地球科学进展 ›› 1999, Vol. 14 ›› Issue (4): 391 -394. doi: 10.11867/j.issn.1001-8166.1999.04.0391

所属专题: “沙尘天气追因、影响及治理”虚拟专刊

全球变化研究 上一篇    下一篇

沙尘气溶胶与气候变化
钱 云,符淙斌,王淑瑜   
  1. 中国科学院大气物理研究所全球变化东亚区域研究中心,北京 100029
  • 收稿日期:1998-08-04 修回日期:1999-02-12 出版日期:1999-08-01
  • 通讯作者: 钱云,男,1967年10月出生,副研究员,主要从事气候模式和模拟及全球变化方面的研究。

MINERAL DUST AND CLIMATE CHANGE

QIAN Yun, FU Congbin, WANG Shuyu   

  1. START Regional Center for TEA,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China
  • Received:1998-08-04 Revised:1999-02-12 Online:1999-08-01 Published:1999-08-01

沙尘气溶胶通过吸收和散射太阳辐射与长波辐射影响地球辐射收支和能量平衡,从而影响气候变化。另一方面,气候变化,土地利用、沙漠化和城市化等人类活动都可能导致大气中矿物沙尘气溶胶的改变。沙尘气溶胶在全球及区域尺度气候和环境变化中起着十分重要的作用。

Mineral dust affects the radiation and energy budget of the earth mainly by absorbing and scattering solar and terrestrial radiation, and thus affects the climate change. It is generally stated that the net radiative effect of dust corresponds to a cooling effect at the surface and a warming at the altitude of the dust layers. But the sign of the effect of the mineral aerosol on the radiative budget at the surface and at-top-of-atmosphere depends on highly variable dust parameters, primarily the concentration, mineralogical composition, size distribution and vertical distribution of the particles, and on external parameters such as the surface albedo and temperature. Meanwhile, both climate change and human activities, such as land use, desertification and metropolitanization, could lead to the change of mineral dust in the atmosphere. It is now believed that mineral dust plays an important role in the global climatic and environmental change.

中图分类号: 

〔1〕IPCC(Intergovernmental Panel on Climate Change). Radiative Forcing of Climate Change and an Evaluation of the IPCC 1992 Emission Scenarios〔M〕. Cambridge Univ Press,1994.
〔2〕Duce R A. Aerosol Forcing of Climate〔M〕. Charlson R J,Heintzenberg J, eds. New York:Wiley, 1995.
〔3〕Bergametti G. Encyclopedia of Earth System Science, Vol 1〔M〕. San Diego: Academic Press, 1992.171~182.
〔4〕Prospero J M. Particle flux in the ocean〔M〕. Ittekkot V,Schafer P, Honjo S,et aleds. New York: Wilek, 1996.
〔5〕Tegen I, Fung I. Modeling of mineral dust in the atmosphere:Sources, transport, and optical thickness〔J〕. J Geophys Res,1994, 99: 22 897~22 914.
〔6〕Joussaume S. Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model〔J〕. J Geophys Res, 1990, 95: 1 909~1 941.
〔7〕Genthon C. Simulations of desert dust and sea salt aerosols in Antarctica with a general circulation model of the atmosphere〔J〕. Tellus, 1992, 44: 371~389.
〔8〕Westphal D, Toon O B, Carlson T N. A two-dimensional numerical investigation of the dynamics and microphysics of Saharan dust storms〔J〕. J Geophys Res, 1987, 92: 3 027~3 049.
〔9〕Westphal D, Toon O B, Carlson T N. A case study of moblilization and transport of Saharan dust〔J〕. J Atmos Sci,1988, 45:2 145~2 175.
〔10〕Kayampudi, Carlson T N. Analysis and numerical simulation of the Saharan air layer and its effect on easterly wave distribution〔J〕. J Atmos Sci, 1988, 45: 3 102~3 136.
〔11〕Toon O B, Turco R P, Westphal D,et al. A multidimensional model for aerosols: Description of computational analogs〔J〕. J Atmos Sci, 1988, 45(15): 2 123~2 143.
〔12〕Uemastu M, Duce R A, Prospero R A,et al. Transport of mineral aerosol from Asia over North Pacific ocean〔J〕. J Geophys Res, 1983, 88(C9): 5 343~5 352.
〔13〕方宗义,朱福康,江吉喜,等.中国沙尘暴研究〔M〕.北京:气象出版社,1997.
〔14〕徐国昌.甘肃省“4.22”特大沙暴分析〔J〕.气象学报,1979,37(4):26~35.
〔15〕杨东贞,纪湘明,徐晓斌,等.一次黄沙天气过程的分析〔J〕.气象学报,1991,49(3):334~342.
〔16〕杨东贞,王超,温玉璞,等. 1990年春季两次沙尘暴特征分析〔J〕.应用气象学报,1995,6(1):18~26.
〔17〕盛裴轩,毛节泰.我国大气污染物远距离传输的估计:轨迹分析〔J〕.气象学报,1987,45:65~71.
〔18〕Zhou M Y, Chen Y, Huang R H,et al. Effects of two dust storms on solar radiation in the Beijing Tianjin area〔J〕. Geophys Res Lett, 1994, 21: 2 697~2 700.
〔19〕Carlson T N, Benjamin S G. Radiative heating rates for Saharan dust〔J〕. J Atmos Sci, 1980, 37: 193~213.
〔20〕Tegen I, Lacis A A, Fung I. The influence on climate forcing of mineral aerosols from disturbed soils〔J〕. Nature,1996, 380: 419~422.
〔21〕Sokolik I N, Toon O B. Direct radiative forcing by anthropogenic airborne mineral aerosols〔J〕. Nature, 1996, 381:681~683.
〔22〕Andreae M O. Future Climates of the World: A Modeling Perspective〔A〕. In: Henderson-Sellers ed.World Survey of Climatology, Vol 16, A〔Z〕. Amsterdam:Elsevier, 1995.347~398.
〔23〕Prospero J M, Nees R T. Dust concentration in the atmosphere of the equatorial North Atlantic: possible relationship to the Sahelian drought〔J〕. Science, 1977, 196: 1 196~1198.
〔24〕张德二.历史时期“雨土”现象剖析〔J〕.科学通报,1982,5:294~297.
〔25〕张德二.我国历史时期以来降尘的天气气候学初步分析〔J〕.中国科学(B),1984, 27:278~288.
〔26〕胡隐樵,光田宁.强沙尘暴微气象特征和局地触发机制〔J〕.大气科学,1997, 21(5): 581~589.

