Please wait a minute...
img img
高级检索
地球科学进展  2005, Vol. 20 Issue (3): 275-271    DOI: 10.11867/j.issn.1001-8166.2005.03.0275
学术论文     
冻土地区风的作用分析——以青藏铁路沿线多年冻土为例
陈继,程国栋,吴青柏,牛富俊,胡泽勇
中国科学院寒区旱区环境与工程研究所冻土工程国家重点实验室,甘肃 兰州 730000
WIND’S COOLING EFFECT ON FROZEN SOIL—FOR EXAMPLE OF QINGHAI-TIBET RAILWAY
CHEN Ji; CHENG Guodong; NIU Fujun; HU Zeyong
State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environment and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(459 KB)  
摘要:

在广大的冻土地区,尤其是常年多风的冻土地区,空气与地面之间的热交换不仅仅表现为传导、自然对流和辐射。在风的作用下,地表上部空气的强制对流和表土层中的水分蒸发大大增强,对冻土层的热状况产生重要的影响。对于像青藏高原这样的冻土地区而言,地面上1.5 m处空气的年平均温度要比下附面层底的年平均温度低3~3.5℃以上;同时,对于表土层潮湿的冻土地区而言,水分的蒸发也将会带走土体中的大量热量。从冻土地区风作用的概念——冻土地区的风降低地表温度、促进下伏冻土发育的作用出发,分析了影响冻土地区风降温作用的诸多因素,给出在强风、表土含水量大的条件下,风作用表现得非常显著的结论。然后,通过对比、分析青藏铁路北麓河试验段的2个工程实例,验证了风的作用对冻土温度状况的重要影响。最后,给出了风作用在冻土地区若干基础工程实践中直接或间接的应用,以及利用风的降温作用来保护冻土的工程措施的使用条件和局限性。

关键词: 冻土风作用感热潜热    
Abstract:

In wide cold regions, especially frozen soil area with frequent wind, thermal exchange mode between Earth's surface and air does not consist of thermal conduction, natural convection and radiation. Under the action of wind, forced convection of air above ground and water evaporation of top soil layer will be greatly enhanced. They will have important effect on the ground temperature regime. Taking example of frozen soil area in Qinghai-Tibet Plateau, annual average air temperature of 1.5m above Earth’s surface is 2.5℃, lower than that of earth’s surface. At the same time, water evaporation brings away a lot of heat stored in moist top soil layer. At first, this paper focused on the concept of wind's cooling effect[WTBZ], which suggests that wind in frozen soil area can lower the temperature of earth surface and accelerate the growth of frozen soil. Many factors that affect wind's cooling effect were also analyzed briefly. Then, through comparison and analysis between the two engineering examples in the Beiluhe testing site of Qinghai-Tibet Railway, it was proved that wind has significant effect on the thermal status. Finally, this paper presented its direct and indirect application to engineering practice in cold regions, its applicability and limitation in the aspect of protecting permafrost. 

Key words: Frozen soil    Wind's cooling effect    Sensible heat    Latent heat.
收稿日期: 2004-03-26 出版日期: 2005-03-25
:  P642  
基金资助:

中国科学院知识创新工程重大项目“青藏铁路工程与多年冻土相互作用及其环境效应”(编号:KZCX1-SW-04)资助.

通讯作者: 陈继     E-mail: chenji@lzb.ac.cn
作者简介: 陈继(1977-),男,河南永城人,助理研究员,博士研究生,主要从事寒区工程研究. E-mail:chenji@lzb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈继
胡泽勇
程国栋
牛富俊
吴青柏

引用本文:

陈继;程国栋;吴青柏;牛富俊;胡泽勇. 冻土地区风的作用分析——以青藏铁路沿线多年冻土为例[J]. 地球科学进展, 2005, 20(3): 275-271.

