地球科学进展 ›› 1997, Vol. 12 ›› Issue (1): 37 -42. doi: 10.11867/j.issn.1001-8166.1997.01.0037

全球变化研究 上一篇    下一篇

天然气水合物与全球变化研究
陈汉宗,周蒂   
  1. 中国科学院南海海洋研究所 广州 510301
  • 收稿日期:1996-05-06 修回日期:1996-06-25 出版日期:1997-02-01
  • 通讯作者: 陈汉宗,男,1940年9月出生,副研究员,主要从事海洋地质与地球化学研究。

THE STUDY OF GAS HYDRATES AND ITS RELATION WITH GLOBAL CHANGES

CHEN Hanzong, ZHOU Di   

  1. South China Sea Institute of Oceanology,Chinese Academy of Sciences,Guangzhou 510301
  • Received:1996-05-06 Revised:1996-06-25 Online:1997-02-01 Published:1997-02-01

天然气水合物含碳量超过全球所有其他来源有机碳的总和,是地圈浅部的极重要碳库。自然界中温压条件的微小变化都会引起天然气水合物的形成或分解,从而吸收或释放甲烷,对全球碳循环和温室效应产生重要影响。天然气水合物对全球气候变化、冰期和间冰期的交替的反馈在极地和中低纬度不同,在中低纬度
也有两种相反的过程,因而对其总效应的方向和强度尚需详细研究和估计。我国许多海区有天然气水合物存在的条件,在南海已有报道;可通过地震剖面的重新判读及数值模拟估计天然气水合物的储藏量和它对海平面变化的反馈,以提供边缘海这类研究的范例。

Gas hydrates contains a large quantity of organic carbon which exceeds the total organic carbon from other sources. It is an important carbon reservoir in shallow geosphere. A slight variation of temperature/pressure would cause the formation/decomposition of gas hydrates,and subsequent consumption/release of methane. This exerts significant influence on global carbon cycle and greenhouse effect. The Polar regions differ from the mediate low latitudes on the feedback of gas hydrates to global climate change and galcial/interglacial alternation. Even in mediate low latitudes there exist two processes of opposite directions. The total effect of gas hydrates on global changes needs to be estimated in further researches. In China seas, there exist T P conditions suitable for the occurrence of gas hydrates. The BSR as an indication of gas hydrates has been reported in southern South China Sea. The total reserves of gas hydrates and their feedback to sea level changes in China seas may be assessed based on careful re interpretation of seismic profiles and computer simulations. This may provide an example for the marginal seas.

中图分类号: 

1 Katz D L, Cornell D, Kobayashi R, et al. Handbook of Natural Gas Engineering. New York: McGraw-Hill, 1959.802.
2 Kvenvolden K A, Cooper A K. Natural gas hydrates of the offshore circum-Pacificmargin—a future energy resource?In: Trans 4th Circum-Pacific Energy and Mineral Resources Conference (Horn M K ed.). Circum-Pacific Council for Energy and Resources, 1987.285-297.
3 Kvenvolden K A. Gas hydrates-geological perspective and global change. Rev Geophys,1993,31(2) : 173-187.
4 Collett T S. Potential of gas hydrates outlined. Oil Gas J, 1992, 78(1), 124-130.
5 Kvenvolden K A, Ginsburg G D, Solovyev V A. Worldwide distribution of subaquatic gas hydrates. Geo Mar Lett,1993, 13: 32-40.
6 Potential Gas Committee. Potential supply of natural gas in the United States(as of December 31, 1980). Potential Gas Agency, Colorado School of Mines, Golden, 1981.119.
7 Kvenvolden K A. Methane hydrates—a major reservoir of carbon in shallow geosphere.Chem Geol, 1988, 71: 41-51.
8 McDonald I R, Guinasso JR N L, Brooks J M, et al. Seafloor gas-hydrates: a video documenting oceanographic in fluences on their formation and dissolution(abstr). AAPG Bull, 1995, 79(6): 910.
9 Lashof D A, Ahuja R.Relative contributions of greenhouse gas emissions to global warming.Nature, 1990, 344(5):529-531.
10 Haq B U. Deep-sea response to eustatic chang and significance of gas hydrates forcontinental margin stratigraphy.Spec Publs Int Ass Sed 1993,18: 93-106.
11 Paull C K, UsslerⅢW, Dillon P D. Is the extent of glaciation limited by marinegas-hydrates?. Geophys Res Lett,1991, 18: 432-434.
12 Nisbet E G. The end of ice age. Can J Earth Sci, 1990, 27: 148-157.
13 Dillon W P, Paull C K. Marine gas hydrates II: geophysical evidence. In: Cox L L ed. Natural GasHydrates, Properties, Occurrence, Recovery . Butterworth, Woburn, MA, 1983.73-90.
14 Berner U, Faber E. Hydrocarbon gases in surface sediments of the South China Sea.In: Jin et al eds. Marine Geology and Geophysics of the South China Sea. China Ocean Press,1990.199-211.
15 Yamano M S, Uyeda Y A, Shipley T H.Estimates of heat flow derived from gas hydrates.Geology, 1982, 10: 339-343.

