地球科学进展 ›› 2006, Vol. 21 ›› Issue (8): 781 -792. doi: 10.11867/j.issn.1001-8166.2006.08.0781

所属专题: IODP研究

IODP研究 上一篇    下一篇

中更新世气候转型时期南海生态环境的南北差异
李前裕 1,2,汪品先 1,陈木宏 3,郑范 3,王汝建 1,孙湘君 1,刘传联 1,成鑫荣 1,翦知湣 1   
  1. 1.同济大学海洋地质国家重点实验室,上海 200092; 2. 阿德莱得大学地球与环境科学学院,澳大利亚 SA5005; 3.中国科学院南海海洋研究所,广东 广州 510301
  • 收稿日期:2006-03-03 修回日期:2006-03-29 出版日期:2006-08-15
  • 通讯作者: 李前裕 E-mail:qli01@mail.tongji.edu.cn 或qianyu.li@adelaide.edu.au
  • 基金资助:

    国家自然科学基金项目“晚中新世西太平洋暖池阶段性形成的古海洋特征”(编号:40576031);“南海深海测井记录中的气候周期和事件”(编号:40476030);“热带边缘海放射虫的沉积分布规律及典型生态特征”(编号:40476024);科技基础性工作和社会公益研究专项“中国综合大洋钻探计划预研究”(编号:2003DIB3J114)资助.

Paleoecological-Environmental Contrasts between the Southern and Northern South China Sea during Mid-Pleistocene Climate Transition 

Li Qianyu 1,2,Wang Pinxian 1,Chen Muhong 3,Zheng Fan 3,Wang Rujian 1,Sun Xiangjun 1,Liu Chuanlian 1,Cheng Xinrong 1,Jian Zhimin 1   

  1. 1. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China;2. School of Earth and Environmental Sciences, The University of Adelaide, SA 5005, Australia;3. South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
  • Received:2006-03-03 Revised:2006-03-29 Online:2006-08-15 Published:2006-08-15

中更新世气候转型在南海浮游有孔虫、氧同位素和其它生物记录上主要反映在900 ka BP前后发生高频率变化,特别是指示表层水骤然降温。北部冬季表层水温从24~25℃降至17~28℃,而南部也从26~27℃降至23~24℃。总的降温趋势与开放西太平洋一致,直接反映了西太平洋暖池在900 ka BP之后MIS22期间有明显的减弱。表层水大幅度降温还发生在后继的MIS 20、18、16几大冰期,说明主要冰期旋回周期由41 ka转变为100 ka经历了长达400 ka的过渡时期,并且冬季风增强也在过渡时期的后半段最明显。南海南北生物组合和δ18O值的差异,突出了中更新世气候转型期边缘海区南北气候梯度反差和冬季风在冰期增强的讯号。结论是:生态环境系统反应总体表现与冰期旋回一致的同时,还包含了独特的地区性系统演变特征。但是,南海—西太平洋地区在0.9 Ma BP前后表层海水盐度因东亚冬季风和海平面下降的定量变化,以及这些变化对气候转型时期海—气耦合过程和生态环境系统的影响,尚缺乏足够的资料和证据。

Paleoecological responses to mid-Pleistocene climate transition at about 900 ka in the south China sea (SCS) were mainly reflected by high-frequency fluctuations in planktonic foraminifer, isotopic, and other biological-environmental records that indicated a sudden decrease in sea surface temperature. Winter SST declined from 24~25℃ to 17~28℃ in the northern SCS and from 26~27℃ to 23~24℃ in the southern SCS. In parallel to the general trend in the open western Pacific, these results indicated considerable weakening of the Western Pacific Warm Pool at ~900 ka, during MIS22. Large-scale SST decreases also occurred during the subsequent glacial periods MIS 20, 18, and 16, indicating a transitional period of up to 400 ka during the transition of dominant glacial cyclicities from 41 ka to 100 ka. It was not until the later part of this transition did the winter monsoon become significantly strengthened. Paleobiological and isotopic differences between the northern and southern SCS enhanced the signals of N-S climate gradient contrasts and strengthening of winter monsoons during glacial periods in this marginal sea. Therefore, responses of the paleoecological-environmental system to mid-Pleistocene climate transition included not only parallel changes with glacial cycles but also some unique regional characteristics. However, changes in sea surface salinity at and since ~900 ka in responding to monsoon variability and low sea level, as well their impact on sea-air interaction and the evolution of paleoecological-environmental system in the SCS-western Pacific region, remain unclear.