CHEN Ji;CHENG Guodong;NIU Fujun;HU Zeyong. WIND’S COOLING EFFECT ON FROZEN SOIL—FOR EXAMPLE OF QINGHAI-TIBET RAILWAY. Advances in Earth Science, 2005, 20(3): 275-271.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2005.03.0275        http://www.adearth.ac.cn/CN/Y2005/V20/I3/275

[1]Hu Yinqiao. Meteorology of boundary layer[J]. Advances in Earth Science, 1991,6(6):57-59.[胡隐樵.边界层气象学[J].地球科学进展,1991, 6(6):57-59.][2]Zhang Qiang, Hu Yinqiao. Advance of boundary layer physics and problems that it faces[J]. Advances in Earth Science, 2001,16(4):526-532.[张强, 胡隐樵. 大气边界层物理学的研究进展和面临的科学问题[J]. 地球科学进展,2001, 16(4):526-532.]
[3]Zeng Qunzhu, Kou Youguan, Xie Weirong, et al. Study on the radiation balance in Qinghai-Tibet Plateau[J]. Paper collection of Glaciology and Geocryology Institute of CAS,1982, 3:3-51.[曾群柱, 寇有观, 谢维荣,等. 青藏高原辐射平衡研究[J]. 中国科学院兰州冰川冻土所集刊, 1982, 3: 3-51. ]
[4]Wu Ziwang, Cheng Guodong, Zhu Linnan, et al. Roadbed Engineering for Permafrost[M]. Lanzhou: Publishing House of Lanzhou University, 1988.57-60.[吴紫汪, 程国栋, 朱林楠, 等. 冻土路基工程[M]. 兰州:兰州大学出版社, 1988. 57-60.]
[5]Zhu Linnan. Study on attached surface with different land cover in Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 1988, 10(1):35-39.[朱林楠. 高原冻土区不同下垫面的附面层研究[J]. 冰川冻土, 1988, 10(1): 35-39.]
[6]Zhou Youwu, Qiu Guoqing, Cheng Guodong, et al. Frozen Soil in China[M]. Beijing: Science Press, 2000.9-36.[周幼吾, 邱国庆, 程国栋, 等. 中国冻土[M]. 北京:科学出版社, 2000. 9-36.]
[7]Wu Ziwang, Lai Yuanming,Zang Enmu,et al. Tunnel Engineering in Cold Regions[M]. Beijing: Ocean Press, 2003.[吴紫汪, 赖远明, 臧恩穆,等. 寒区隧道工程[M]. 北京:海洋出版社,2003.]
[8]Wartena L  , van J H, Boxel  D  Veenhuysen. Macroclimate, microclimate and dune formation along the West European coast[J]. Landscape Ecology, 1991, 6(1): 15-27.
[9]Wang Zhonglong, Xie Weirong. Study on the evaporation of grassland in the east part of Qilian Mountain[J]. Paper collection of Glaciology and Geocryology Institute of CAS,1982, 3:77-81.[王中隆, 谢维荣. 祁连山东部山地草甸蒸发的研究[J]. 中国科学院兰州冰川冻土所集刊, 1982, 3: 77-81.]
[10]Cone V M. Hydraulic laboratory for irrigation investigations, Fort Collins[J]. Colombia Engineering News,1913, 70:662-665. 
[11]Meyer  A F. Computing run-off from rainfall and other physical data[J]. American Society of Civil Engineering Transactions,1915, 79:1 056-1 224.
[12]Jones R, Smith C C, Lf G. Measurement and Analysis of evaporation from an Inactive Outdoor Swimming Pool[A].In: Proceedings of the 1993 Annual Conference of the American Solar Energy Society[C]. Washington DC : American Solar Energy Society,1993.399.
[13]Himus  G W ,  Hinchley J W. The effect of a current of air on the rate of evaporation of water below the boiling point[J]. Chemistry and Industry, 1924, 43:840.
[14]Lurie  M, Michailoff N. Evaporation from free water surfaces[J]. Industrial and Engineering Chemistry, 1936, 28(3):345.
[15]Jia Yubin, Yuan Yuxin, Pei Baohua, et al. Improvement of ecology in farm field after adopting poplar-crop intercrop[J]. Science of Woods, 1999, 35(1):54-65.[贾玉彬,袁玉欣,裴保华,等. 杨农间作对农田生态环境的改善[J]. 林业科学, 1999, 35(1): 54-65.]
[16]Charles C Smith, George L f, Randy Jones. Measurement and analysis of evaporation from an inactive qutdoor swimming pool[J]. Solar Energy, 1994, 53(1):3-7.
[17]Cheng Guodong. Investigation on the belt regularity of high altitude frozen soil distribution in China[J]. Geography Journal, 1984, 39(2):185-193.[程国栋. 我国高海拔多年冻土地带性规律之探讨[J]. 地理学报, 1984, 39(2):185-193.]
[18]Meinders E R, Meer T H van der, Hanjalic K. Local convective heat transfer from an array of wall-mounted cubes[J].International Journal of Heat and Mass Transfer, 1998, 41 ( 2):335-346.
[19]Yershov E D. General Geocryology[M]. British: Cambridge University Press, 1998. 525-549.
[20]Ma Wei, Cheng Guodong, Wu Qingbai. Study on the methods of active cooling foundation in permafrost area[J]. Journal of Glaciology and Geocryology, 2002,24(5):579-587.[马巍, 程国栋, 吴青柏. 多年冻土地区主动冷却地基方法研究[J]. 冰川冻土, 2002, 24(5): 579-587.]
[21]Feldman K T.The heat pipe[J]. Mechanical Engineering, 1967, 89:30-31.
[22]Dun P, Reay D A. Heat Pipe[M]. New York: Pergamon Press, 1967. 87-99.

