地球科学进展 ›› 2006, Vol. 21 ›› Issue (12): 1324 -1332. doi: 10.11867/j.issn.1001-8166.2006.12.1324

研究论文 上一篇    下一篇

西藏纳木错流域冻土环境初步研究
田克明 1,刘景时 1,康世昌 1,2,李潮流 1   
  1. 1.中国科学院青藏高原研究所,纳木错圈层相互作用综合观测研究站,北京 100085;2.中国科学院寒区旱区环境与工程研究所,冰冻圈与寒区环境联合重点实验室,甘肃 兰州 730000
  • 收稿日期:2006-10-11 修回日期:2006-11-03 出版日期:2006-12-15
  • 通讯作者: 田克明 E-mail:tkeming@itpcas.ac.cn
  • 基金资助:

    国家重点基础研究发展计划项目“青藏高原冰冻圈变化与能量水分循环过程”(编号:2005CB422003);国家自然科学基金项目“喜玛拉雅山典型冰川水文过程对气候变化响应的观测研究”(编号:40571037);中国科学院“百人计划”项目,中国科学院“院长基金”项目,国家人事部留学回国人员启动基金项目资助.

A Primary Study on the Environment of Frozen Ground in the Nam Co Basin, Tibet

Tian Keming 1,Liu Jingshi 1,Kang Shichang 1,2,Li Chaoliu 1   

  1. 1. Nam Co Station of Multi-sphere Interaction Observation and Research, Institute of Tibetan Plateau Research, CAS, Beijing 100085, China; 2. Key Laboratory of Ice Core and Cold Region Environment, CAREERI, CAS, Lanzhou  730000, China
  • Received:2006-10-11 Revised:2006-11-03 Online:2006-12-15 Published:2006-12-15

利用在西藏纳木错流域念青唐古拉山北坡(NQN,海拔5 400 m)和西北保吉乡(BJ,海拔4 730 m)布设的两台带有四层土壤探头自动气象站(AWS)2005—2006年冬季10个月观测数据进行了统计分析。结果表明:观测期间NQN日及月平均气温均低于BJ,但变化幅度均小于BJ,土壤冻结时间比BJ长,两处的气温梯度为0.31℃/100 m。与安多月平均气温比较,推断NQN存在高山多年冻土。NQN大气—土壤及土壤内热传输速度快于BJ;冻结期内土壤中未冻水含量在0~-2.5℃时发生跃变且与土壤温度存在较好的线性关系;相同深度处NQN土未冻水含量较小。土壤温度日变化在0~40 cm深度处较明显,40cm深度以下变化很小,未冻水含量日变化在5 cm深度较明显,20 cm以下变化微弱。利用两观测点冻结深度(Df)与冻结积温(Tg)的良好相关建立模型,NQN为:Df-n= 0.0016Tg+ 1.69,R2=0.9958;BJ为:Df-b= 0.002Tg+ 1.13,R2= 0.9424,并由此推断出两观测点最大季节冻结深度分别为1.69 m和1.13 m。

Based on the data from two automatic weather stations (AWS) with 4-layers of soil probes located at an elevation of 5,400m at the Northern slope of Mt. Nyenquentanglha (N) and at 4,720 m at Boji (B) in the northwest of the Nam Co lake, this paper analyzed the environment of the frozen ground around the lake basin. It concludes that from September 2005 to May 2006, the daily temperature and monthly temperature at the N were both lower than those at the B, however, amplitude of daily temperature at the N was smaller than that at the BJ. The freezing period of ground at the N is longer than that at the B. From September to next May, their air temperature lapse rate is 0.31℃/100 m smaller than that in the atmosphere. Results show alpine permafrost existed at the N by comparing monthly temperature with the Ando, Tibet. Heat conduction between air and soil and within soil at the N was faster than that at the B. During freezing period, a powerful relationship was found between the soil unfrozen water content and soil temperature, the unfrozen water content abruptly declined at 0~-2℃. The Diurnal variation of soil temperature is dramatic at the 0~40 cm depth, while no trend below 40 cm; so does soil unfrozen water content at 5 cm depth, no trend below 20 cm. Based on the close correlation between a soil freezing depth (Df) and a cumulative frost temperature (Tg), the model was proposed as the following: Df-n= 0.0016Tg+ 1.69 at the N and Df-b= 0.002Tg+ 1.13 at the B, using the model, the maximum freezing depth were estimated by 1.69 m and 1.13 m at the two sites, respectively.

中图分类号: 

[1] Zhou Youwu, Guo Dongxin, Cheng Guodong, et al. Geocryology in China[M]. Beijing:Science Press,2000.299-360. [周幼吾,郭东信,程国栋,.中国冻土[M].北京:科学出版社,2000:299-360.]

[2] Zhao Lin, Cheng Guodong, Li Shuxun, et al. The freezing and thawing process of permafrost active layer in the region near Wudaoliang of Tibetan Plateau[J]. Science Bulletin,2000,45 (11):1 205-1 211.[赵林,程国栋,李述训,.青藏高原五道梁附近多年冻土活动层冻结和融化过程[J].科学通报,2000,45 (11):1 205-1 211.]

[3] Wang Chenghai, Dong Wenjie, Wei Zhigang. The feature of seasonal frozen soil on Qinghai-Tibet Plateau[J]. Acta Geographica Sinica,2001,56(5):523-531.[王澄海,董文杰,韦志刚.青藏高原季节性冻土年际变化的异常特征[J].地理学报,2001,56(5):523-531.

[4] Gao Rong, Wei Zhigang, Dong Wenjie. Inter-annual change of the beginning and ending freezing date of soil in Tibetan Plateau[J]. Journal of Glaciology and Geocryology,2003,25(1):49-54.[高荣,韦志刚,董文杰.青藏高原土壤冻结始日和终日的年际变化[J].冰川冻土,2003,25(1):49-54.]

