地球科学进展 ›› 2021, Vol. 36 ›› Issue (7): 740 -752. doi: 10.11867/j.issn.1001-8166.2021.072

青藏高原综合科学考察研究 上一篇    下一篇

青藏高原水力侵蚀定量研究进展
魏梦美( ),符素华,刘宝元( )   
  1. 北京师范大学地理科学学部,北京 100875
  • 收稿日期:2021-01-19 修回日期:2021-06-02 出版日期:2021-07-10
  • 通讯作者: 刘宝元 E-mail:1164052581@qq.com;baoyuan@bnu.edu.cn
  • 基金资助:
    第二次青藏高原综合科学考察研究项目“土壤水蚀与土壤质量变化 ”(2019QZKK0306)

Quantitative Research of Water Erosion on the Qinghai-Tibet Plateau

Mengmei WEI( ),Suhua FU,Baoyuan LIU( )   

  1. Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China
  • Received:2021-01-19 Revised:2021-06-02 Online:2021-07-10 Published:2021-08-20
  • Contact: Baoyuan LIU E-mail:1164052581@qq.com;baoyuan@bnu.edu.cn
  • About author:WEI Mengmei (1997-), female, Jining City, Shandong Province, Master student. Research areas include soil erosion and conservation. E-mail: 1164052581@qq.com
  • Supported by:
    the Second Comprehensive Scientific Research Project Investigation of the Qinghai-Tibet Plateau "Soil erosion and soil quality change"(2019QZKK0306)

青藏高原生态环境脆弱,土壤侵蚀是严重的生态问题。定量监测和评价水力侵蚀是生态建设和水土保持规划的基础。为系统掌握青藏高原水力侵蚀定量研究现状,在查阅大量文献资料的基础上,系统整理了81篇相关文献。发现青藏高原定量评价方法包括基于坡面侵蚀模型、137Cs核素示踪法、径流小区和水文站观测3种类型,但总的来说研究明显不够。坡面侵蚀模型主要有美国修正通用土壤流失方程和中国土壤流失方程2种。基于修正通用土壤流失方程、中国土壤流失方程、137Cs核素示踪法、径流小区监测和水文站观测小流域得到的青藏高原土壤侵蚀模数分别为大于30、1~8、小于10、0~109和2~3 t/(hm2?a)。经过分析发现,青藏高原土壤侵蚀定量研究存在4个方面的问题:模型计算中参数的选择存在问题,137Cs核素示踪法方面背景值不确定性太大,径流小区和小流域监测资料奇缺,没有全区评价结果。今后需要加强小区小流域自动化监测、137Cs背景值采样测试和综合评判以及137Cs核素示踪法土壤侵蚀测定。在这两项定量测定的基础上对全青藏高原土壤侵蚀进行定量评价,为水土保持规划和生态文明建设服务。

Soil erosion is a serious ecological problem on the fragile ecological environment of the Qinghai-Tibet Plateau. Quantitative monitoring and evaluation of hydraulic erosion is the basis for ecological construction and soil and water conservation planning. In order to systematically grasp the current status of quantitative research on hydraulic erosion on the Qinghai-Tibet Plateau, 81 relevant papers were systematically collated on the basis of an extensive literature review. It was found that the quantitative evaluation methods on the Qinghai-Tibet Plateau include three types based on slope erosion models, 137Cs nuclide tracing method, runoff plots and hydrological station observations, but in general the research is seriously and obviously insufficient. The two main types of slope erosion models are the Revised Universal Soil Loss Equation (RUSLE) and the Chinese Soil Loss Equation (CSLE). The soil loss of the Qinghai-Tibet Plateau is >30, 1~8, <10, 0~109, and 2~3 t/(hm2?a) based on the RUSLE model, CSLE model, 137Cs nuclide tracing method, runoff plots monitoring, and hydrological station observation of small watersheds, respectively. After analyzing the quantitative study of soil erosion on the Qinghai-Tibet Plateau, we find that there are four problems: there are problems in the selection of parameters in the model calculation; the reference value of the 137Cs nuclide tracer method is too uncertain; the monitoring data of runoff plots and small watersheds is extremely lacking; no regional evaluation results. In the future, it is necessary to strengthen the automated monitoring of small watersheds in the community, the 137Cs reference value sampling test and comprehensive evaluation, and the 137Cs nuclide tracer method for soil erosion determination. Based on these two quantitative determinations, the soil erosion of the entire Qinghai-Tibet Plateau is quantitatively evaluated, serving the planning of water and soil conservation and the construction of ecological civilization.

中图分类号: 

