地球科学进展 ›› 2006, Vol. 21 ›› Issue (03): 299 -304. doi: 10.11867/j.issn.1001-8166.2006.03.0299

所属专题: 青藏高原研究——青藏科考虚拟专刊

综述与评述 上一篇    下一篇

青藏高原冰雪不溶微粒研究进展
徐建中 1,3,孙俊英 1,2,任贾文 1,秦大河 1   
  1. 1.中国科学院寒区旱区环境与工程研究所冰冻圈与环境联合重点实验室,甘肃 兰州 730000;2.中国气象局中国气象科学研究院大气成分观测与服务中心,北京 100081;3.中国科学院研究生院,北京 100039
  • 收稿日期:2005-06-23 修回日期:2005-10-31 出版日期:2006-03-15
  • 通讯作者: 徐建中 E-mail:jzxu78@hotmail.com
  • 基金资助:

    中国科学院知识创新工程重大项目“我国自然环境分异耦合过程与发展趋势”(编号:KZCX2-SW-118)资助.

Advances in the Study of Insoluble Microparticle in Ice-Snow on the  Qinghai-Xizang Plateau

Xu Jianzhong 1,3,Sun Junying 1,2,Ren Jiawen 1,Qin Dahe 1   

  1. 1.Key Laboratory of Cryosphere and Environment,CAREERI,CAS, Lanzhou 730000,China;2.Center for Atmosphere Watch and Services CMA, Beijing 100081,China; 3.Graduate School, CAS, Beijing 100039, China
  • Received:2005-06-23 Revised:2005-10-31 Online:2006-03-15 Published:2006-03-15

不溶微粒是冰雪中重要的气候环境变化参数,通过冰雪中微粒记录研究气候环境变化是冰雪研究的一个重要方向。20世纪中后期对冰雪微粒的研究主要集中在南极和格陵兰,到20世纪末期时一些研究人员开始关注中纬度的冰雪微粒的研究,特别是青藏高原冰雪微粒的研究。到目前为止,共有4根冰芯(敦德冰芯、古里雅冰芯、达索普冰芯和慕士塔格冰芯)和数个雪坑开展了微粒研究。青藏高原冰雪微粒研究主要从微粒定年、微粒浓度、粒径分布、特殊事件的记录以及与可溶性离子的关系等方面进行了研究。主要回顾了从80年代末开始的青藏高原冰雪微粒研究的一些主要方法和主要成果并且展望了今后微粒重点研究的方向。

The ice impurities are fractions of the atmospheric aerosol that have been deposited on the surface of the ice sheets via wet or dry deposition. In the study of ice core stratigraphy, insoluble microparticles are one of the components of ice impurities analyzed. Changes in impurity content of the ice core strata reflect change in atmospheric conditions of past climate. During the second half of the 20th century, scientists paid more attention to microparticle study in the polar ice, however many scientists started concern on the microparticel study on the Qinghai-Xizang plateau in the last ten years of the 20th century. As of now, there have been four ice cores and many snow samples that have been studied in microparticle on the Qinghai-Xizang plateau. The study is mainly focuses on calculating time by microparticle, microparticle concentration, size distribution, abrupt event record and relationship with soluble ions. This article reviews the methodologies and results of microparticle study on the Qinghai-Xizang plateau starting from last ten years of the 20th century, and some important tasks are also proposed, including (1) the studies of mineralogy and isotopic composition; (2) deposition process and post-deposition process; (3) the role in the microorganism research of ice-snow.

中图分类号: 

[1] Thompson L G, Mosley-Thompson E, Koci B R. A 1500-year record of tropical precipitation in ice cores from the Quelccaya Ice Cap, Peru[J]. Science, 1985, 229: 971-973.

[2] de Angelis M, Barkov N I, Petrov V N. Aerosol concentrations over the last climatic cycle (160 kyr) from an Antarctic ice core[J]. Nature, 1987, 325: 318-321.

[3] Petie J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399: 429-436.

[4] Thompson L G, Mosley-Thompson E. Microparticle concentration variations linked with climatic change: Evidence from polar ice cores[J]. Science,1981, 212: 812-815.

[5] Insoluble particles in polar ice: Identification and measurement of the insoluble background aerosol[J]. Geophysical Research Letters,1994,21(6): 437-440.

