地球科学进展 ›› 2006, Vol. 21 ›› Issue (10): 1063 -1069. doi: 10.11867/j.issn.1001-8166.2006.10.1063

研究论文 上一篇    下一篇

西北荒漠草甸植被光谱反射特征研究
张凯 1,郭铌 1,王润元 1,司建华 2,王小平 1   
  1. 1.中国气象局兰州干旱气象研究所 甘肃省干旱气候变化与减灾重点实验室,甘肃 兰州 730020;2.中国科学院寒区旱区环境与工程研究所,甘肃 兰州 730000
  • 收稿日期:2006-05-24 修回日期:2006-09-11 出版日期:2006-10-15
  • 通讯作者: 张凯 E-mail:lanzhouzhk@163.com
  • 基金资助:

    甘肃省退牧还草科技支撑项目“甘肃省退牧还草效益遥感监测研究”(编号:甘退牧200301);干旱气象科学研究基金项目“陇中黄土高原春小麦光谱反射特征观测研究”(编号:IAM200613);国家自然科学基金项目“极端干旱区胡杨单株与林分耗水量测定与尺度转换研究”(编号:40501012);科技部科研院所社会公益研究专项“西北农作物对气候变化的响应及评价方法”(编号:2005DIB3J100)资助.

Research on Spectral Reflectance Characteristics for Desert Meadow of Northwest China

Zhang Kai 1,Guo Ni 1,Wang Runyuan 1,Si Jianhua 2,Wang Xiaoping 1   

  1. 1.Key Laboratory of Arid Climatic Chang and Disaster Reduction,Institute of Arid Meteorology of Gansu Province, China Meteorological Administration,Lanzhou 730020,China;2.Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou 730000,China
  • Received:2006-05-24 Revised:2006-09-11 Online:2006-10-15 Published:2006-10-15

选取位于西北干旱内陆地区的安西荒漠草场为观测试验区,分别对盐生低地草甸、极旱荒漠草甸和荒漠灌丛三类草地进行了地面反射光谱测定,并分析了主要荒漠草甸植被光谱反射的一般特征和红边参数特征,进而探讨了形成草地光谱特征差异的主要内在原因和影响因素。结果表明:在近红外波段,由于荒漠植被类别间叶片内部结构变化大,因此冠层光谱反射率差异较大;同一植被冠层光谱反射率的大小主要受植被长势的影响;受沙地背景的影响,在近红外波段,植被冠层的光谱反射率要明显小于叶片的光谱反射率;荒漠植被冠层光谱的红边也具有“双峰”现象,红边特征的参数表现为:沙地植被>绿洲植被>沙漠植被。对安西荒漠植被光谱特征的分析研究,对于研究干旱区荒漠植被的理化性能、遥感反演、植被分类、植被调查等都具有重要的意义。

Taking Anxi desert grassland that locates in northwestern arid zone as experimental area of the observation, ground spectral reflectance of the saline lowland meadow, extremely arid desert meadow and desert shrubs were determined. The paper analyzes the spectral reflectance common characteristics and red edge parameter characteristics of main desert meadow vegetations. At the same time, the major interior reasons and influencing factors that lead to the difference of grassland spectral characteristics are discussed. The results show that canopy spectral reflectance has a marked difference for different desert meadow types in the near infrared waves because the internal structures of leaf laminae change greatly.The canopy spectral reflectance of the same vegetation has relation to their growing status. Influenced by sandy land backgrounds, in the near infrared waves, the canopy spectral reflectance of desert meadow is clearly smaller than the leaf spectral reflectance. There are “double peak” phenomena for the red edge of canopy spectra in desert meadow, and the maximum value of red edge parameters of different vegetative types is the biggest for sandy land vegetation and the smallest for desert vegetation. Research on spectral reflectance characteristics for desert meadow of Anxi plays an important role in the research of physical chemistry performances, remote sensing retrieval, classification and investigation on the vegetation in an arid area.

中图分类号: 

[1] Tong Qingxi,Tian Guoliang.Spectra and Analysis of Typical Earth Objects of China[M]. Beijing:Science Press,1990. [童庆禧,田国良.中国典型地物波谱及其特征分析[M].北京:科学出版社,1990.]

[2] LeemanV. The NASA Earth Resources Spectral Information System: A Data Compilation [M]. NASA-CR-115757, Willo Run Lab, Michigan University,1971.

[3] Su Lihong, Li Xiaowen, Wang Jindi, et al. Some problems in constructing the ground object spectral knowledge base and its services[J]. Advances in Earth Science,2003,18(2):185-191.[苏理宏,李小文,王锦地,.典型地物波谱知识库建库与波谱服务的若干问题[J].地球科学进展,2003,18(2):185-191.]