图1 19922019年青藏高原土壤侵蚀/土地退化相关文献数量
Fig. 1 The number of references related to soil erosion/land degradation in the Qinghai-Tibet Plateau from 1992 to 2019
表1 青藏高原 R因子研究成果
Table 1 Research results of R factor in Qinghai-Tibet Plateau
计算方法 研究区范围 计算公式 R值(年平均及范围) 数据来源 参考 文献
基于年降雨量简易算法 青藏高原东北部石羊河上游 公式(1)和(2) 16 石羊河上游峡门台水文气象站1985—2002年 年降水资料 22
基于月降雨量简易算法 西藏 公式(5) 7~223 西藏气象站点观测资料 23
格尔木至拉萨 公式(6) 1 294 气象台1981年、2000年的降雨量实际观测数据 24
青藏公路走廊 公式(6) 16~2 037 http://www.data.ac.cn/zrzy/G03.asp 25
青藏高原 公式(6) 三江源:386~920 2001—2012年青藏高原106个气象台站的 每日实测数据 26
西藏高原东部 公式(7) 299 西藏自治区水文站提供昌都地区1985—2000年 降雨量 27
基于日降雨量简易算法 全国 公式(8) 青藏高原寒带:368~427 全国约700个测站1971—1998年的逐日降雨资料 16
青藏高原东南部雨林地区 公式(8) 1 600 降雨卫星数据 28
雅鲁藏布江 公式(8) 758 1961—2015年日喀则、江孜、拉萨、泽当、当雄、 嘉黎、林芝和波密8个气象站数据 29
西南山区 公式(9) 青藏高原亚寒带:635 西南山区4省(市)及周边省份1960—2009年 129个气象站逐日降雨量资料 19
西南山区 公式(9) 青藏高原温带:661 西南山区4省(市)及周边省份1960—2009年 129个气象站逐日降雨量资料 19
青海的诺木洪 公式(9) 54~144 1960—2009年诺木洪气象站 20
EI30 沱沱河 径流小区观测EI30计算 336 沱沱河气象站 30
表2 青藏高原 K因子研究成果
Table 2 Research on of K factor of Qinghai-Tibet Plateau
表3 青藏高原 LS因子研究成果
Table 3 Research on LS factor of Qinghai-Tibet Plateau
表4 青藏高原基于坡面模型的土壤侵蚀评价
Table 4 Evaluation of soil erosion based on slope models in Qinghai-Tibet Plateau
土壤侵蚀模型 研究区 研究时间 各因子计算方法与来源 年均土壤侵蚀模数/[t/(hm2?a)] 参考 文献
R K LS C P
B E T
CSLE 昌都县 2011年 公式(8) EPIC模型 公式( 11 )、( 13 )和(14) 水域、居民地、裸岩0,坡地0.31,林地0.005~0.050,草地0.010~0.050 水平梯地0.25 顺坡耕作1 7.89 50
西藏扎叶巴小流域 2012—2016年 公式(8) EPIC模型 公式( 11 )、( 13 )和(14) 坡耕地0.47,水域0,林地0.004~1, 草地0.090~0.040 按坡度赋值 1.06 51
RUSLE 大通县 1995年 公式(3) 和(4) 高山石质土0.0528,草甸土0.0338,山地棕褐土0.0694,黑钙土0.0225 公式( 11 )、( 13 )和(14) 水浇地0.1,旱地0.31,有林地、灌木林地0.006,水域0,居民建设用地0.22,高、中、低覆盖度草地0.008、0.01、0.2 水浇地0.15,旱地0.6,有林地、灌木林地1,水域0,居民建设用地1,高、中、低覆盖度草地0.4、1、1 68.55 52
大通县 2005年 公式(3) 和(4) 公式( 11 )、( 13 )和(14) 51.83 52
青藏高原境内澜沧江上游 2010年 公式(6) EPIC模型 公式( 11 )、( 13 )和(14) 公式(17) 森林1,草地1,水田0.15,旱地0.4,居民点和 建设用地0,湿地0,裸岩、沙漠0,裸地1 114.98 53
青藏工程走廊带 2015年 公式(6) EPIC模型 公式(11) 和(12) 公式(17) 林地0.7,水域和建设用地0,草地和沙地1, 裸露岩石0,耕地0.1~0.8 87.47 25
三江源 2001—2012年 公式(6) EPIC模型 公式(11) 和(12 ) 公式(17) 1 89.46 26
三江源 2001—2012年 公式(6) EPIC模型 公式(11) 和(12) 公式(17) 1 85.45 54
三江源 1986—2000年 公式(6) EPIC模型 公式(11) 和(12) 公式(17) 1 0.18 48
三江源 2001—2005年 公式(6) EPIC模型 公式(11) 和(12) 公式(17) 1 0.22 48
三江源 1997—2004年 公式(6) EPIC模型 公式( 11 )、( 13 )和(14) 公式(17) 林地和草地1,水土和沼泽0,居民地和 建设用地0,旱地0.4,沙地和盐碱地1 8.26 55
三江源 2005—2012年 公式(6) EPIC模型 公式( 11 )、( 13 )和(14) 公式(17) 8.82 55
青藏高原 1980—2009年 公式(10) EPIC模型 公式(11) 和(12) 有林地0.04,高、中、低覆盖度草地0.05、0.05、0.15,城镇、农村用地0.2,沼泽地、裸岩石砾地1 1 30.01 21
青藏高原 2002—2016年 公式(8) EPIC模型 公式(13) 稻田0.1,干农田0.22,茂盛、灌木、稀疏、其他林地0.001、0.01、0.01、0.2、高、中低覆盖率草原0.12,0.18,0.32,沙地、戈壁沙漠、盐碱地、裸露土壤、沼泽0.05 稻田0.01,干农田0.4,其他林地0.7,茂盛、灌木、稀疏、高、中低覆盖率草原沙地、戈壁沙漠、盐碱地、裸露的土壤、其他未利用土地均为1 2.76 56
表5 基于 137Cs的青藏高原土壤水蚀测量结果
Table 5 Soil erosion measurements based on 137Cs over the Qinghai-Tibet Plateau
研究区 经纬度