[1] 马巍, 穆彦虎, 谢胜波, 毛云程, 陈敦. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效应[J]. 地球科学进展, 2017, 32(5): 459-464.
[2] 程根伟, 范继辉, 彭立. 高原山地土壤冻融对径流形成的影响研究进展[J]. 地球科学进展, 2017, 32(10): 1020-1029.
[3] 曹斌, 张廷军, 彭小清, 郑雷, 牟翠翠, 王庆峰. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015, 30(3): 357-366.
[4] 夏利江, 周国庆, 刘宇翼, 王涛, 阴琪翔. 青藏铁路旱桥桥面遮阳对桥下及周边冻土太阳辐射影响[J]. 地球科学进展, 2014, 29(3): 380-387.
[5] 牛富俊,董晟,林战举,鲁嘉濠,罗京. 青藏公路沿线热喀斯特湖分布特征及其热效应研究[J]. 地球科学进展, 2013, 28(6): 695-702.
[6] 彭小清,张廷军,潘小多,王庆峰,钟歆钥,王康,牟翠翠. 祁连山区黑河流域季节冻土时空变化研究[J]. 地球科学进展, 2013, 28(4): 497-508.
[7] 王康, 张廷军. 中国1956—2006年地表土壤冻结天数时空分布及其变化特征[J]. 地球科学进展, 2013, 28(11): 1269-1275.
[8] 马巍,牛富俊,穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191.
[9] 阳勇, 陈仁升. 冻土水文研究进展[J]. 地球科学进展, 2011, 26(7): 711-723.
[10] 叶黎明,罗鹏,杨克红. 天然气水合物气候效应研究进展[J]. 地球科学进展, 2011, 26(5): 565-574.
[11] 田苗,王鹏新,孙威. 基于地表温度与植被指数特征空间反演地表参数的研究进展[J]. 地球科学进展, 2010, 25(7): 698-705.
[12] 施生锦,黄彬香,刘绍民,杨燕,黄勇彬,徐自为. 大尺度水热通量观测系统的研制[J]. 地球科学进展, 2010, 25(11): 1128-1138.
[13] 王维真,徐自为,李新,王介民,张智慧. 大孔径闪烁仪在黑河流域的应用分析研究[J]. 地球科学进展, 2010, 25(11): 1208-1216.
[14] 艾力·买买提明,何清,霍文,刘新春. 塔克拉玛干沙漠腹地LAS和EC观测感热通量对比分析[J]. 地球科学进展, 2010, 25(11): 1228-1236.
[15] 张廷军,晋锐,高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展, 2009, 24(9): 963-972.