[4] Tong Qingxi, Zheng Lanfen, Wang Jinnian, et al. Study on imaging spectrometer remote sensing information for wetland vegetation[J]. Journal of remote sensing,1997,1(1):50-57.[童庆禧,郑兰芬,王晋年,.湿地植被成像光谱遥感研究[J].遥感学报,1997,1(1):50-57.]

[5] Pu Ruiliang,Gong Peng. Hyperspectral Remote Sensing and Its Applications[M]. Beijing:Higher Education Press, 2000:123-327.[浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000:123-327.]

[6] Tian Qingjiu, Gong Peng, Zhao Chunjiang, et al. A feasibility study on diagnosing wheat water status using spectral reflectance[J]. Chinese Science Bulletin, 2000,45(24):2 645-2 650.[田庆久,宫鹏,赵春江,.用光谱反射率诊断小麦水分状况的可行性分析[J].科学通报,2000,45(24):2 645-2 650.]

[7] Tang Yanlin, Huang Jingfeng, Wang Xiuzhen, et al. Comparison of the characteristics of hyperspectra and the red edge in rice, corn and cotton[J]. Scientia Agricultura Sinica,2004,37(1):29-35.[唐延林,黄敬峰,王秀珍,.水稻、玉米、棉花的高光谱及其红边特征比较[J].中国农业科学,2004,37(1):29-35.]

[8] Liu Jianming,Chen Jianping. Indexing of spectrum curves: Method and implication[J]. Advances in Earth Science,1995,10(2):205-209.[刘建明, 陈建平.波谱曲线指数化的方法和意义[J].地球科学进展,1995,10(2):205-209.]

[9] Tian Guoliang. Imaging spectrometry remote sensing technology in geological investigations on the mineral resources[J]. Advances in Earth Science,1992,7(5):74-75.[田国良.矿产地质调查中的成像光谱遥感技术[J].地球科学进展,1992,7(5):74-75.]

[10] Wan Yuqing, Zhang Fengli, Yan Yongzhong. The application of the hyperspectral remote sensing technology to water environment monitoring[J]. Remote Sensing for Land & Resources,2003,(3):10-14. [万余庆,张凤丽,闫永忠.高光谱遥感技术在水环境监测中的应用研究[J].国土资源遥感,2003,(3):10-14.]

[11] Tian Qingjiu, Wang Shixin, Wang Leyi, et al. Remote sensing standardized spectral database system design[J]. Remote Sensing Technology and Application, 2003,18(4):185-190.[田庆久,王世新,王乐意,.典型地物标准波谱数据库系统设计[J].遥感技术与应用,2003,18(4):185-190.]

[12] Zhang Yan, Bo Liqun, Lu Xingchang. Design and development of object spectrum database in Jingyuetan of Changchun[J]. Remote Sensing Information,2002,(6):25-27.[张妍,薄立群,路兴昌.长春净月潭地物波谱数据库的研究与开发[J].遥感信息,2002,(6):25-27.]

[13] Tueller P T. Remote sensing technology for rangeland management applications[J].Journal of Range Management, 1989, 42 (6): 442-453.

[14] Zhang Fengli, Yin Qiu, Kuang Dingbo, et al. Analysis of time series spectrum feature parameters derived from dominant natural grasslands in the region around Qinghai lake[J]. Acta Ecologica Sinica, 2005, 25 (12):3 155-3 160.[张风丽,尹球,匡定波,.环青海湖地区天然草地时序光谱特征参量分析[J].生态学报, 2005, 25 (12):3 155-3 160.]

[15] Long Rujun,Mou Xindai,Chen Gong. An analysis of relationship between the spectral reflectance and the herbage growing on alpine meadow grassland[J]. Pratacultural Science,1994,11(1):53-55.[龙瑞军,牟新待,陈功.高山草地的反射光谱与牧草长势的相关分析[J].草业科学,1994,11(1):53-55.]

[16] Huang Jingfeng, Wang Xiuzhen. The characteristics of natural grassland spectral vegetation indices in eastern and middle part of northern Tianshan mountain[J]. Journal of Mountain Science,1999,17(2):119-124.[黄敬峰,王秀珍. 天山北坡中东段天然草地光谱植被指数特征[J].山地学报,1999,17(2):119-124.]

[17] Wang Yanrong. The influence of different grazing intensity on the near-ground spectral reflectance of Leymus chinsesis steppe[J]. Grassland of China,2001,23(2):1-6.[王艳荣.不同放牧强度对羊草草地近地面反射波谱特征的影响研究[J].中国草地,2001,23(2):1-6.]

[18] Lillesand T M, Kiefer R W. Remote Sensing and Image Interpretation[M]. New York: John Wiley & Sons, Inc,1994:17-50.

[19] Knipling E B. Phusical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation[J]. Remote Sensing of Environment,1970,(1):155-159.