中图分类号: 

[1] Prell W L. Oxygen and carbon isotope stratigraphy of the Quaternary of Hole 502B: Evidence for two modes of isotopic variability [J]. Initial Reports of the DSDP, 1982, 68: 455-464.

[2] Berger W H, Bickert T, Jansen E, et al. The central mystery of the Quaternary Ice Age [J]. Oceanus, 1993, 36: 53-56.

[3] Shackleton N J. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity [J]. Science, 2000, 289: 1 897-1 902.

[4] Wang Pinxian, Tian Jun, Cheng Xinrong. Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea[J]. Science in China (Series D), 2001, 44: 926-933. [汪品先,田军,成鑫荣.第四纪冰期旋回转型在南沙深海的记录[J]. 中国科学:D,2001,31(10):793-799.]

[5] De Garidel-Thoron T, Rosenthal Y, Bassinot F, et al. Stable sea surface temperatures in the western Pacific warm pool over the past 1.75 million years [J]. Nature, 2005, 433:294-298.

[6] Wang P, Prell W L, Blum P, et al. Proceedings of the Ocean Drilling Program, Initial Reports 184 [M]. College Station, TX: Ocean Drilling Program, 2000.

[7] Wang Pinxian, Zhao Quanhong, Jian Zhimin, et al. Thirty million year deep-sea records in the South China Sea[J]. Chinese Science Bulletin, 2003,48(23):2 524-2 535.[汪品先, 赵泉鸿, 翦知湣, .南海三千万年的深海记录[J].科学通报,2003,48:2 206-2 215.]

[8] Tian J, Wang P, Cheng X. Development of the East Asian monsoon and North Hemisphere glaciation: Oxygen isotope records from the South China Sea[J]. Quaternary Science Review,2004,23:2 007-2 016.

[9] Tian J, Wang P, Cheng X. Responses of foraminiferal isotopic variations at ODP Site 1143 in the southern south China sea to orbital forcing[J]. Science in China (Series D), 2004, 47: 943-953.

[10] Xu Jian. Quaternary planktonic foraminiferal assemblages in the southern South China Sea and Paleoclimatic variations[D]. Shanghai:Tongji University, 2004. [徐建. 南海南部第四纪浮游有孔虫群与古气候变化[D].上海:同济大学,2004.]

[11] Liu Chuanlian, Cheng Xinrong. Exploring variations in upper ocean structure for the last 2 Ma of the Nansha area by means of calcareous nannofossils[J]. Science in China(Series D), 2001, 44: 905-911. [刘传联,成鑫荣.从超微化石看南沙海区近2 Ma海水上层结构的变化[J].中国科学:D,2001,31: 834-839.]

[12] Yang Lihong, Chen Muhong, Wang Rujian, et al. Radiolarian record to paleoecological environment change events over the past 1.2 MaBP in the southern South China Sea [J]. Chinese Science Bulletin,2002,47:1 478-1 483.[杨丽红,陈木宏,王汝建,. 南海南部1.2 Ma BP以来古生态环境变化事件的放射虫记录[J].科学通报,2002,47:1 098-1 102.]

[13] Bühring C, Sarnthein M, Erlenkeuser H. Toward a high-resolution stable isotope stratigraphy of the last 1.1 million years: Site 1144, South China Sea[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2004, 184:1-29.

[14] Sun X, Luo Y, Huang F, et al. Deep-sea pollen from the South China Sea: Pleistocene indicators of east Asian monsoon[J]. Marine Geology, 2003, 201: 97-118.