背景值/

(Bq/m2

土壤侵蚀模数 计算公式 年均土壤侵蚀模数/[t/(hm2?a)] 土地利用/ 植被类型 坡度/° 盖度/% 参考文献
西藏日喀则 29°28′13.8″N, 88°82′29.2″E 831 - 13.15 林草地 15 28 64
青海省达日县垮热洼尔玛流域 33°N,99°E 3 795 公式(18) 7.16 高寒灌丛草甸 - 50~95 60
青海省达日县 33°N,99°E 2 468 公式(20) 16.50 高寒草甸和 高山草原 5 90 65
青海省玛沁县军功镇 34°39′42.2″N,100°37′22.9″E 1 623~1 689 非农耕地的扩散迁移模型:Mass Balance Model II的改进形式 8.00(净侵蚀 速率) 高山草甸 - - 66
青海省达日县纳通河流域 33°N,99°E 3 795 公式(18) 15.98 高寒灌丛草甸 - 10~85 67
青海省玉树市玛龙村

32°58′25.3″N,

96°19′01.1″E

2 130 公式(19) 4.64 高寒草甸 6.2 83.88 61
青海省称多县珍秦乡 33°24′26.8″N, 97°20′25.4″E 1 969 公式(19) 8.75 高寒草甸 6.8 70 61
青海省祁连县野牛沟乡 34°27′51.98″N,97°58′09.4″E 2 538 公式(19) 4.15 高寒草甸 11.4 88 61
青海省玉树市玛龙村 32°58′25.3″N, 96°19′01.1″E - 公式(19) 4.64 高寒草甸 6 >85 62
青海省玉树市玛龙村 32°57′40.1″N, 96°11′21.5″E - 公式(19) 8.30 高寒草甸 10 80 62
国道G214和果洛藏族自治州东北部的大武河流域 - 2 229 公式(19) 65.00 - - - 26
青藏公路走廊带 29~31°N,90~91°E 1 576 公式(19) 0.67 耕地 < 5 - 25
青藏公路走廊带 29~31°N,90~91°E 1 576 公式(19) 0.34 高寒草甸 < 5 - 25
三江源 - 2 000 - - 高寒灌丛草甸 - - 68
共和盆地 - 1 982 - - 草原和草原化荒漠 - - 69
兴海盆地 - 1 672和1 210 - - 高寒草甸和 山地草原 - - 69