[1] 张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展[J]. 地球科学进展, 2021, 36(3): 276-287.
[2] 李旭明,李来峰,王浩贤,王野,陈旸. 土壤中次生与碎屑组分的差异性剥蚀[J]. 地球科学进展, 2020, 35(8): 826-838.
[3] 温学发,张心昱,魏杰,吕斯丹,王静,陈昌华,宋贤威,王晶苑,戴晓琴. 地球关键带视角理解生态系统碳生物地球化学过程与机制[J]. 地球科学进展, 2019, 34(5): 471-479.
[4] 吴泽燕,章程,蒋忠诚,罗为群,曾发明. 岩溶关键带及其碳循环研究进展[J]. 地球科学进展, 2019, 34(5): 488-498.
[5] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[6] 曲建升, 肖仙桃, 曾静静. 国际气候变化科学百年研究态势分析 *[J]. 地球科学进展, 2018, 33(11): 1193-1202.
[7] 汪品先. 巽他陆架——淹没的亚马逊河盆地?[J]. 地球科学进展, 2017, 32(11): 1119-1125.
[8] 贾国东. 冰期出露的巽他陆架:重要的陆地碳储库?[J]. 地球科学进展, 2017, 32(11): 1157-1162.
[9] 聂红涛, 王蕊, 赵伟, 罗晓凡, 祁第, 鹿有余, 张远辉, 魏皓. 北冰洋太平洋扇区碳循环变化机制研究面临的关键科学问题与挑战[J]. 地球科学进展, 2017, 32(10): 1084-1092.
[10] 肖红平, 林畅松, 彭涌, 魏伟, 张金华, 张巧珍. 天然气水合物油气系统概念内涵及实例分析[J]. 地球科学进展, 2017, 32(1): 21-33.
[11] 史培军, 王爱慧, 孙福宝, 李宁, 叶涛, 徐伟, 王静爱, 杨建平, 周洪建. 全球变化人口与经济系统风险形成机制及评估研究[J]. 地球科学进展, 2016, 31(8): 775-781.
[12] 焦念志, 李超, 王晓雪. 海洋碳汇对气候变化的响应与反馈[J]. 地球科学进展, 2016, 31(7): 668-681.
[13] 夏少红, 曹敬贺, 万奎元, 范朝焰, 孙金龙. OBS广角地震探测在海洋沉积盆地研究中的作用[J]. 地球科学进展, 2016, 31(11): 1111-1124.
[14] 赵彬, 姚鹏, 于志刚. 有机碳—氧化铁结合对海洋环境中沉积有机碳保存的影响[J]. 地球科学进展, 2016, 31(11): 1151-1158.
[15] 吴金水, 葛体达, 祝贞科. 稻田土壤碳循环关键微生物过程的计量学调控机制探讨[J]. 地球科学进展, 2015, 30(9): 1006-1017.
阅读次数
全文


摘要