[20] Tang Yanlin, Wang Xiuzhen, Wang Renchao. Study on the hyperspectral and their red edge characteristics of corn[J]. Journal of Mountain Agriculture and Biology,2003,22(3):189-194.[唐延林,王秀珍,王人潮.玉米高光谱及其红边特征分析[J].山地农业生物学报,2003,22(3):189-194.]

[21] Chen Shupeng, Tong Qingxi, Guo Huadong. Hyperspectral remote sensing mechanism and material recognition[C]Chen Shupeng, et al, eds. The research on remote sensing mechanism. Beijing: Chinese Scientific Press, 1998:139-233.[陈述彭,童庆禧,郭华东.高光谱分辨率遥感信息机理与地物识别[C]陈述彭主编.遥感信息机理研究.北京:科学出版社,1998:139-233.]

[22] Curran P J, Dungan J L, Gholz H L. Exploring the relationship between reflectance red edge and chlorophyll content in slash pine[J]. Tree Physiology, 1990, 7: 33-48.

[23] Miller J R. Season patterns in leaf reflectance red edge characteristics[J]. Internal Journal of Remote Sensing, 1991, 12(7) :1 509-1 523.

[24] Filella D, Pen-uelas J. The red edge position and shape as indicators of plant chlorophyll content , biomass and hydric status[J]. Internal Journal of Remote Sensing, 1994, 15(7) :1 459-1 470.

[25] Liu Zhanyu, Huang Jingfeng, Wu Xinhong, et al. Hyperspectral remote sensing estimation models for the grassland biomass[J]. Transactions of the CSAE, 2006,22(2): 111-115. [刘占宇,黄敬峰,吴新宏,.草地生物量的高光谱遥感估算模型[J].农业工程学报,2006,22(2): 111-115.]

[26] Zhao Dehua, Li Jianlong, Song Zijian. Hyperspectral remote sensing for estimating biochemical variables of canopy[J]. Advances in Earth Science,2003,18(1):94-99.[赵德华,李建龙,宋子键.高光谱技术提取植被生化参数机理与方法研究进展[J].地球科学进展,2003,18(1):94-99.]

[1] 田静. 大气 CO2浓度增加对中国区域植被蒸腾的影响[J]. 地球科学进展, 2021, 36(8): 826-835.
[2] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[3] 郭卫东,王超,李炎,瞿理印,郎目晨,邓永彬,梁清隆. 水环境中溶解有机质的光谱表征:从流域到深海[J]. 地球科学进展, 2020, 35(9): 933-947.
[4] 吴佳梅,彭秋志,黄义忠,黄亮. 中国植被覆盖变化研究遥感数据源及研究区域时空热度分析[J]. 地球科学进展, 2020, 35(9): 978-989.
[5] 田野,田云涛. 石墨化碳质物质拉曼光谱温度计原理与应用[J]. 地球科学进展, 2020, 35(3): 259-274.
[6] 雒聪文,马玉贞,王凯,李丹丹. 东亚地区 MIS 5时期孢粉记录的植被与气候研究进展[J]. 地球科学进展, 2019, 34(5): 540-551.
[7] 魏金娥,张洪海,陈岩,杨桂朋. 环境样品中氨基糖分析检测方法的研究进展[J]. 地球科学进展, 2019, 34(1): 84-92.
[8] 曾献棣, 唐红, 李雄耀, 欧阳自远, 王世杰. 月表太阳风成因水的研究现状和意义[J]. 地球科学进展, 2018, 33(5): 473-482.
[9] 李天生, 夏军. 基于Budyko理论分析珠江流域中上游地区气候与植被变化对径流的影响 *[J]. 地球科学进展, 2018, 33(12): 1248-1258.
[10] 沈巍, 许清海, 李建勇, 李曼玥, 张攀攀, 卢静瑶. 山区小流域花粉植被土地利用的关系:定量检测人类活动对环境的影响[J]. 地球科学进展, 2017, 32(9): 972-982.
[11] 李青, 雷连发, 王振会, 魏鸣, 李东帅. 雷电流热效应的遥感观测研究进展[J]. 地球科学进展, 2017, 32(5): 481-487.
[12] 王根, 张华, 杨寅. 高光谱大气红外探测器AIRS资料质量控制研究进展[J]. 地球科学进展, 2017, 32(2): 139-150.
[13] 戴璐. 末次冰期时暴露的巽他大陆架可能被热带稀树草原覆盖吗?[J]. 地球科学进展, 2017, 32(11): 1147-1156.
[14] 张琪琳, 王占礼, 王栋栋, 刘俊娥. 黄土高原草地植被对土壤侵蚀影响研究进展[J]. 地球科学进展, 2017, 32(10): 1093-1101.
[15] 史忠林, 文安邦, 严冬春, 龙翼, 周萍. 7Be法估算土壤侵蚀速率若干问题的探讨[J]. 地球科学进展, 2016, 31(9): 885-893.
阅读次数
全文


摘要