青藏高原东北部214国道

左侧2 km处

- 1 188 - 0.54 高山草甸 <4 >80 70
青海省格尔木市沱沱河 34°12′05.2″N, 92°26′49.9″E 317~588 公式(20) 10.00 高寒草原 - - 63
青海省玛多县 34°58′14.6″N, 98°06′76.9″E - 公式(20) -1.70 高山草甸 - - 63
青海省玛沁县东倾沟乡 34°29′14.3″N, 99°57′23.5″E 968~1 245 公式(20) -14.20 高山草甸 - - 63
青海省玛沁县军牧场 34°20′46.8″N,100°27′58.3″E 1 379~2 049 公式(20) 0.30 高山草甸 - - 63
青海省玛沁县军功镇 34°39′42.2″N,100°37′22.9″E 1 623~1 689 公式(20) 99.00 高山草甸 - - 63
表6 青藏高原基于小区的测量结果
Table 6 Measurement results based on plots in Qinghai-Tibet Plateau
1 Jingping E. Summary report of comprehensive scientific investigation on soil erosion and ecological security in China [J]. Soil and Water Conservation in China, 2008(12):3-7.
鄂竟平.中国水土流失与生态安全综合科学考察总结报告[J].中国水土保持,2008(12):3-7.
2 XIE Gaodi, LU Chunxia, LENG Yunfa, et al. Ecological assets valuation of the Tibetan Plateau [J]. Journal of Natural Resources, 2003(2):189-196.
谢高地,鲁春霞,冷允法,等.青藏高原生态资产的价值评估[J].自然资源学报,2003(2):189-196.
3 WANG Tianwei, SHAN Yongti, WANG Bin. Study on highway erosion and slope protection in Qinghai-Tibet Plateau [J]. Traffic Safety and Environmental Protection, 2014(22):38-43.
王天伟,单永体,王斌.青藏高原地区公路侵蚀情况研究及边坡防护分析[J].交通建设与管理,2014(22):38-43.
4 LI Daiming. Initial analysis for water and soil moving distribution and its damage and difficulty of management in Tibet [J]. Xizang Science and Technology, 2001(1):21-24.
李代明.西藏水土流失分布成因、危害及治理难度初步分析[J].西藏科技,2001(1):21-24.
5 NIU Fujun, WANG Wei, LIN Zhanju, et al. Study on environmental and hydrological effects of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2018,33(4):335-342.
牛富俊,王玮,林战举,等.青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J].地球科学进展,2018,33(4):335-342.
6 RENARD K G, FOSTER G R, WEESIES G A, et al. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE) [M]. USDA, National Technical Information Service, 1997.
7 LIU Baoyuan, ZHANG Keli, XIE Yun. An empirical soil loss equation[C] // Proceedings of 12th ISCO. Beijing: Tsinghua University Press, 2002: 143-149.
8 WISCHMEIER W H, SMITH D D. Predicting rainfall erosion losses from cropland east of the Rocky Mountains:guide for selection of practices for soil and water conservation[M]. Washington DC: Agricultural Research Service, US Department of Agriculture, 1965.
9 WISCHMEIER W H, SMITH D D. Predicting rainfall erosion losses: a guide to conservation planning [M]. USDA, Agriculture Handbook, 1978.
10 WANG Wanzhong, JIAO Juying, HAO Xiaopin, et al. Distribution of rainfall erosivity R value in China (I) [J]. Journal of Soil and Water Conservation, 1995(4):5-18.
王万中,焦菊英,郝小品,等.中国降雨侵蚀力R值的计算与分布(Ⅰ)[J].水土保持学报,1995(4):5-18.
11 LIU Baoyuan, XIE Yu, ZHANG Keli. Soil loss prediction model [M]. Beijing: China Science and Technology Press, 2001.
刘宝元,谢云,张科利.土壤侵蚀预报模型[M].北京:中国科学技术出版社,2001.
12 LAL R. Soil erosion research method [M]. US, Soil and Water Conservation, 1988.
13 ZHOU Fujian, CHEN Minghua, LIN Fuxing, et al. R value of rainfall erodibility in Fujian Province [J]. Journal of Soil and Water Conservation, 1995(1):13-18.
周伏建,陈明华,林福兴,等.福建省降雨侵蚀力指标R值[J].水土保持学报,1995(1):13-18.
14 WISCHMEIER W H. A rainfall erosion index for a universal soil loss equation1[J]. Soil Science Society of America Journal, 1959, 23(3): 246.
15 MA Zhizun. Study on the method of factor value of general soil loss equation by satellite image calculation [J]. Journal of Soil and Water Conservation, 1989(3):24-27.
马志尊.应用卫星形象估算通用土壤流失方程各因子值方法的探讨[J].中国水土保持学报, 1989(3):24-27.
16 ZHANG Wenbo, XIE Yun, LIU Baoyuan. Spatial distribution of rainfall erosivity in China [J]. Journal of Mountain Science, 2003(1):33-40.
章文波,谢云,刘宝元.中国降雨侵蚀力空间变化特征[J].山地学报,2003(1):33-40.
17 ZHANG Wenbo, XIE Yun, LIU Baoyuan. Rainfall erosivity estimation using daily rainfall amounts [J]. Scientia Geographica Sinica, 2002,22(6):705-711.
章文波,谢云,刘宝元.利用日雨量计算降雨侵蚀力的方法研究[J].地理科学,2002,22(6):705-711.
18 ZHANG Wenbo, FU Jinsheng. Rainfall erosivity estimation under different rainfall amount[J]. Resources Science, 2003,25(1):35-41.
章文波,付金生.不同类型雨量资料估算降雨侵蚀力[J].资源科学,2003,25(1):35-41.
