区MA、MC、MD、M E、MF 海山结壳基岩的岩石学[J]. 海洋地质与第四纪地质, 2002, 22(1): 49-56.]

[4]Bach W, Garrido C J, Paulick H, et al. Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N [J].Geochemistry Geophysics Geosystems,2004, 5(9): 1-22.

[5]Bu Wenrui, Shi Xuefa, Peng Jiantang, et al. Low-temperature alteration of oceanic island basalts and their contribution to transition metal circulation of the ocean [J]. Acta Oceanologica Sinica, 2008, 27(2): 35-54.

[6]Meurer W P, Sturm M A, Klein E M, et al. Basalt compositions from the Mid-Atlantic Ridge at the SMARK area (22°30′N to 22°50′N) implications for parental liquid variability at isotopically homogeneous spreading centers [J]. Earth and Planetary Science Letters, 2001, 186: 451-469.

[7]Kamenetsky V S, Everard J L, Crawford A J, et al. Enriched end-member of primitive MORB Melts: Petrology and geochemistry of glasses from Macquarie Island (SW Pacific) [J]. Journal of Petrology, 2000, 41(3): 411-430.

[8]Hannigan R E, Basu A R, Teichmann F. Mantle reservoir geochemistry from statistical analysis of ICP-MS trace element data of equatorial mid-Atlantic MORB glasses [J]. Chemical Geology, 2001, 175: 397-428.

[9]Cooper K M, Eiler J M, Asimow P D. Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge [J]. Earth and Planetary Science Letters, 2004, 220: 297-316.

[10]Chan L, Lassiter J C, Hauri E H. Lithium isotope systematics of lavas from the Cook-Austral Islands: Constraints on the origin of HIMU mantle [J]. Earth and Planetary Science Letters, 2009, 277: 433-442.

[11]Burnard P, Graham D, Farley K. Fractionation of noble gases (He, Ar) during MORB mantle melting: A case study on the Southeast Indian Ridge [J]. Earth and Planetary Science Letters, 2004, 227: 457-472.

[12]Shinjo R, Kato Y. Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin [J]. Lithos, 2000, 54: 117-137.

[13]Choi S H, Suzuki K, Mukasa S B. Lu-Hf and Re-Os systematics of peridotite xenoliths from Spitsbergen, western Svalbard: Implications for mantle-crust coupling [J]. Earth and Planetary Science Letters, 2010, 297: 121-132.

[14]Escrig S, Schiano P, Schilling J, et al. Rhenium-osmium isotope systematics in MORB from the Southern Mid-Atlantic Ridge (40°-50°S) [J]. Earth and Planetary Science Letters, 2005, 235: 528-548.

[15]Georgen J E, Kurz M D, Dick H J B, et al. Low 3He/4He ratios in basalt glasses from the western Southwest Indian Ridge (10°-24°E) [J]. Earth and Planetary Science Letters, 2003, 206: 509-528.

[16]Peate D W, Hawkesworth C J, van Calsteren P W, et al. 238U-230Th constraints on mantle upwelling and plume-ridge interaction along the Reykjanes Ridge [J]. Earth and Planetary Science Letters, 2001, 187:259-272.

No related articles found!
阅读次数
全文


摘要