[5] Li Shuxun, Cheng Guodong, Guo Dongxin. The future thermal regime of numerical simulate in permafrost on Qinghai-Tibet Plateau,China,under climate warming[J]. Science in China(Series D),1996,39(4):434-441.[李述训,程国栋,郭东信. 气候转暖条件下青藏高原多年冻土变化趋势[J].中国科学:D,1996,39(4):434-441.]

[6] Wang Shaoling. Discussion on frozen ground degradation and frozen ground environment in Tibetan Plateau[C]Fifth National Assembly Papers on Glaciers and Permafrost (on the list). Lanzhou:Gansu Culture Press,1996:11-17.[王绍令,冻土退化与青藏高原冻土环境问题探讨.[C]第五届全国冰川冻土学大会论文集(上册).兰州:甘肃文化出版社,1996:11-17.]

[7] Ding Yongjian, Ye Baisheng, Liu Shiyin, et al. Geocryological and hydrological monitoring and research at large scale in Tibetan Plateau[J]. Science Bulletin,2000,45(2):208-214.[丁永建,叶佰生,刘时银,.青藏高原大尺度冻土水文监测研究[J].科学通报,2000,45(2):208-214.]

[8] Li Shuxun, Cheng Guodong. Water and Thermal Transformation in Freezing-thawing Soil[M]. Lanzhou: Lanzhou University Press, 1993:36-202.[李述训,程国栋. 冻融土中的水热输运问题[M].兰州:兰州大学出版社,1993:36-202.]

[9] Wang Shaoling, Zhao Xinmin. Analysis of the ground temperature monitored in permafrost region on Tibet plateau[J]. Journal of Glaciology and Geocryology,1999,21(2):159-163.[王绍令,赵新民.青藏高原多年冻土区地温监测结果分析[J].冰川冻土,1999,21(2):159-163.]

[10] Li Shude, Cheng Guodong. Distribution Map of Frozen Ground in Tibetan Plateau[M]. Lanzhou: Gansu Culture Press,1996. [李树德,程国栋.青藏高原冻土分布图[M].兰州:甘肃文化出版社,1996.]

[11] Nan Zhuotong, Li Shuxun, Liu Yongzhi. Mean annual ground temperature distribution on the Tibetan Plateau:Permafrost distribution mapping and further application[J]. Journal of Glaciology and Geocryology, 2002, 24(2):142-148. [南卓铜,李述训,刘永智.基于年平均地温的青藏高原冻土分布制图及应用[J].冰川冻土,2002,24(2):142-148.]

[12] Li S X, Chen R J. Simulation of the thermal regime of permafrost in northeast China under climate warming[C]Proceedings on the 7th International Permafrost Conference. Universite Laval,1998:651-656.

[13] Li X,Cheng G D,Chen X Z. Response of permafrost to global change on the Qinghai-Xizang plateau a GIS aided model[C]Proceedings on the 7th International Permafrost Conference.Universite Laval,1998:657-622.

[14] Wu Zhonghai. The geological record of climate and environment change in Holocene Epoch in Nam co and neighbor region of Tibet[J]. Journal of Glaciology and Geocryology,2004,26(3) :275-283. [吴中海.西藏纳木错及邻区全新世气候与环境变化的地质记录[J].冰川冻土,2004,26(3) :275-283.]

[15] Jingshi Liu, Hayakawa N, Lu M J, et al. Hydrological and geocryological response of winter streamflow to climate warming in Northeast China[J]. Cold Regions Science and Technology,2003,37:15-24.

[16] Lovell C W. Temperature effects on phase composition and strength of partially-frozen soil[J]. Highway Research Board Bulletin,1957,168:74-95.

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 贾诗超,张廷军,范成彦,刘琳,邵婉婉. InSAR技术多年冻土研究进展[J]. 地球科学进展, 2021, 36(7): 694-711.
[3] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[4] 李欣泽, 金会军, 吴青柏, 魏彦京, 温智. 北极多年冻土区埋地输气管道周边温度场数值分析[J]. 地球科学进展, 2021, 36(1): 69-82.
[5] 李欣泽,金会军,吴青柏. 多年冻土区天然气管道压气站失效情境下应对方案研究[J]. 地球科学进展, 2020, 35(11): 1127-1136.
[6] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[7] 李欣泽,金会军. 多年冻土区天然气管道工程:技术挑战和应对方案[J]. 地球科学进展, 2019, 34(11): 1131-1140.
[8] 冉有华,李新. 中国多年冻土制图:进展、挑战与机遇[J]. 地球科学进展, 2019, 34(10): 1015-1027.
[9] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[10] 孙志忠, 马巍, 穆彦虎, 刘永智, 张淑娟, 王宏磊. 青藏铁路沿线天然场地多年冻土变化[J]. 地球科学进展, 2018, 33(3): 248-256.
[11] 令锋, 张廷军. 热卡斯特湖对多年冻土热状况长期作用的数值模拟研究进展[J]. 地球科学进展, 2018, 33(2): 115-130.
[12] 马巍, 穆彦虎, 谢胜波, 毛云程, 陈敦. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展, 2017, 32(5): 459-464.
[13] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[14] 夏利江, 周国庆, 刘宇翼, 王涛, 阴琪翔. 青藏铁路旱桥桥面遮阳对桥下及周边冻土太阳辐射影响[J]. 地球科学进展, 2014, 29(3): 380-387.
[15] 牛富俊,董晟,林战举,鲁嘉濠,罗京. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6): 695-702.
阅读次数
全文


摘要