[15] Zheng F, Li Q, Tu X, et al. A millennial scale planktonic foraminiferal record of mid-Pleistocene climate transition in the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2005, 223: 349-363.

[16] Clemens S C, Prell W L. Oxygen and carbon isotopes from Site 1146, northern South China Sea [J]. Proceedings of the Ocean Drilling Program, Scientific Results, 2003, 184:1-8.

[17] Huang Baoqi, Li Baohua, Jian Zhimin. Comparison of variations in upper water temperatures between the northern and southern South China Sea since 1.5 MaBP[J]. Marine Geology & Quaternary Geology, 2004, 24: 79-83. [黄宝琦, 李保华, 翦知湣. 1.5 Ma以来南海南北上部水体温度变化对比[J]. 海洋地质与第四纪地质, 2004, 24:79-83.]

[18] Thompson P R. Planktonic foraminifera in the West North Pacific during the past 150,000 years: Comparison of modern and fossil assemblages[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1981, 35: 241-279.

[19] Jian Z, Wang P, Chen M, et al. Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea [J]. Paleoceanography, 2000, 15: 229-243.

[20] Shyu J-P, Chen M-B, Shieh Y-T, et al. A Pleistocene paleoceanographic record from the north slope of the Spratly Islands, southern South China Sea[J]. Marine Micropaleontology, 2001, 42: 61-93.

[21] Wang R, Abelmann A. Radiolarian responses to paleoceanographic events of the southern South China Sea during the Pleistocene [J]. Marine Micropaleontology, 2002, 46: 25-44.

[22] Berger W H, Bickert T, Schmidt H, et al. Quaternary oxygen isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau[J]. Proceedings of the Ocean Drilling Program, Scientific Results, 1993, 130: 381-395.

[23] Cheng X, Huang B, Jian Z, et al. Foraminiferal isotopic evidence for monsoonal activity in the South China Sea: A present-LGM comparison [J]. Marine Micropaleontology, 2005, 54: 125-139.

[24] Xu J, Wang P, Huang B, et al. Response of planktonic foraminifera to glacial cycles: Mid-Pleistocene change in the southern South China Sea[J]. Marine Micropaleontology,2005, 54: 89-105.

[25] Zheng Fan, Li Qianyu, Chen Muhong, et al. Late Pleistocene paleoceanographic characteristics of the southern South China Sea since 500 ka[J]. Earth Science—Journal of University of China Geosciences, 2005, 30: 534-542. [郑范,李前裕,陈木宏,.南海西南部晚更新世500ka以来的古海洋学特征[J]. 地球科学——中国地质大学学报,2005, 30: 534-542. ]

[26] Wang L, Sarnthein M, Erlenkeuser H, et al. East Asian monsoon climate during the late Pleistocene: High-resolution sediment records from the South China Sea[J]. Marine Geology, 1999, 156: 245-284.

[27] Pflaumann U, Jian Z. Modern distribution patterns of planktonic foraminifera in the South China Sea and western Pacific: A new transfer technique to estimate regional sea-surface temperatures[J]. Marine Geology,1999, 156: 41-83.

[28] Li B, Wang J, Huang B, et al. South China Sea surface water evolution over the last 12 Myr: A south-north comparison from Ocean Drilling Program Sites 1143 and 1146[J]. Paleoceanography,2004,19:PA1009, doi:10.1029/2003PA000906.

[29] Ruddiman W F, Raymo M E, Martinson D G. Pleistocene evolution: Northern hemisphere ice sheet and North Atlantic Ocean [J]. Paleoceanography,1989, 4: 353-412.

[30] Schmieder F, von Dobeneck T, Bleil U. The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: Initiation, interimstate and terminal event[J]. Earth and Planetary Science Letters, 2000, 179: 539-549.

[31] Gong S Y, Mii H S, Wei K Y, et al. Dry climate near the western Pacific Warm Pool: Pleistocene caliches of the Nansha Islands, south China sea[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 226: 205-213.