[6] Jouzel J, Masson V, Cattani O, et al. A new 27 ky high resolution East Antarctic climate record[J]. Geophysical Research Letters, 2001, 28(16): 3 199-3 202.

[7] Delmonte B, Petit J R, Maggi V, et al. Glacial to Holocene implications of the new 27000-year dust record from the EPICA Dome C (East Antarctica) ice core[J]. Climate Dynamics, 2002, 18: 647-660.

[8] Hansson M. The Renland ice core, A Northern Hemispere record of aerosol composition over 12,000 years[J]. Tellus, 1994, 46B: 390-418.

[9] Zielinski Gregory A, Mayewski Paul A, Meeker L David. Volcanic aerosol records and tephrochronology of the S mmit, Greenland, ice cores[J]. Journal of Geophysical Research, 1997, 102(C12): 26 625-26 640.

[10] Ram M, Gerson Koenig. Continuous dust concentration profile of pre-Holocene ice from the Greenland Ice Sheet Project 2 ice core: Dust stadials, interstadials, and the Eemian[J]. Journal of Geophysical Research,1997,102(C12): 26 641-26 648.

[11] Biscaye P E, Grousset F E, Revel M, et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland[J]. Journal of Geophysical Research, 1997, 102(C12): 26 765-26 782.

[12] Grousset Francis E, Biscaye Pierre E, Revel Marie. Antarctic (Dome C) ice-core dust at 18 ka BP Isotopic constraints on origins[J]. Earth and Planetary Science Letters, 1992, 111(1):175-182.

[13] Xie Shucheng, Yao Tandong. Insoluble microparticles in the cores and their climatic and environmental implications[J]. Journal of Glaciology and Geocryology,1997,19(4):373-377.[谢树成,姚檀栋.冰芯不溶微粒记录极其气候和环境意义[J]. 冰川冻土,1997,19(4):373-377.]

[14] Thompson L G, Mosley-Thompson E, Davis M E, et al. 100 ka climate record from Qinghai-Tibetan plateau ice cores[J]. Science, 1989, 246(4 929): 474-477.

[15] Thompson L G, Yao T, Mosley-Thompson E. A high-resolution millennial record of the south asian monsoon from himalayan ice cores[J]. Science, 2000, 289(5 486):1 916-1 920.

[16] Wu Guangjian. Study on Microparticle in the Muztagata and Guliya Ice Core[R]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute,CAS,2004.[邬光剑. 慕士塔格和古里雅冰芯中微粒记录研究[R]. 兰州:中国科学院寒区旱区环境与工程研究所博士后研究工作报告, 2004.]

[17] Thompson L G, Yao T, Davis M E. Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core[J]. Science,1997, 276(20): 1 821-1 825.

[18] Thompson Lonnie G, Wu Xiaoling, Mosley-Thompson Ellen. Climatic records from the Dunde ice cap, China[J]. Annals of Glaciology,1988, 10: 178-182.

[19] Wake C P, Mayewski P A. Modern eolian dust deposition in central Asia[J]. Tellus,1994, 46B: 220-223.

[20] Liu Chunping. Studies on Microparticle Analysis, Climate and Environment from Dunde Ice Core, Qilian Mountain[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institule, CAS,1999.[刘纯平.祁连山敦德冰芯微粒与气候环境变化研究[D]. 兰州:中国科学院寒区旱区环境与工程研究所,1999.]

[21] Thompson L G, Mosley-Thompson E, Davis M E. Glacial stage ice-core records from the subtropical Dunde ice cap, China[J]. Annals of Glaciology,1990, 14: 288-297.

[22] Yao Tandong, Thompson L G. Environmental records in ice cores and their spatial coupling features[J]. Quaternary Sciences,1995,(1):23-31.[姚檀栋,Thompson L G.冰芯所记录的环境变化及空间耦合特征[J].第四纪研究,1995,(1):23-31.]

[23] Wu Guanjian, Yao Tandong, Thompson L G, et al. Microparticle record in the Guliya ice core and its comparison with polar records since the last interglacial[J]. Chinese Science Bulletin,2004,49(5): 475-479. [邬光剑, 姚檀栋, Thompson L G,. 末次冰期以来古里雅冰芯微粒记录与极地冰芯的对比[J].科学通报, 2004,49(5): 475-479.]