19 LIU Bintao, TAO Heping, SONG Chunfeng, et al. Temporal and spatial variations of rainfall erosivity in southwest China from 1960 to 2009[J]. Advances in Earth Science,2012,27(5):499-509.
刘斌涛,陶和平,宋春风,等.我国西南山区降雨侵蚀力时空变化趋势研究[J].地球科学进展,2012,27(5):499-509.
20 LIU Bintao, TAO Heping, SONG Chunfeng, et al. Temporal and spatial variations of rainfall erosivity in China during 1960 to 2009 [J]. Geographical Research,2013,32(2):245-256.
刘斌涛,陶和平,宋春风,等. 1960—2009年中国降雨侵蚀力的时空变化趋势[J].地理研究,2013,32(2):245-256.
21 KANG Linqi. Soil erosion estimation and comparison in the Tibetan Plateau during 1980-2009 [D]. Chengdu:Sichuan Agricultural University, 2017.
康琳琦.青藏高原1980—2009年土壤侵蚀量的估算与比较[D].成都:四川农业大学,2017.
22 TANG Cuiwen, ZHANG Zhongming, XIAO Duning, et al. Environmental factor characteristics of soil erosion in the upeer reaches of Shiyang river in the Qilian Mountains [J]. Journal of Glaciology and Geocryology, 2012,34(1):105-113.
汤萃文,张忠明,肖笃宁,等.祁连山石羊河上游山区土壤侵蚀的环境因子特征分析[J].冰川冻土,2012,34(1):105-113.
23 ZHONG Xianghao, WANG Xiaodan, LI Huixia, et al. Study of soil erosion sensitivity distribution law and division in Tibet [J]. Journal of Mountain Science, 2003,21():143-147.
钟祥浩,王小丹,李辉霞,等.西藏土壤侵蚀敏感性分布规律及其区划研究[J].山地学报,2003,21():143-147.
24 WANG Aijun. Study on water & soil conservation at Qinghai-Tibet railway Geermu-Lasa section [D]. Chengdu: Southwest Jiaotong University, 2007[王爱军.青藏铁路格尔木至拉萨段水土保持研究[D].成都:西南交通大学,2007.]
25 HU Lin. Study on development and mechanism of water erosion and ecological water erosion control technology of highway slope in cold region [D]. Xi'an: Xi'anUniversity of Technology,2016.
胡林.高寒地区水蚀发育机理及公路边坡水蚀生态防控技术研究[D].西安:西安理工大学,2016.
26 WANG Xuelu. Soil erosion of alpine grassland ecosystem on Tibetan Plateau Sanjiangyuan region [D]. Lanzhou:Lanzhou University,2016.
王雪璐.青藏高原三江源高寒草地生态系统土壤侵蚀研究[D].兰州:兰州大学,2016.
27 GU Shixian, WANG Xiaodan, LIU Shuzhen. The preliminary research on rainfall erosivity based on simple estimation method in the Hengduan Mountainous region of the eastern Tibet [J]. Research of Soil and Water Conservation, 2011,18(3):28-31.
辜世贤,王小丹,刘淑珍.西藏高原东部横断山区降雨侵蚀力初步研究[J].水土保持研究,2011,18(3):28-31.
28 TENG Hongfen. Assimilating multi-source data to model and map potential soil loss in China [D]. Hangzhou: Zhejiang University, 2017.
滕洪芬.基于多源信息的潜在土壤侵蚀估算与数字制图研究[D].杭州:浙江大学,2017.
29 LIU Hui, LI Xiaoying, YAO Zhengyi. Rainfall erosivity in Yarlung Zangbo River Basin during1961-2015 [J]. Journal of Desert Research, 2019,39(2):166-176.
刘慧,李晓英,姚正毅.1961—2015年雅鲁藏布江流域降雨侵蚀力[J].中国沙漠,2019,39(2):166-176.
30 XU Xianli, LIU Wen, KONG Yaping, et al. Runoff and water erosion on road side-slopes: effects of rainfall characteristics and slope length[J]. Transportation Research: Part D, 2009, 14(7):497-501.
31 WILLIAMS J R, DYKE P T, FUCHS W W, et al. EPIC-erosion/productivity impact calculator:2. user manual[Z]. Washington, DC:US Department of Agriculture, 1990.
32 WILLIAMS J R. The EPIC model [R]. Temple: USDA-ARS, Grassland, Soil and Water Research Laboratory, 1997.
33 WANG Xiaodan, ZHONG Xianghao, WANG Jianping. Preliminary study on the soil erodibility and its spatial distribution on the Tibetan Plateau [J]. Arid Land Geography, 2004,27(3):343-346.
王小丹,钟祥浩,王建平.西藏高原土壤可蚀性及其空间分布规律初步研究[J].干旱区地理,2004,27(3):343-346.
34 LIU Jifeng, LI Shijie, QIN Ningsheng, et al. Soil erodiable K in the catchment of Qinghai Lake [J]. Arid Land Geography, 2006,29(3): 321-326.
刘吉峰,李世杰,秦宁生,等.青海湖流域土壤可蚀性K值研究[J].干旱区地理,2006,29(3):321-326.
35 CHEN Xingfang. Evaluation of soil erosion status in Qinghai Lake Basin based on USLE Model [D]. Xining: Qinghai Normal University,2012.
陈兴芳.基于USLE模型的青海湖流域土壤侵蚀现状评价[D].西宁:青海师范大学,2012.
36 CHEN Xuexiong. RS and GIS based quantitative assessment of soil and water loss in China [D]. Yangling: Northwest A&F University,2013.
陈学兄.基于遥感与GIS的中国水土流失定量评价[D].杨凌:西北农林科技大学,2013.
37 LIU Bintao, TAO Heping, SHI Zhan, et al. Spatial distribution characteristics of soil erodibility K value in Qinghai-Tibet Plateau [J]. Bulletin of Soil And Water Conservation, 2014,34(4):11-16.