[32] Raymo M E, Oppo D W, Flower B P, et al. Stability of North Atlantic water masses in face of pronounced climate variability during the Pleistocene [J]. Paleoceanography,2004,19: PA2008, doi:10.1029/2003PA000921.

[33] Shackleton N J, Berger A, Peltier W R. An alternative calibration of the lower Pleistocene timescale based on ODP Site 677[J]. Transactions of the Royal Society of Edinburgh Earth Science,1990,81:251-261.

[34] Rutherford S, D'Hondt S. Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles[J]. Nature,2000,408: 72-75.

[35] Raymo M E, Oppo D W, Curry W. The mid-Pleistocene climate transition: A deep sea carbon isotopic perspective[J]. Paleoceanography,1997,12: 546-559.

[36] Wang P, Tian J, Cheng X, et al. Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event [J]. Geology,2003, 31:239-242.

[1] 姜继兰,刘屹岷,李建平,张人禾. 印度洋偶极子研究进展回顾[J]. 地球科学进展, 2021, 36(6): 579-591.
[2] 张子洋, 闫明, MULVANEY Robert, 季峻峰, 效存德, 刘雷保, 安春雷. 东南极 LGB69冰芯 17122001年气温变化记录的初步研究[J]. 地球科学进展, 2021, 36(2): 172-184.
[3] 梁承弘, 鹿化煜. 风成沉积物叶蜡氢同位素在揭示东亚季风区干湿变化中的原理及应用[J]. 地球科学进展, 2021, 36(1): 45-57.
[4] 张晓辉,彭亚兰,黄根华. 南海碳源汇的区域与季节变化特征及控制因素研究进展[J]. 地球科学进展, 2020, 35(6): 581-593.
[5] 王冰笛, 李清泉, 沈新勇, 董李丽, 汪方, 王涛, 梁信忠. 区域气候模式 CWRF对东亚冬季风气候特征的模拟[J]. 地球科学进展, 2020, 35(3): 319-330.
[6] 张成晨,许长海,何敏,高顺莉. 东海到南海晚中生代岩浆弧及陆缘汇聚体制综述[J]. 地球科学进展, 2019, 34(9): 950-961.
[7] 蒋诗威,周鑫. 中国东南地区中世纪暖期和小冰期夏季风降水研究进展[J]. 地球科学进展, 2019, 34(7): 697-705.
[8] 汪品先. 深水珊瑚林[J]. 地球科学进展, 2019, 34(12): 1222-1233.
[9] 黄恩清,孔乐,田军. 冷水珊瑚测年与大洋中—深层水碳储库[J]. 地球科学进展, 2019, 34(12): 1243-1251.
[10] 李岩瑛,蔡英,张春燕,曾婷,杨吉萍. 西北东部季风过渡区夹卷率与夏季风的动力学关系[J]. 地球科学进展, 2019, 34(12): 1316-1327.
[11] 王萌,张艳伟,刘志飞,吴家望. 南海北部中尺度涡的时空分布特征:基于卫星高度计资料的统计分析[J]. 地球科学进展, 2019, 34(10): 1069-1080.
[12] 宗秀兰, 宋友桂, 李越. 蚯蚓方解石颗粒——一种新的古气候信息记录载体[J]. 地球科学进展, 2018, 33(9): 983-993.
[13] 丁之勇, 鲁瑞洁, 刘畅, 段晨曦. 环青海湖地区气候变化特征及其季风环流因素[J]. 地球科学进展, 2018, 33(3): 281-293.
[14] 谷洪彪, 迟宝明, 王贺, 张耀文, 王明远. 柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据[J]. 地球科学进展, 2017, 32(8): 789-799.
[15] 刘轶男, 孙凤霞, 崔月菊, 盘晓东, 马铭志, 张昕, 杜建国. 吉林省松原地区地震监测台站水化学特征[J]. 地球科学进展, 2017, 32(8): 810-817.
阅读次数
全文


摘要