[24] Shi Yafeng, Yu Ge. Warm-humid climate and transgressions during 40/30 ka BP and their potential mechanisms[J]. Quaternary Sciences,2003,23(1):1-11. [施雅风,于革. 40/30 ka BP. 中国暖湿气候和海侵的特征与成因探讨[J]. 第四纪研究,2003,23(1):1-11.]

[25] Yao Tandong, Wu Guangjian, Pu Jianchen, et al. Relationship between calcium and atmospheric dust recorded in Guliya ice core[J]. Chinese Science Bulletin,2004, 49(9): 888-892. [姚檀栋, 邬光剑, 蒲剑辰,.古里雅冰芯中钙离子与大气粉尘变化关系[J].科学通报,2004, 49(9): 888-892.]

[26] Mayewski P A,  Meeker L D, Morrison M C, et al. Greenland ice core “Signal” Characteristics: An expanded view of climate change[J]. Journal of Geophysical Research,1993, 98(D7): 12 839-12 847.

[27] Fuhrer K E, Wolff W, Johnsen S J. Timescales for dust variability in the Greenland Ice Core Project (GRIP) ice core in the last 100 ka[J]. Journal of Geophysical Research,1999, 104(D24): 31 043-31 052.

[28] Rothlisberger R, Mulvaney R, Wolff E W, et al. Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 ka and its implications for southern high-latitude climate[J]. Geophysical Research Letter, 2002, 29(20): 1963.

[29] Ruth U. Concentration and Size Distribution of Microparticles in the NGRIP Ice Core (Central Greenland) during the Last Glacial Period[D]. University Bremen,2002.

[30] Yu Shengsong, Tang Yuan. The hydrochemical characteristics of the saline lakes on the Qinghai-Xizang plateau [J]. Oceanologia et Limnologia Sinica,1981, 12(6): 498-511.[于昇松, 唐渊. 青藏高原盐湖的水化学特征[J].海洋与湖沼, 1981, 12(6): 498-511.]

[31] Kang Shichang, Qin Dahe, Yao Tandong, et al. Environment recorder in the glacier from mount Xixiabangma [J]. Acta Geographica Sinica,2000,55(1): 55-65. [康世昌,秦大河,姚檀栋,.西夏邦马峰冰川粒雪中环境变化记录研究[J].地理学报,2000,55(1): 55-65.]

[32] Li Yuefang, Yao Tandong, Sheng Wenkun, et al. Influence of arid dust on the Chemicalrecords of the Guliya icecap[J]. Marine Geology & Quaternary Geology,1999,19(2):103-108. [李月芳,姚檀栋,盛文坤,.干旱区粉尘对古里雅冰帽中化学记录的影响[J].海洋地质与第四纪地质,1999,19(2):103-108.]

[33] Ruijrok W, Davidson C I, Nicholson K W. Dry deposition of particles[J]. Tellus,1995,47B:587-601.

[34] Arimoto R, Ray B J, Lewis N F, et al. Mass-particle size distributions of atmospheric dust and the dry deposition of dust to the remote ocean[J]. Journal of Geophysical Research,1997,102(D13):15 867-15 874.

[35] Davidson C I, Bergin M H, Kuhns H D. The deposition of particles and gases to ice sheets[C]Wolff E W, Beales R C, eds.Chemical Exchange Between the Atmosphere and Polar Snow. Berlin: Springer,1996:275-307.

[36] Xiang Shurong, Yao Tandong, An Lizhe, et al. Change of bacterialcommunity in the Malan Ice Core and its relation toclimate and environment[J]. Chinese Science Bulletin,2004,49(17): 92-98. [向述荣,姚檀栋,安黎哲,.马兰冰芯细菌菌群结构变化与气候环境的关系[J].科学通报,2004,49(17): 1 762-1 769.]

[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 魏梦美,符素华,刘宝元. 青藏高原水力侵蚀定量研究进展[J]. 地球科学进展, 2021, 36(7): 740-752.
[8] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[9] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[10] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[11] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[12] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[13] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[14] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[15] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
阅读次数
全文


摘要