刘斌涛,陶和平,史展,等.青藏高原土壤可蚀性K值的空间分布特征[J].水土保持通报,2014,34(4):11-16.
38 ZHANG Peng, YAO Tiantian, YU Wu, et al. Effects of different vegetation types on soil erosivity in dry and hot valley of Yajiang River basin [J]. Journal of Southwest Forestry University, 2019,39(4):9-17.
张鹏,姚甜甜,喻武,等.雅江流域干热河谷不同植被类型对土壤可蚀性的影响[J].西南林业大学学报:自然科学,2019,39(4):9-17.
39 MCCOOl D K, BROWN L C, FOSTER G R, et al. Revised slope steepness factor for the Universal Soil Loss Equation[J]. Transactions of the ASAE American Society of Agrioultnnal Engineers (USA),1987,30(5):1 387-1 396.
40 LIU Baoyuan, NEARING M A, RISSE L M. Slope gradient effects on soil loss for steep slopes [J]. Transactions of the ASAE, 1994, 37(6): 1 835-1 840.
41 MOU Jinze, MENG Qingmei. Preliminary study on the prediction equation of soil erosion by rainfall [J]. Soil and Water Conservation in China , 1983(6):25-29.
牟金泽,孟庆枚.降雨侵蚀土壤流失预报方程的初步研究[J].中国水土保持,1983(6):25-29.
42 SONG Lei. Study of regional precipitation product with high spatial-temporal resolution over the Tibetan Plateau based on TRMM 3B43 [D]. Nanjing: Nanjing University of Information Science & Technology,2015.
宋蕾.基于TRMM 3B43青藏高原区域性高时空分辨率降水探究[D].南京:南京信息工程大学,2015.
43 CHANG Zhiyang. Research on quantitative geomorphologic indices of Bailongjiang drainage basin in the eastern Tibet Plateau based on digital elevation models [D]. Nanjing: Nanjing Normal University, 2014.
常直杨.青藏高原东缘白龙江流域地貌定量化参数体系研究[D].南京:南京师范大学,2014.
44 SHI Jianqiao. Spatial and temporal variations of snow and influencing factors in tibetan based on remote sensing and GIS [D]. Nanjing: Nanjing University of Information Science & Technology, 2014.
史建桥.基于遥感和GIS的青藏高原积雪时空变化及影响因子分析[D]. 南京:南京信息工程大学,2014.
45 LIU Xinhua. Analysis and extraction of topographic factor in regional soil and water loss[D]. Yangling: Northwest A&F University,2001.
刘新华.区域水土流失地形因子分析与提取研究[D].杨凌:西北农林科技大学,2001.
46 JIA Junshu. Study on land-use/cover change and soil erosion in Datong County [D]. Beijing: Beijing Forestry University,2009.
贾俊姝.大通县土地利用/覆被变化与土壤侵蚀的研究[D].北京:北京林业大学,2009.
47 JI Cuicui. The soil erosion dynamic monitor and research based on RS and GIS in Three-North [D]. Fuxin: Liaoning Technology University, 2009.
姬翠翠.基于遥感和GIS的三北地区水土流失动态监测研究[D].阜新:辽宁工程技术大学,2009.
48 ZHENG Shuting. Protection policy responses to soil erosion of alpine grassland in the Three-River Head Water Area [D]. Lanzhou: Lanzhou University, 2018.
郑舒婷.三江源高寒草地土壤侵蚀对保护政策的响应研究[D].兰州:兰州大学,2018.
49 CAI Chongfa, DING Shuwen, SHI Zhihua, et al. Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed [J]. Journal of Soil and Water Conservation,2000,14(2):19-24.
蔡崇法,丁树文,史志华,等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24.
50 GONG Kuifang, FAN Jiangrong, ZHANG Dingrong, et al. Soil erosion assessment in Changdu county supported by RS and GIS technology[J]. Journal of Soil and Water Conservation, 2011(5):51-53.
宫奎方,范建容,张定容,等. RS和GIS技术支持下的昌都县土壤侵蚀评估[J].中国水土保持,2011(5):51-53.
51 DENG Jian. Study on application of soil erosion grading index in small watershed in the middle reaches of the Yarlung Zangbo River[D]. Chengdu:Southwest Jiaotong University, 2019.
邓健.雅鲁藏布江中游小流域土壤侵蚀分级指标应用研究[D].成都:西南交通大学,2019.
52 JIA Junshu, CHEN Jinlian, GAO Xin, et al. Estimation of soil erosion based on RUSLE in Datong County [J]. Journal of Northwest Forestry University, 2012,27(2):56-61.
贾俊姝,陈金莲,高欣,等.基于RUSLE的大通县土壤侵蚀量估算[J].西北林学院学报,2012,27(2):56-61.
53 CHEN Long, XIE Gaodi, ZHANG Changshun, et al. Spatial distribution characteristics of soil erosion in Lancang River Basin [J]. Resources Science, 2012,34(7):1 240-1 247.
陈龙,谢高地,张昌顺,等.澜沧江流域土壤侵蚀的空间分布特征[J].资源科学,2012,34(7):1 240-1 247.
54 LIN Huilong, ZHENG Shuting, WANG Xuelu. Soil erosion assessment based on the RUSLE model in the Three-Rivers Headwaters area, Qinghai-Tibetan Plateau, China[J]. Acta Prataculturae Sinica, 2017, 26(7): 11-22.