[1] 单薪蒙, 温家洪, 王军, 胡恒智. 深度不确定性下的灾害风险稳健决策方法评述[J]. 地球科学进展, 2021, 36(9): 911-921.
[2] 段伟利, 邹珊, 陈亚宁, 李稚, 方功焕. 18792015年巴尔喀什湖水位变化及其主要影响因素分析[J]. 地球科学进展, 2021, 36(9): 950-961.
[3] 王澄海, 张晟宁, 张飞民, 李课臣, 杨凯. 论全球变暖背景下中国西北地区降水增加问题[J]. 地球科学进展, 2021, 36(9): 980-989.
[4] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[5] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[6] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[7] 崔林丽, 史军, 杜华强. 植被物候的遥感提取及其影响因素研究进展[J]. 地球科学进展, 2021, 36(1): 9-16.
[8] 车雪华, 罗万银, 邵梅, 王中原. 青海共和盆地不同发育阶段风蚀坑表面气流场与形态反馈研究[J]. 地球科学进展, 2021, 36(1): 95-109.
[9] 龙上敏,刘秦玉,郑小童,程旭华,白学志,高臻. 南大洋海温长期变化研究进展[J]. 地球科学进展, 2020, 35(9): 962-977.
[10] 蔡运龙. 生态问题的社会经济检视[J]. 地球科学进展, 2020, 35(7): 742-749.
[11] 萧凌波. 17361911年华北饥荒的时空分布及其与气候、灾害、收成的关系[J]. 地球科学进展, 2020, 35(5): 478-487.
[12] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388.
[13] 武登云, 任治坤, 吕红华, 刘金瑞, 哈广浩, 张弛, 朱孟浩. 冲积扇形态与沉积特征及其动力学控制因素:进展与展望[J]. 地球科学进展, 2020, 35(4): 389-403.
[14] 胡利民,石学法,叶君,张钰莹. 北极东西伯利亚陆架沉积有机碳的源汇过程研究进展[J]. 地球科学进展, 2020, 35(10): 1073-1086.
[15] 王亚锋,芦晓明,朱海峰,梁尔源. 高山树线的调查与研究方法[J]. 地球科学进展, 2020, 35(1): 38-51.
阅读次数
全文


摘要