林慧龙,郑舒婷,王雪璐.基于RUSLE模型的三江源高寒草地土壤侵蚀评价[J].草业学报,2017,26(7):11-22.
55 CAO Wei, LIU Lulu, WU Dan. Soil erosion changes and driving factors in the Three-River Headwaters region [J]. Acta Prataculturae Sinica, 2018,27(6):10-22.
曹巍,刘璐璐,吴丹.三江源区土壤侵蚀变化及驱动因素分析[J].草业学报,2018,27(6):10-22.
56 TENG Hongfen, LIANG Zongzheng, CHEN Songchao, et al. Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models[J]. Science of the Total Environment, 2018, 635: 673-686.
57 ZHAO Jian, LI Rong. Soil erosion and subarea characteristics in Yarlung Tsangpo River Basin [J]. Journal of Yangtze River Scientific Research Institute, 2008(3):42-45.
赵健,李蓉.雅鲁藏布江流域土壤侵蚀区域特征初步研究[J].长江科学院院报,2008(3):42-45.
58 ZHANG Peng, GESANG Zhuoma, FAN Jianrong, et al. Soil erosion status and distribution characteristics in the "One River and Two Streams" region in Tibet [J]. Research of Soil and Water Conservation,2017,24(1):49-53.
张鹏,格桑卓玛,范建容,等.西藏“一江两河”地区土壤侵蚀现状及分布特征[J].水土保持研究,2017,24(1):49-53.
59 FENG Mingyi, WEN Anbang. Research progresses on 137Cs measurement in soil erosion in China [J]. Journal of Soil and Water Conservation, 2002,16(2):61-64.
冯明义,文安邦.中国土壤侵蚀的137Cs法研究进展[J].水土保持学报,2002,16(2):61-64.
60 LI Yuanshou, WANG Genxu, WANG Junde, et al. 137Cs trace technique to study soil erosion at alpine meadow of Tibetan Plateau [J]. Journal of Mountain Science, 2007,25(1):114-121.
李元寿,王根绪,王军德,等. 137Cs示踪法研究青藏高原草甸土的土壤侵蚀[J].山地学报,2007,25(1):114-121.
61 SHAO Quanqin, XIAO Tong, LIU Jiyuan, et al. Soil erosion rates and characteristics of typical alpine meadow using 137Cs technique in Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2011, 56(13):1 019-1 025.
邵全琴,肖桐,刘纪远,等.三江源区典型高寒草甸土壤侵蚀的137Cs定量分析[J].科学通报,2011,56(13): 1 019-1 025.
62 XIAO Tong, SUN Wenyi, QI Yongqing, et al. Grassland degradation characteristics of typical alpine meadow slopes in the Three-River source region of Qinghai Province [J]. Acta Agrestia Sinica, 2013,21(3):452-459.
肖桐,孙文义,齐永青,等.三江源高寒草甸典型坡面草地退化特征综合分析[J].草地学报,2013,21(3):452-459.
63 LI Yong, LI Junjie. Are Kayode Steven,et al. Livestock grazing significantly accelerates soil erosion more than climate change in Qinghai-Tibet Plateau:evidenced from 137Cs and 210Pbex measurements[J]. Agriculture, Ecosystems and Environment, 2019, 285: 106643.
64 WEN Anbang, LIU Shuzhen, FAN Jianrong, et al. Soil erosion rate using 137Cs technique in the middle Yalungtsangpo [J]. Journal of Soil and Water Conservation, 2000,14(4):47-50.
文安邦,刘淑珍,范建容,等.雅鲁藏布江中游地区土壤侵蚀的137Cs示踪法研究[J].水土保持学报,2000,14(4):47-50.
65 WANG Yibo, WANG Genxu, HU Hongchang, et al. Erosion rates evaluated by the 137Cs technique in the high altitude area of the Qinghai-Tibet plateau of China [J]. Environmental Geology, 2007, 53(8): 1 743-1 749.
66 LI Junjie. Study for tracing techniques and methods using environmental radionuclides apllied to soil erosion [D]. Beijing: Chinese Academy of Agricultural Sciences, 2008.
李俊杰.应用于土壤侵蚀的环境放射性核素示踪技术方法研究[D].北京:中国农业科学院,2008.
67 LI Yuanshou, WANG Genxu, DING Y J. Application of the Cs-137 tracer technique to study soil erosion of alpine meadows in the headwater region of the Yellow River[J]. Environmental Geology, 2009, 58: 1 021-1 028.
68 HOU Jian, WANG Huiqing, FU Bojie, et al. Effects of plant diversity on soil erosion for different vegetation patterns [J]. Catena, 2016,147:632-637.
69 YU Di, SHA Zhanjiang, Wang Qiugui, et al. Distribution characteristics of 137Cs and 210Pbex in soil of grassland region in the northeastern of Qinghai-Tibet Plateau [J]. Journal of Arid Land Resources and Environment,2018,32(10):160-166.
余迪,沙占江,王求贵,等.青藏高原东北部草原区土壤137Cs和~210Pb分布特征[J].干旱区资源与环境,2018,32(10):160-166.
70 CHEN Zetao, SHA Zhanjiang, WANG Qiugui, et al. Effects of soil erosion and vegetation cover on spatial distribution of nutrients in alpine grassland meadow area—a case study of Ziketan in Xinghai Basin [J]. Research of Soil and Water Conservation, 2019,26(6):226-234.
陈泽涛,沙占江,王求贵,等.高寒草原草甸区土壤侵蚀及植被覆盖对养分空间分布的影响——以兴海盆地子科滩为例[J].水土保持研究,2019,26(6):226-234.
71 XU Xianli, ZHANG Keli, KONG Yaping, et al. Effectiveness of erosion control measures along the Qinghai-Tibet highway, Tibetan Plateau, China [J]. Transportation Research (Part D), 2006,11(4):302-309.
72 CHEN Zongwei, JIANG Yulin, ZHANG Hongjiang, et al. The properties of the soil loss in the soil area during the construction of expressway in Tibetan Plateau—example as the Ping'a express in Qinghai Province [J]. Research of Soil and Water Conservation, 2006,13(6):4-6.
陈宗伟,江玉林,张洪江,等.青藏高原高速公路建设中弃土场土壤流失特性——以青海平阿高速公路为例[J].水土保持研究,2006,13(6):4-6.
73 LUO Zhuanxi, DENG Lin, YAN Changzhou. Soil erosion under different plant cover types and its influencing factors in Napahai Catchment, Shangri-La County, Yunnan Province, China[J]. International Journal of Sustainable Development & World Ecology,2015,22(2):135-141.
74 MA Sujie, ZHOU Jianwei, WANG Fucheng, et al. Effect of soil erosion of Plateau Zokor new mound in alpine meadow[J]. Journal of Soil and Water Conservation, 2019,33(5):58-63,71.
马素洁,周建伟,王福成,等.高寒草甸区高原鼢鼠新生土丘水土流失特征[J].水土保持学报,2019,33(5):58-63,71.
75 LUO Lifang, ZHANG Keli, KONG Yaping, et al. Temporal and spatial distribution of soil loss on Tibet-Qing Plateau [J]. Journal of Soil and Water Conservation, 2004,18(1):58-62.
罗利芳,张科利,孔亚平,等.青藏高原地区水土流失时空分异特征[J].水土保持学报,2004,18(1):58-62.
76 ZHANG Fan, SHI Xiaonan, ZENG Chen, et al. Variation and influence of riverine sediment transport from Tibetan Plateau, China[J]. Bulletin of the Chinese Academy of Sciences, 2019,34(11):1 274-1 284.
张凡,史晓楠,曾辰,等.青藏高原河流输沙量变化与影响[J].中国科学院院刊,2019,34(11): 1 274-1 284.
77 XU Xianli, ZHANG Keli, PANG Ling, et al. Laws of soil erosion on side slopes of Qinghai-Tibet Highway [J]. Scientia Geographica Sinica, 2006,26(2):2 211-2 216.
徐宪立,张科利,庞玲,等.青藏公路路堤边坡产流产沙规律及影响因素分析[J].地理科学,2006,26(2):2 211-2 216.
78 XU Xianli, ZHANG Keli, LIU Wen, et al. Effectiveness of erosion control measures on Qinghai-Tibet Highway slopes [J]. Resources and Environment in the Yangze Basin, 2008,17(4):619-622.
徐宪立,张科利,刘雯,等.青藏公路路堤边坡水土保持措施及效益分析[J].长江流域资源与环境,2008,17(4):619-622.
79 LI Guorong, LI Xilai, CHEN Wenting, et al. Experimental study on soil erosion rule of degraded grassland in source area of the Yellow River[J]. Journal of Soil and Water Conservation, 2017, 31(5):51-55,63.
李国荣,李希来,陈文婷,等.黄河源区退化草地水土流失规律[J].水土保持学报,2017,31(5):51-55,63.
80 HU Lin, SHAN Yongti, CHEN Ruihua, et al. A study of erosion control on expressway embankment sideslopes with three-dimensional net seeding on the Qinghai-Tibet Plateau [J]. Catena, 2016,147:463-468.
81 CHEN Tongde, JIAO Juying, WANG Haolin, et al. Research progress on soil erosion in Qinghai-Tibet Plateau[J]. Acta Pedologica Sinica,2020,57(3):547-564.
陈同德,焦菊英,王颢霖,等.青藏高原土壤侵蚀研究进展[J].土壤学报,2020,57(3):547-564.
[1] 兰爱玉, 林战举, 范星文, 姚苗苗. 青藏高原北麓河多年冻土区阴阳坡地表能量和浅层土壤温湿度差异研究[J]. 地球科学进展, 2021, 36(9): 962-979.
[2] 仲雷,葛楠,马耀明,傅云飞,马伟强,韩存博,王显,程美琳. 利用静止卫星估算青藏高原全域地表潜热通量[J]. 地球科学进展, 2021, 36(8): 773-784.
[3] 王慧,张璐,石兴东,李栋梁. 2000年后青藏高原区域气候的一些新变化[J]. 地球科学进展, 2021, 36(8): 785-796.
[4] 田凤云,吴成来,张贺,林朝晖. 基于 CAS-ESM2的青藏高原蒸散发的模拟与预估[J]. 地球科学进展, 2021, 36(8): 797-809.
[5] 马宁. 40年来青藏高原典型高寒草原和湿地蒸散发变化的对比分析[J]. 地球科学进展, 2021, 36(8): 836-848.
[6] 柯思茵,张冬丽,王伟涛,王孟豪,段磊,杨敬钧,孙鑫,郑文俊. 青藏高原东北缘晚更新世以来环境变化研究进展[J]. 地球科学进展, 2021, 36(7): 727-739.
[7] 李耀辉, 孟宪红, 张宏升, 李忆平, 王闪闪, 沙莎, 莫绍青. 青藏高原—沙漠的陆—气耦合及对干旱影响的进展及其关键科学问题[J]. 地球科学进展, 2021, 36(3): 265-275.
[8] 杨军怀,夏敦胜,高福元,王树源,陈梓炫,贾佳,杨胜利,凌智永. 雅鲁藏布江流域风成沉积研究进展[J]. 地球科学进展, 2020, 35(8): 863-877.
[9] 姚天次,卢宏玮,于庆,冯玮. 50年来青藏高原及其周边地区潜在蒸散发变化特征及其突变检验[J]. 地球科学进展, 2020, 35(5): 534-546.
[10] 张宏文,续昱,高艳红. 19822005年青藏高原降水再循环率的模拟研究[J]. 地球科学进展, 2020, 35(3): 297-307.
[11] 苗毅, 刘海猛, 宋金平, 戴特奇. 青藏高原交通设施建设及影响评价研究进展[J]. 地球科学进展, 2020, 35(3): 308-318.
[12] 牛富俊, 王玮, 林战举, 罗京. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33(4): 335-342.
[13] 王修喜. 低温热年代学在青藏高原构造地貌发育过程研究中的应用[J]. 地球科学进展, 2017, 32(3): 234-244.
[14] 李明启, 邵雪梅. 基于树轮资料初探过去千年强火山喷发与青藏高原东部温度变化关系[J]. 地球科学进展, 2016, 31(6): 634-642.
[15] 王婷. 基于文献计量的青藏高原国际合作研究态势分析[J]. 地球科学进展, 2016, 31(6): 650-662.
阅读次数
全文


摘要